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1. Introduction

Consider an n-item multiple-choice test, and suppose that every
examinee can be described as either knowing or not knowing the correct
response. In some situations, particularly with respect to some instruc-
tional program, the goal of a test might be to determine how many of the
n items an examinee actually knows; in terms of diagnosis, it may even
be desirable to determine which specific items an examinee knows or
does not know. Under a conventional scoring procedure, about the only
scoring rule available is one where it is decided that an examinee knows
if and only if a correct response is given. Obviously guessing will
affect the accuracy of this rule. If it is assumed that examinees who
know will always give the correct response, and if most examinees really
do know the correct response, then of course guessing has little jmpact
on the accuracy of the test or the effectiveness of the distractors in
terms of the typical examinee. However, if z is the proportion of exam-
inees who know the answer to an item, then as ¢ decreases, the importance
of having effective distractors increases in order to avoid incorrect de-
cisions about whether an examinee knows.

Guessing can seriously affect various other measurement problems
as well {e.g., Weitzman, 1970; van den Brink & Koele, 1980; Wilcox, 1980,
1982¢c; Ashler, 1979). For example, when estimating the biserial correla-
tion coefficient, guessing can substantially affect the results (Ashler,
1979). Ashler gives a method of correcting the estimate for the effects
of guessing, but it requires a procedure for determining which items an
examinee really knows. The conventional rule is to decide an examinee knows

if and only if the correct response is given, but this can be unsatisfactory.



Suppose, for example, z=5, and the probability of a correct response,
given that the examinee does not know, is 1/3. Then 1/6 of the examin-
ees would be misclassified. The extreme case is where none of the ex-
aminees know, in which case 1/4 would be incorrectly judged as knowing
the correct response.

As another example, suppose an investigator wants to determine
whether the proportion of examinees who know an item is relatively large.
In order to ensure a reasonably high probability of a correct decision
about this proportion, it follows from Wilcox (1980) that it might be
necessary to sample ten, perhaps even forty times as many examinees as
would be required if guessing did not exist.

For a specific examinee taking a test, let x1=1 if a correct decision
is made about whether the answer to the ith item is known; otherwise
x1=0. For an examinee randomly sampled from the population of potential
examinees, let

pk = PP(ZX.I z k).

This is just the probability of making at least k correct decisions among
the n items for a randomly sampled examinee; Py is called the k out of n
reliability of a test.

Suppose every item has t alternatives. One approach to designing
a reasonably accurate test is to assume random guessing, and then choose
t so that k is reasonably close to one. If Xy is independent of Xj for
all i#j, then Pi is easily calculated on a computer, Unfortunately,
there are three serious problems with this approach. First, there is
considerable empirical evidence that guessing is seldom at random

(Coombs et al., 1956; Bliss, 1980; Cross & Frary, 1977; Wilcox, 1982a,



1982b). Second, even if guessing is at random, some situations will re-
guire more alternatives than is practical in order for o to be close to
one (Wilcox, 1982c). Finally, there is no particular reason for assuming
X independent of xj, i#j, or to believe that such an assumption will

give a good approximation of o If cov(xi,xj)#o, bounds on p, are avail-
able (Wilcox, 1982c, 1982d) but point estimates do not exist.

One goal in this paper is to suggest an approximation of P that can
be estimated with an answer-until-correct test. Another and perhaps more
important goal is to describe a scoring procedure that might be used when
the estimate of P is. judged to be too small under a conventional scoring
rule. The new rule is based on a recently proposed latent structure model
for test items., Included are some results on how to test whether this

model is consistent with observed test scores.

2. An Approximation of Py

Let y=(y1,...,yn) be any vector of length n where y1=0 or 1, and
let f(y) be the probability density function of y. Bahadur (1961) shows

that f(y) can be written as

where
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An mth order Bahadur approximation of f is one where the first m summations
are used in the expression for h. Several authors have used a second

order approximation when investigating problems in discrete discriminate
analysis {e.g., Dillon & Goldstein, 1978; Gilbert, 1968; Moore, 1973).

