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Introduction

Consider a randomly sampled examinee responding to a multiple-choice
test item. In mental test theory there are, of course, many procedures
that might be used to analyze this item. One approach might be as follows.
Suppose a conventional scoring procedure is used where it is decided that
an examinee knows the correct response if the correct alternative is
chosen, and that otherwise the examinee does not know. If it were pos-
sible to estimate the probability, T, of correctly determining an exam-
inee's latent state (whether he/she knows the correct response) based on
the above decision rule, this would give an indication of how well the
distractors are performing for the typical examinee. The obvious problem
is that under normal circumstances, there is no way of estimating this
probability unless additional assumptions are made. One approach is to
assume that examinees guess at random among the alternatives when they do
not know the answer. If this knowledge or random guessing model holds,

T is easily estimated. However, empirical investigations (Bliss, 1980;
Cross & Frary, 1977) suggest that this assumption will frequently be vio-
lated, and some related empirical results (Wilcox, 1982a, 1982b) indicate
that such a model can be entirely unsatisfactory for other reasons as well.

Another approach is to use a latent structure model, and many such
models have been proposed for measuring achievement {e.q., Brownless &
Keats, 1958; Marks & Noll, 1967; Knapp, 1977; Dayton & Macready, 1976,
1980; Macready & Dayton, 1977; Wilcox, 1977a, 1977b, 1981a; Bergan et al.,

1980). The choice of a model depends on what one is willing to assume in



a particular situation. These models make it possible to estimate errors
at the item Tevel such as
B = Pr(random]y selected examinee gives the correct response |
examinee does not know) [1]
which in turn yields an estimate oF 7. An illustration is given in a
Tater section. (For a review of latent structure models vis-a-yis cri-
terion-referenced tests, see Macready and Dayton, 1980.) “For some re-
cent general comments on using latent structure models to Measure achieve-
ment, see Molenaar (1981) and Wilcox (1981b).
Assume for a moment that for each item on an n-item test, an estimate
of 7 can be made. Let X; = 1if a randomly selected examinee's latent

state is correctly determined for the ith item; otherwise X; = 0. Then

E(xi) =1 (=1, ..., 1) is the Probability of a correct decision on
the ith item where the expectation is taken over the population of examinees.
Within the framework Just described, how should an n-item test be

characterized? Observing that zxi is the number of correct decisions

among the n items, an obvioys approach is to yse
M= E(Zx,i) = ZT_i (2]
where the expectation is over some particular Population of examinees.
The parameter u is just the expected number of correct decisions among
the n items for a typical examinee.
Knowing p might not be important for certain types of tests, but
surely it is important for some achievement tests. However, even if

1w 1s known exactly, it would be helpful to have some additional related




information about X - For instance, a test constructor would have a
better idea of how the test performs if VAR(Exi) could be determined.
The problem is that VAR(zxi) depends on COV(xi,xj), but this last quan-
tity is not known and at present there is no way of estimating it. An
alternative approach is to use the k out of n reliability of the test
(Wilcox, 1982a)} Which is given by

ok = F‘r():x_i > k). - [3]

In other words, if the goal of a test is to determine which of n items
an examinee knows, and if a conventional scoring procedure is used, Pl
is the probability of making at least k correct decisions for the typical
examinee,

Suppose, for example, n = 10 and yu is estimated to be 7. Thus, the
expected number of correct decisions is 7, but there is no information
about the 1likelihood that at least 7 correct decisions will be made. If
Py Were known, a test constructor would have some additional and useful
information for judging the accuracy of the test. Py might also be used
as follows. Suppose it is desired to have pg » 9. If u is estimated
to be 9.1, this is encduraging, but it is not clear what implications
this has in terms of making at least 8 correct decisions for the typical
examinee.

If X; is the independent of xj, i#j, an exact expression for Py is
available via the compound binomial distribution. Perhaps there are

situations where this independence might be assumed, but it is evident

that this independence will not always hold. If it can be assumed that



COV(XT’Xj) > 0, bounds on g, are available (Wilcox, 1983a). Recently
Sathe, Pradhan, and Shah (1980) derived bounds on o that make no as-
sumption about COV(xi,xj). The main point of this paper is that these
bounds can be estimated using an extension of an answer-until-correct

(AUC) scoring procedure proposed by Wilcox (1981a}.

An Extension of an Answer-Until-Correct (AUC) Scoring Procedure

As just indicated, an extension of results in Wilcox (198la) is
needed in order to apply the bounds derived by Sathe et al. (1980).

First, however, it is helpful to briefly review the procedure and basic
assumptions in w11cox.(1981a).

Consider a specific test item having t alternatives from which to
choose, one of which is the correct response. Assume examinees respond
according to an AUC scoring procedure. This means that examinees choose
an alternative, and they are told immediately whether the correct response
has been identified. If they are incorrect another response is chosen,
and this process continues until they are successful. Special forms are
generally available for administering AUC tests which make these tests
easy to use in the classroom.