In this case f(y) is approximated with

gly)=f {y) [1+ ;(jrijzizj] (2.1)

Other approximations have been proposed, but as will become evident,
(2.1) is particularly convenient for the situation at hand.

Occasionally (2.1) will not be a probability function. In particular,
it may be that g{(y)<0 for some vectors y. In this paper, whenever this
occurred, g(y) was assumed to be zero, but the g{y) values were not re-
scaled so that they sum to one,

Bahadur (1961) discusses how to assess the goodness of fit of the
approximation. Here, however, interest is in approximating Py Note

that for a random vector y, P can be written as

L fly)
y:S>k (2.2)

where S=Zyi and the summation in (2.2) is over all vectors y such that Sxk.



Of course, when approximating p ., f(y) would be replaced by f(x) where
the vector x indicates items for which a correct decision is made about
whether an examinee knows. To gain some insight into how well gly) ap-
proximates Py assuming oy and Ty are known, we set n=b, k=4 and ran-
domly chose values for the 25=32 probabi]ity cells. Next, o) Was eval-
uated with (2.2), and then it was approximated with ;k where ;k is given
by (2.2) with f{y) replaced by g(y). This process was repeated 100 times
yielding a wide range of values for Py The values for Py and ;k were
rounded to the second decimal place after which it was found that 85%

of the time, |pk—;k|f .02, For 5% of the approximations it was found
that |pk—5k|3 .05. For ]pk—gklf.OS it was also found that ;k<pk. The
poorest approximation was for a-probabi1ity function where P = .365 and
Sk=.232. Although hardly conclusive, these results suggest that ;k is
generally useful when approximating P> at least when n is small. For

n large the test can be broken into subtests containing five items or
less, and Bonferroni's inequality (e.g., Tong, 1980) can be applied. For
example, suppose n=10. If for the first five items ;4=.95, and for the

remaining five items ;4=.98, then for the entire test it is estimated that

0g>1-(1-.98)-(1-.95)=.93. (2.3)

Estimating ;k

There remains the problem of estimating Ek. What is needed is an
estimate of the parameter i3 in the expression for g(y). An estimate
is available using a s1ight extension of the model in Wilcox (1982d)
which can be briefly summarized as follows., Assume that examinees take

the test according to an answer-until-correct scoring procedure. That is,



they choose a response, and if it is wrong they choose another. This
process continues until the correct response is selected. Administering
such tests is easily accomplished with especially designed answer sheets
that are available commerciaily.

Consider a specific item and let Pi be the probability that a ran-
domly selected examinee gets the item correct on the ith attempt,
i=1,...,5 where t is the number of alternatives. Let L be the propor-
tion of examinees who can eliminate i distractors (i=0,...,t-1}. It is
assumed that for examinees who do not know, there is at least one effec-
tive distractor in which case Cto] is the proportion of examinees who
know, It is also assumed that once examinees eliminate as many distrac-
tors as they can, they guess at random from among those alternatives that

remain. It follows that

Po= 3 c/(t-3)  (isl,....t) (2.4)

P1>P >...>P (2.5}

which can be tested (Robertson, 1978). For empirical results in support
of this model, see Wilcox (1982a, 1982b, 1983). In the few instances
where (2.5) seems to be unreasonable, a misinformation model appears to
explain the observed test scores. When (2.5) is assumed, the pooi-adjacent
violators algorithm (Barlow et al., 1972) yields a maximum likelihood esti-
mate of the Pi's, These estimates in turn yield an estimate of the ;i's.

For any pair of items, let Pij be the probability of a correct response on

the ith attempt of the first and the jth attempt of the second, respectively.



And let Cij be the probability that a randomly chosen examinee can elimin-
ate 1 distractors from the first, and j distractors from the second. Then
po1,t-1 is the proportion of examinees who know both. It is assumed that
an examinee's guessing rate is independent over the items not known, and

50

255/ [(e-i)(t-3)1 . (2.6)

If the second item has t~ alternatives, t#t”, simply replace t with t~ in
the second summation. Testing certain implications of (2.6) is discussed
below.