Let Ct¥1 be the proportion of examinees who know the correct response,
and let Zi (i=0,...,t-2) be the proportion of examinees who can eliminate
i distractors given that they do not know the correct response. Wilcox
(1981a) assumes that examinees eliminate as many distractors as they can,

and then choose at random from among those that remain. If oF is the



probability of choosing the correct response on the ith attempt, then

T
p. =
1 j=

Ca(t) () [4]
Note that the model assumes that at least one effective distractor is
being used. Put another way, no distinction is made between examinees
who know the answer and examinees who can eliminate all of the distrac-
tors. Also, the model assumes Pr(incorrect response|examinee knows) = 0.
In certain special cases this assumption can be avoided {e.g., Macready
& Dayton, 1977), and the results reported here are easily extended to
this case {cf. Molenaar, 1981; Wiicox, 1981b).

Assuming the model holds,

te-1 T P17 Py 5]
and '
T gt 1 - Py = 1 - Py - [6]
If in a random sample of N examinees, ¥; examinees are correct on their
ith attempt, Bi = yi/N is an unbiased estimate of Py which yields an
estimate of ¢, ; and .

Although empirical studies suggest that this model will frequently
be reasonable (Wilcox, 1982a, 1982b), there are instances where this will
not be the case. For example, some items might require a misinformation
model, and an appropriate modification of the AUC scoring procedure has
been proposed (Wilcox, 1982a, 1982b). The results outlined here are
readily extended to this case, and a brief outline of how this can be

done is given below.

Consider any two items on an n-item test, say items i and j. Apply-



ing results in Sathe et al. requires an estimate of T1j=Pr(Xi=1’xj=1)’
i.e., the joint probabi1ity_of making a correct decision for both items
i and j. The remainder of this section outlines how this might be done.

It is assumed that an examinee's guessing rate is independent over
the items that he/she does not know. This means, for example, that if
an examinee can eliminate all but 2 alternatives on item i, and all but
3 alternatives on item j, the probability of choosing the correct response
on the first attempt of both items is (1/2)(1/3) = 1/6.

For the two 1téms under consideration, let pkm(k,m=1,...,t) be the
probability that a randomly selected examinee chooses the correct response
on the kth attempt of the first item, and the correct response on the mth
attempt of the second. If ggh is the proportion of examinees who can
eliminate g distractors from the first item and h distractors from the
second (g, h = 1,...,t-1), then

t-k t-m . .
ol g o0/ () 2
The last expression can be used to express e 1,t-1 in terms of the pkm‘s
which can be used to estimate Tpo1,t-1° Note that if the first item has
t' alternatives, t! # t, simply replace t-k with t'-k in equation 7.

To clarify matters, consider the special case t = 3. Equation 7

says that
Pr1 = Gap T Ba1/2  Bagf 3t B2 ryy/A  nypl6 + tp/3 L8]
* o01/6 * tog/?

Pip = Gop/2 * tpo/3 * q/4 + £1p/6 F 1y1/6 + £40/9 [9]



Pyg = tpp/3 T yp/6 t 5gp/9 (10]
Ppp = B1p/2 * Tgp/3 * B/ B+ rgy/6 F yo/6 * £gp/Y [11]
Pz = t11/4 * 210/ * Bgy /6 * 2/ [12]
Pa3 = t10/° * %gof? [13]
P31 = %02/3 * 201/8 * Zgo/? [14]
Pao = Zg1/0 * /9 [15]
P33 = Zoo/? . [16]

Thus, starting with eguation 16
%00 = P33 [17]
to1 = 6(P3p - P33) [18]

and eventually oo CAN be expressed in terms of the pkm's. Replacing the
pkm's with their usual unbiased estimate yields an estimate of Loo SAY
222. But it can be seen that for the two items under consideration (items
i and j},

+1 -

Tij T t22 P11 [19]

J i
i For arbitrary t, T4 3 is given by equation 19 with Loo Ve~

Replacing Too and P11 with &22 and 511 yields an estimate of Ty T Prix.=1,
xj=1), say ;1

placed with te1,t-1 Note however, that the model implies that certain
inequalities among the pkm's must hold. For example, P312P392P33- Esti-
mating the pkm's assuming these inequalities are true requires an appli-
cation of the pool-adjacent violators algorithm (Barlow et al., 1972).

Testing these inequalities can be accomplished by applying results in

Robertson {1978}.



Bounds on Py

This section describes how the results in the previous section can
be used to estimate bounds on Py First, however, results in Sathe et al.