For the ith item on the test, let Ti=E(xi) be the probability of a
correct decision about whether the examinee knows when a conventional
scoring procedure is used. Thus, T plays the role of o when approxima-
ting Py For an answer-until-correct test, a conventional rule means to
decide an examinee knows if and only if the correct response is given on

the first attempt. In this case (Wilcox, 1982a)

RS s

= 1-p2 .
Thus, if for the ith item, cj of N examinees get the correct response on

the jth attempt under an answer-until-correct scoring procedure, then

~

T.E = 1_C2/N

is an estimate of T If the cj's are inconsistent with (2.5), apply

the pool-adjacent-violators algorithm (Barlow et al., 1972, pp. 13-16),



as was previously mentioned.
In a similar manner, let T1J=Pr(xi=1,xj=l), i.e., Ti; is the prob-
ability of a correct decision for both items i and j. For the conventional

decision rule under an answer-until-correct model, it can be seen that

)

T = q

ij oy Loy Yk
where

911 7 ft-1,t-1
t-i )

947 = X— Ck,t—l/(t'k) (i=2,...,t)
k=0
t-] _

Q1j = Z_ Ct-l,k/(t—k) (j=2,...,t)
k=0

a5 = Pij (i>1 and j>1)

(Wilcox, 1982d). Thus, iy % and Zy in equation (2.1) are easily de-

termined. In particular,

_ T_ij_T_iTj
i [TiTj(l'Ti)(l'Tj)]é

where Ts plays the ro]e of o in the definition of Z,. But as noted in
Wilcox (1982d), the Cijls in equation (2.6) are easily estimated, and
these estimates yiejd an estimate of T4 J which in turn gives an estimate
of iy Hence, ;k can be estimated with equation (2.1) which gives an

approximation of O -



Testing Certain Implications of the Model

For any pair of items, equation (2.6) implies that

P112PypZ - 2P -2Ppg 2 - 2P | (2.7a)

P112P212- - 2P 2Pp2 - - - 2Py (2.7b)

PiPigz e 2Py (i%24...,t01) (2.7¢)
and

Py32Pg52 - 2Py {(j=2,...,t"-1) (2.7d)

whereas before, t and t~ are the number of alternatives for the first
and second items, respectively. A few other inequalities are implied
if the Ci'ls are assumed to be probabilities, but these have not been
derived.

Experience with real data suggests that when observed scores are
consistent with (2.5), the inequalities in (2.7) will also hold. If
some of the observed proportions are inconsistent with (2.7), maximum
1ikelihood estimates can be obtained when the model is assumed to be
true by applying the minimax order algorithm in Barlow et al. (1972).

Robertson (1978) includes some asymptotic results on testing (2.7).
At the moment, however, his proposed procedure cannot be applied because
certain constants (the Pq(i,k)‘s in Robertson's notation) are not avail-
able. An alternative approach is to perform a separate test of the in-
equalities in (2.7d), one corresponding to every j, j=2,...,t"-1, then
perform a test of (2.7c), one for every i=2,...,t-1, then test (2.7b)

and finally (2.7a). The total number of tests is m-t+t--2. If the
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critical value for every test is set at o/m, then from the Bonferront
inequality (e.g., Tong, 1980), the probability of a Type I error among
the m tests is at most a.

Consider, for example, the inequalities in (2.7d) for j=2. That

is, the goal is to test

Hot P122PppP3p2-- 2Py (2.8)

Let A be the Tikelihood ratio for testing (2.8) where the alternative
hypothesis is no restriction on the proportions. From Robertson (1978,

Theorem 2}, the asymptotic null distribution of T=-2 1n i is

k-1
Pr(T>T0) = Z_
=1

P(LKPr(xE_, 2To) (2.9)
where P(2,k) is the probability that the maximum Tikelihood estimate of
Pips---sPyo subject to (2.8) will have ¢ distinct values among the k param-
eters being estimated, and Xi-z is a chi-square random variable with k-g
degrees of freedom. For (2.8), k=t. (As previously mentioned, the pool-
adjacent-violators algorithm yields maximum 1ikelihood estimates when (2.8)
js assumed.} The constants P(%, k) can be read from Table A.5 in Bariow
et al. (1972).