{1980) are summarized. Recall that p = Ity and let

n-1 n
S = Tis [20]
=1 g=i+#1 1
Uk=u—k [21]
and
Vi = (25 - k{k - 1))/2 . [22]
Then,
0 > Pier - By [23]
nin - k + 1)
If 2V, 4 < (n+k - 2)U _q, then
o > BT = Uy = Viw) [24]

(k* - k)(k* - k + 1)
where k* + k - 3 is the largest integer in 2Vk_1/Uk_1. Two upper bounds
on p, are also given. The first 1is

p 1+ ((n + k - l)Uk - 2Vk)/kn [25]

and the second is that if 2Vk < (k - l)Uk,

(k* -~ 1)U, -V

k k [26]
(k - k*)(k - k* + 1)

pkfl -2

where k* + k - 1 is the Targest integer in 2Vk/Uk‘



An ITTustration

To illustrate how Py might be applied and interpreted, observations
on seven items were analyzed according to the procedure outlined above.
Each item had two distractors, and they were found to be consistent with
the assumptions of the answer-until-correct scoring model. (See Wilcox,
1981a.} Table 1 shows the observed frequencies for the first two items.
The question to be answered is if these seven items are taken to be the
whole test, do they give reasonably accurate information about what the
typical examinee knows?

As previously mentioned, the model described above implies that var-
jous inequalities among the pij's must hold. These inequalities were
tested at the .25 level of significance with the procedure in Robertson
(1978). In every case the observed responses were consistent with the
model.

Generally, when estimating too there is no need to estimate all
of the ¢'s in equations 8-16. For the situation at hand, Log Can be

estimated as follows. First compute

S2/3 = P31 - P3p [27]
for the data in Table 1, this is .107. Next compute

€19/ = Pyy = Ppp - Igp/3 | (28]
which is .074. Then

G2 = P11 7 Pag - t12/2 - Spf? [25]

which is equal to .225. Substituting these values into equation 19, the



=10~

~

estimate of T12 is Typ ~ .75. Applying equation 6 to all seven items,
it is seen that u = 5.434. In other words, it is estimated that the
expected number of correct decisions is 5.434.

Next consider P The value of S was estimated to be 16.929. From
equations 20 - 26, this implies that

A2<0p2.74 . [30]

This analysis suggests that these seven items, taken as a whole,
are not very accurate since there is at least a 26 percent chance of mak-
ing an incorrect decision on three or more items. How should the test
be modified? Another important question is to what extent can it be
improved? One approach to improving the test is to increase the number
of distractors, and another approach is to try to modify or replace the
distractors that are being used. The latter approach will be considered
first.

The initial step in trying to decide whether to replace or modify
the existing distractors is to determine the extent to which they can
be improved. This can be done with the A measure in Wilcox (1981, eq. 20).
This measure is just the difference between the maximum possible value of
1 and the estimated value given that o = EZ‘ Another related measure is
the entropy function (see Wilcox, 198la). This measures the effectiveness

of the distractors among the examinees who do not know the correct response

by indicating the extent to which Pps...p; are unequal. The closer they
are to being equal, the more effective are the distractors, i.e., guessing
~is closer to being random. It has been pointed out (Wilcox, 1981a) that

A might be objectionable as a measure of the extent to which Ppse»+sPy
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are equal, but for present purposes it would seem to be of interest be-
cause increasing Pr depends on the extent to which t can be increased
for each item.

Referring to Wilcox (1981a}, a 1ittle algebra shows that for the
case t = 3,

A= (pz - p3)/2 . [31]

For item 1 in Table 1, A = .024, and for item 2 it is .034 (4 is assumed
to be positive; so if p, < pa, apply the pool-adjacent violator algorithm
in which case A is estimated to be zero.)

If the number of alternatives for item 1 is increased to t = 5,
and if guessing is at random, then the value of t would be .893 which
represents an increase of .126 over the value of t using the existing
distractors. Thus, it would seem that one approach to improving item 1
is to find two more distractors that are about as effective as the two

being used. In practice, of course, this might be very difficult to do.

Estimating T3 When There Is Misinformation

Among the 30 items analyzed by Wilcox (1982a), the observed test
scores suggest that two of the items do not conform well to the AUC
scoring model described in a previous section. Thus, the proposed es-
timate of 43 is 1happropriate. This section outlines how this problem
might be solved when a misinformation model appears to be more appropriate

for some of the items on the test.