Thus, in order for the m tests to have a critical level of at most
&, choose Ty so that (2.9} equals a/m, and reject Hy if T>Ty. This process
is repeated for the other inequalities to be tested, but note that k (the

number of parameters being tested ) will have a different value for (2.7a)

and (2.7b).
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To facilitate this procedure, critical values are reported in
Table 1 for t=2(1}5, o=.1, .05, .01; and some appropriately chosen values
for m. (Additional values for m were not used because for t<5, these
are the only values of m that will occur.)

As an illustration, suppose t-t“=3. Then there are m=4 sets of
inequalities to be tested. If a=.05, then from (2.7a) there are k=5
parameters, and so T;=10.81. For (2.7b) again k=5 and T4=10.81. For
(2.7¢) there is only one set of inequalities which corresponds to i=2,

t=k=3, and T0=7.24. The same is true for (2.7d).

3. A Scoring Procedure for Tests

Consider a specific item on an n-item test. In contrast to most of
the existing scoring procedures, the goal here is to minimize the expected
number of examinees for whom an incorrect decision is made about whether
they know the answer to the item. It is interesting to note that when
items are scored right/wrong, this criterion can rule out the conventional
rule where it is decided an examinee knows if and only if the correct
response is given. The extreme case is where ct_1=0, i.e., none of the
examinees know, in which case the optimal rule is to decide that an ex-
aminee does not know regardless of the response given. If g=Pr (correct |
examinee does not know), it can be seen that if an item is scored right/
wrong, and if s>;t_1/(l#gt_2) the optimal rule is to always decide that
examinees do not know. If s<gt_1/(1-ct_1), use the conventional rule.

From Copas (1974), this approach (in terms of parameters) is admissible.
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These parameters can be estimated which yields an estimate of the optimal
decision rule (e.g., Macready & Dayton, 1977). The goal here is to de-
rive a decision rule based on an answer-until-correct scoring procedure.
The advantage of this new approach is that it is not necessary to assume
all n items are equivalent as was done in Macready and Dayton. {Two items
are said to be equivalent if every examinee knows both or neither one.)
The results in Macready and Dayton (1977) could be extended to the case
of hierarchically related items by applying results in Dayton and Macready
(1976), but here the goal is to derive a rule where no particular rela-
tionship is assumed among the items. However, the situation considered

by Macready and Dayton (1977} has the advantage of allowing Pr{incorrect
response | examinee knows) > 0, while here this probability is assumed

to be zero.

Consider the ith item on a test taken by a specific examinee, and
let wi=1 if it is decided the examinee knows; otherwise Wi=0' Consider
the jth item on the test i#j for the purpose of assisting in the decision
about whether W should be 1 or 0. (The optimal choice for the second
item will become evident.) It is assumed that items are administered
according to an answer-until-correct scoring procedure. For a specific
examinee, let vy be the number of attempts needed to choose the correct
response to the ith item. The decision rule to be considered is

1, if V1<VO and ijVOj

) i
WilV5) = 0 i otherwise (3.1)
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where v, (=1 or 2) and Vo3 (15v0jft‘) are constants to be determined.
Note that when v,.=2 and v0j=1, the rule is similar to the one in Mac-

ready and Dayton (1977). Also note that v,.=t” corresponds to the con-

0J
ventional decision rule where the information about the jth item plays
no role in determining whether the examinee knows the ith. It is evident,
therefore, that in terms of parameters, {3.1) always improves upon the
conventional approach. The improvement actually achieved will of course
vary. 1f z,_; is close to one for every item, o, will also be close to
one under a conventional scoring rule, in which case there is little
motivation for using (3.1). However, when Ok is unacceptably small,
(3.1) can increase ok by a substantial amount.

One problem is choosing the constants Voi and VOj' A solution is
as follows. For a randomly sampled examinee responding to the ith and
jth items, let Pyl be the probability of choosing the correct response
on the kth attempt of the ith item, the mth attempt of the jth item, and

making a correct decision under the rule (3.1). The probability of a

correct decision for a randomly sampled examinee is

which is a function of Voi

j and VOj' Thus, the obvious choice for Voi

and VOj

Let

is the one that maximizes Pe

t7-3
gL St i () (315000 5t7) (3.2)
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and
P
Q= :
=2 j=1 M
For v01=2 and any vOj
;0‘1 P (prean) (3.3)
P =Q+ 9., P+.-9 . 3.3
c =1 Tk k=V0j+1 Tk 1k

When v0j=t‘, the second sum in {(3.3) is taken to be zero. As for v01=1,

Pe =07 E=1

(p]k_q1k)- (3-4)
Thus, to determine the optimal choice for Voi and VOj in (3.1}, simply
evaluate Pe for every possible choice of Vo and VOj’ and then set Vo3
and vOj equal to the values that maximize Pe- Of course, when making

a decision about the ith item, this process can be repeated over the

n-1 other items on the test. The item that maximizes Pe is the one that

should be used when determining whether an examinee knows the ith item.

An Iltustration

As a simple illustration, the optimal rule is estimated for two items
used in Wilcox (1982a). The observed frequencies are shown in Table 2.
Note that the observed frequencies already satisfy (2.7a)-(2.7d). For
the first item the estimate of 1, the probability of correctly determining
whether a randomly sampled examinee knows, is ;1=(236—71)/236=.699. For
the second items it is t,=.78.

Suppose the second item is used to help determine whether an examinee

knows the first. Let v01=2 and v02=1. Thus, a correct response must be
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(the joint probability of making a correct decision about the ith and

j5 may

depend on two other items, say items k and m. That is, information on

jth item) must be known. (See Section 2.} But when v0j<t, T

the kth item and mth item will be used to determine whether the examinee
knows the ith and jth items respectively. Hence, (2.6) is no longer ad-
equate for determining Py

One solution might be to extend (2.6) to include four items. In
theory the parameters could be estimated under the resulting inequalities
by applying the minimax order algorithm. However, writing an appropriate
computer program that is valid for t<5 will be a relatively involved task.

Another and perhaps more practical approach might be to restrict the
decision rule so that if the response to the jth item is used in the de-
cision about whether an examinee knows the ith item,.then the response
to the ith will be used in deciding about the jth. An advantage of this
approach is that it simplifies the process of choosing a decision rule
by reducing the number of pairs of items that are considered. A second
advantage is that an approximation of P can be made using the results in
Section 2. A disadvantage is that by restricting the class of decision
rules, the potential increase in Py {over what it is under a conventional
scoring rule) is reduced. Perhaps this is not a serious problem; at the
moment it is impossible to say.

An approach to choosing a scoring rule might be as follows: First
estimate pk_under a conventional scoring rule. If it is judged to be too
small, choose a decision rule from among the rules described in the pre-
ceding paragraph and then estimate Py in the manner indicated below. If

p, is still too small, choose a decision rule from among the broader class

k
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of rules described in the preceding subsection. In this case, however,
an approximation of P is no longer avai]abje for the reasons just given.

Suppose that if the jth item is chosen to aid in the decision about
the ith, then the ith item is used in the decision rule for the jth.
What is needed in order to approximate Py is an expression for the joint
probabiiity of making a correct decision for both items. Accordingly,
consider any two items, and let u](k,m)=] if it is decided that an exam-
inee knows the first item if the correct response is given on the kth
attempt of the first item, and the mth attempt of the second; otherwise
u1(km,)=0. Similarly, uz(k,m)=1 if it is decided that an examinee knows
the second item if the correct response is given on the kth attempt

of the first and the mth attempt of the second; otherwise u,(k,m}=0.