Consider a test item with t alternatives, and let Ly be the propor-
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tion of examinees who eliminate the correct response from consideration
on their first attempt of the item. (An AUC scoring procedure is being
assumed.) Once an examinee eliminates all of the distractors that are
consistent with his/her misinformation, it is assumed that the examinee
chooses the correct response on the next attempt. This assumption is
made here because it seems to give a good approximation to how examinees
were behaving on the items used in Wilcox (1982a). It is also assumed
that if an examinee does not know and does not have misinformation, then
he/she guesses at random among the t alternatives. Finally, for examinees
with misinformation, assume that they believe the correct response is aone
of ¢ alternatives that are in actuality incorrect. Thus, examinees with
misinformation will require at least ¢ + 1 attempts before getting the

jtem correct. As an illustration, consider t = 5 and ¢ = 3. Then,

T ct+1/5 [32]
Py = Typsq/5 [33]
Py = Tipy/5 [34]
Py = Ly * T/ | [35)
Pg = 41/ [36]

where ) is the proportion of examinees who do not know and who do not
have misinformation.

Various modifications of the model are, of course, possible and pre-
sumably this model {(with some appropriately chosen ¢ value) will give a

good fit to the observed test scores. For illustrative purposes, equations
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32 - 36 are assumed. The point of this section is that it is now pos-
sible to again estimate T4 where the misinformation model is assumed
to hold for one or both of the items in any item pair. Note that for
a single item where equations 32 - 36 hold,
TS Lh g + Ct+1/t . [37]
To estimate Ty the joint probability of making a correct decision
on a pair of items where, say, the first.item is represented by a mis-
information model, equation 7 must be rederived. Accordingly, let t' be
the number of alternatives on the first item, and t is the number of al-
ternatives on the second. The misinformation model assumes that on the
first attempt of the item, examiness belong to one of three mutually ex-
clusive categories, namely, they know the answer and choose it, they have
misinformation and eliminate the correct response, or they do not know
and guess at random. Thus, using previously established notation, equa-
tion 8 becomes,
P11 = Bap T Car/2 ¥ Bgof3 * g/t ¥ oggy/2t + gge/3T L38]
where, in this illustration, t' = 5, There is no C;5 term (i =0, 1, 2)
because the misinformation model assumes that if examinees do not know,

they cannot eliminate any of the distractors. More generally,

t-1 t-1
Pyp = Spral,e-1 Y '-2—:0 g,/ (6= 3t T g/ {t - 3t [39]
J= j=0
Also,
ka = pll - C42 (k = 2,...,t') L40]
P1p = Tqr/2t" * Zyg | [41]
}'él -
Pim = g/t - 30t (m=0,...,t-2). [42]
Tm %0 4j
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The remaining pij values can be determined in a similar manner. For the

two items being used here

H
I t~13

Pom i;oj(t - it (m=2,...,t) [43]

j=0

and p3m = Poy

The expressions for Pam and Psm invoive the proportion of examinees
who have misinformation on the first item. The necessary equations can
be derived as was illustrated above. This in turn yields an estimate of

= which can be used to estimate the bounds on P

Testing Whether Items are Equivalent or Hierarchically Related

The model described in this paper might also be useful when empirically
checking the assumptions of other Tatent structure models. For example, Mac-
ready and Dayton (1977) and Wilcox (1977) propose models where it is assumed
that pairs of equivalent items are available. Two items are defined to be
equivalent if examinees either know both or peither one. When equivalent
items are available, the proportion of examinees who know both can be esti-
mated (assuming local independence}. Macready and Dayton checked their
model with a chi-square goodness-of-fit test, but this requires at least
three items that are equivalent to one another. (When there are only two

items, there are no degrees of freedom left.)

For illustrative purposes, assume t=3, and consider equations 8-16.

If two items are equivalent, then

“21 7 20 T F127 R0z 70 [44]
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P12 = Pgy 7 P22 [45]

P13 = Po3 [46]
and

P31 = P23 - L47]

For N < 50, an exact test of these Jast three qualities can be made using
the critical values in Katti (1973) and Smith et al.. (1979). (Note that
the conditional distribution of multinomial random variables is muiti-
nomial.) For larger N, the usual chi-square test can be used. From Smith
et al. (1979), a slight adjustment to the usual chi-square test appears

to be useful. Finally, if one of these items is assumed to be hierarchi-
cally related to the other, again certain equalities must hold among equa-
tions 8-16, and this can again be tested (cf. While & Clark, 1973; Dayton
& Macready, 1976).

A Concluding Remark

It should be stressed that o, is of interest after it has been de-
cided which items are to be included on a test. Py is not intended to
measure validity -- it is designed to measure the overall effectiveness
of the distractors that are being used. Put another way, Py is not meant
to be the one and only index for characterizing a test -- it is intended
to be one of several indices that might be used. The reason for raising
this issue is that a test constructor can ensure that P is large by using

easy items. This is an improper procedure that misses the point of how

Py is to be used.
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Table 1

Number of Examinees Requiring i Attempts on Item 1

and j Attempts on Item 2

Number of Attempts on

Ttem 2
1 2 3 Total
1 179 26 14 219
Number of
Attempts on 2 76 8 4 88
Item 1
3 53 13 4 70

Total 308 47 22 377
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