Let
1, if u](k,m)=1 and i=t-1, or if
u](k,m) = 0 and i<t-1
511(k,n) =
0, otherwise
and
1, if uz(k,m)=1 and j=t--1, or if
u2(k,m)=0 and j<t--1
szj(km) =

0, otherwise.
Recall that the probability of getting the correct response on the kth
attempt of the first item and the mth attempt of the second is given by
(2.6). From this expression it can be seen that the joint probability

of k attempts on the first item, m attempts on the second, and a correct
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decision on both items is

k t--m

3 ¢+

Y =

t»
ki & §=

Thus, for a randomly sampled examinee, the joint probability of a correct

S-l_i(k,m)szj(ksm)Cij/[(t‘i)(t"’j)}

=0 J=0

—

decision for both items, say items i and j, is

t»

] t
ij ~ g=] Ykm

m=1
The joint probability of a correct decision about the first item, k at-

tempts on the first and m attempts on the second 1is

t
Y7 Ly Ly Stem sy L)

The corresponding probability for the second item is

t t-
Tkm ~ §=0 §=0 sgj(k’m)iij/[(t'i)(t"j)]

Thus, Ty» the probability of a correct decision about the ith item on

a test (using the jth item in (3.1)} for a randomly sampled examinee, is

t ot
T g by Yk
Similarly, for the second item, item j,
t t-
Sy by e

Hence, P can be approximated as described in Section 2.
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Concluding Remarks

Virtually all of the results on the proposed scoring rule have been
in terms of parameters. These parameters are not known, but they are
easily estimated. The question arises as to the sampling effects on
estimating the approximation of Py and on estimating the optimal de-
cision rule for determining whether an examinee knows the correct response.
In some instances, a large number of examinees will be available, and so
very accurate estimates of the parameters can be obtained. This is the
case for certain testing firms where literally thousands of examinees
take the same test. When the number of examinees is small, however,
sampling fluctuations need to be taken into account; this problem is
currently being investigated.

Another important feature of the proposed scoring rule is that the
decision about whether an examinee knows an item is a function of the
responses given by the other examinees. If the goal is to minimize the
number of examinees for whom an incorrect decision is made, there is no
problem. However, in some instances, this feature might be objectionable.
Suppose, for example, an examinee takes a test to determine whether a
high school diploma will be received. It is possible for an examinee
to fail because of how other examinees perform on the test even though
the examinee in question deserves to pass. If this type of error is
highly objectionable, perhaps the proposed scoring rule should be used

only in diagnostic situations where the goal is to determine how many
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items an examinee actually knows, or which specific items are not known.
A technical point that should be mentioned is that a few of the

~

gij's were slightly negative in which case gij was set equal to zero.
As a result, the gij's sum to .997 rather than one as they should.

The problem is that equations (2.7a)-(2.7d} are necessary but not suf-
ficient condifions for the model to hold. For example, these inequalities
do not guarantee that P will be positive.

Despite these difficulties, there will be situations where correct-
ing for guessing can be important. Some examples were given at the begin-
ning of the paper. Even if a conventional scoring procedure is to be
used in operational versions of a test, it might be important to first
estimate the effects of guessing using an answer-until-correct scoring
procedure.

Many scoring rules have been proposed that are based on various cri-
teria. If a particular criterion is deemed important, of course the cor-
responding scoring rule should be considered. The point is that most of
these rules are not based on the goal of determining how many items an
examinee knows, or which specific skiils an examinee has failed to learn.
Moreover, typical rules usually ignore guessing or assume guessing is at

random. Thus, the results reported here might be useful in certain

situations.
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TABLE 1

o .1 .05 .01
5.90 7.24 10.38
6.33 7.67 10.81
6.68 8.03 11.17
7.03 8.49 11.86
7.64 9.10 12.46
8.11 9.56 12.92
8.49 9.95 13.30
9.25 10.81 14.36
9.75 11.31 14.85

10.16 11.71 15.25
10.51 12.05 15.58
10.81 12,35 15.87
11.32 12.96 16.67
13.29 15.00 18.85
15,18 16.95 20.93
17.02 18.84 22.94
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TABLE 2

Observed Frequencies for Two Items Administered Under

An Answer-Until-Correct Scoring Procedure

Number of Attempts for the Second Item

1 2 3

1 81 21 10
2 44 18 6
3 20 : 7 5
4 10 6 1
155 52 22

115
71
33
17

236
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