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Introduction

Much of what will follow here.is a repeat of an unfamiliar--or at
least unpopular--theme. The essence of this theme has been either impli-
cit or explicit in writings dating as far back as the early 1930's and
continuing up to the present. (See, for example, Walker, 1931; Guttman,
1944; loevinger, 1947, 1948, 1954; Rasch, 1960; Lumsden, 1961; Bentler,
1971; and Wright & Stone, 1979.} Probabily the most entertaining and
insightful review is a rarely quoted article by Lumsden (1976). These
authors all propose different techniques {or variants of the same tech-
niques) and analytic models for scaling the items on the ordinary test
of achievement. But they all have two basic things in common: (1) they
are critical of, and represent alternatives to, classical test theory
and (2) they operate from fundamentally the same notion of what it means
to measure. The essence of the common theme is, bluntly, that classical
(and classical-Tike) test theories are not very useful when it comes to

test construction and analysis.

Why has not the nearly exclusive practice of traditiona]l test theory
methods abated during the last fifty years? Why does nearly every new

issue of journals like Psychometrika or Educational and Psychological Mea-

ment contain yet another theoretical exposition involving true and error
score theory or some esoteric reformulation of the same old reliability
coefficient? Were the above authors and others like them just on a flight

of fancy proposing crazy ideas that happened to escape the eyes of critical

reviewers? No! They merely challenged what to date2 amounts to over 70



years' worth of archives of scholarly work on test theory models bearing
little resemblance to how people ordinarily think about what it really
means to measure. To be sure, each challenge did not offer a completely
viable alternative to common practice. But it seems to be part of the
human condition to hang on tenaciously to the familiar, to the security
of a large investment, at least until the market crashes and/or the tide
of opinion noticeably changes through the power of advertisement.

Such has been the case recently with the increased use of latent
trait models, particularly the model proposed by Rasch (1960) and popu-
larized in the U.S. by Wright {1968, 1969 [with Panchapakeson], 1977,
and 1979 [with Stone]). The point of this report is not, however, to ad-
vertise any particular measurement model. Rather, I wish to continue ad-

vertising the self-evident notion that how one conceptualizes the act of

measurement should have a lot to do with how one analyses the quality of

the measurement act_during its development, implementation and revision
phases.

I will restrict this'discussion to the measurement of achievement
with items of the usual correct-incorrect (1-0) variety. (However, the
basic notions are generalizable to ordered response scales more typical
in the measurement of values, attitudes, beliefs, opinions, etc.} My
point of view regarding how the measurement act is ordinarily conceptual-
ized is not original nor very creative. It rests simply on analogy with
measurement in the physical sciences where constructs are often experienced
with the senses. The measurement of length, in particular, a person's

height, is the usual example and will serve well here. Certainly most



constructs we attempt to measure in the behavioral sciences are not di-
rectly experienced and this, or course, constitutes the main socurce of
difficulty. But it does not follow, necessarily, that the generic notions
of measurement be any different. Nor does it follow that measurement mod-
els be deterministic, i.e., be developed in ideal terms from which devi-
ations are unaccounted for. Probabilistic models are those wherein all
deviations from the model have an expected probability of occurence. Both
deterministic and probabilistic models exist in both the physical and be-
havioral sciences.

Implicit in this view of measurement is an assumption that the test

items are all measuring the same thing (construct, trait, etc.). Extant

psychometric Titerature is replete with confusion over what exactly is

meant by this assumption and the two commonly used terms -- unidimensional

and homogeneous -- referencing sometimes similar and sometimes dissimilar
empirical interpretations of this assumption. The confusion, not surpris-
ingly, reduces down to different views of the measurement act. Viewed in
its original factor analytic sense, unidimensionality refers to one inter-
pretable common factor explaining the item correlation matrix. This fits
well with the notion of measurement as repeated single-item tests and the
concept of reliability as internal consistency. But internal consistency
is only a necessary and not a sufficient condition for a single common
factor in an item set; yet, many traditional test theorists (e.g., Gull-
iksen, 1950; Ghiselli, 1964; Magnusson, 1967; and Allen & Yen, 1979} and
practitioners have used both unidimensionality and homogeneity in refer-

ence to the internal consistency of a set of items.



To confuse the issue further, Guttman's (1944) "unidimensionality"
and Loevinger's (1947) "homogeneity" both, in empirical consequence, re-
fer to the cumulative ordering or scaling of a set of items -- a fundamen-
tally different notion of the use of items to measure a single construct.
The analogue of this notion for probabiiistic models (é.g., latent class

and latent trait models) is the concept of local indpendence, taken by

many latent trait theorists (e.g., Lord & Novick, 1968; Hambieton & Cook,
1977, and Lord, 1980} as the equivaltent of the assumption of unidimension-
ality. (But see the discussion of Traub and Wolfe, 1981, p. 387.)

From my point of view, I assume that there exist sufficiently singular
achievement constructs, represented by item sets, that are psychologically
interpretable and that are of potential instructional use. A reasonably

sucessful application of a measurement strategy is necessary but not suf-

ficient evidence for a reasonably successful effort at measuring a singular
construct. In other words, a singular construct is assumed at the outset;
a priori verification of the assumption, is, in essence, an exercise in
content validity; necessary a posteriori evidence lies, in essence, in
the degree of success in developing the measurement device; sufficient evi-
dence, however, is accumulated only through further construction validation
studies.

In what follows, a common conceptual view of the act of measurement
will be presented and contrasted, in general, with the act as implied by
traditional test theories. This discussion will then be punctuated by a

more specific overview of several traditional test theories to illustrate



the issue further. Finally, alternative models will be reviewed which

. . . . . . . 3
are more in line with how the measurement act is ordinarily conceived.

Precision and Accuracy: Disentangling the Concepts

Measurement and Dependabﬂity4

It is important, first, to define measurement more explicity. Many
definitions have been proposed resulting in disputes over what does and
does not constitute measurement. My interest is not to debate the issue
at a philosophical level, but rather to simply clarify how the term will
be used here. It will serve my purposes well by following the lead of
Torgerson (1958) who reserves the use of the term measurement as follows:

The Togic of measurement deals with the conditions necessary
for the construction of a scale or measuring device. Measure-
ment as used here refers to the process by which the yardstick
is developed, and not to its use once it has been established,
in, say, determining the length of a desk. It is essential
that we keep this distinction in mind. The use of the estab-
lished yardstick in "making a measurement" is a rather simple
procedure involving merely the comparison of the quantity to
be measured with standard series, or perhaps only reading the
pointer or counter of an instrument designed for the purpose.
We are here concerned with the more basic problem of establish-
ing a suitable scale of measurement,

....measurement pertains to properties of objects, and not to
the objects themselves. Thus, a stick is not measurable in our
use of the term although its Tength, weight, diameter, and hard-
ness might well be.

Measurement of a property then involves the assignment of numbers
to systems to represent that property.. In order to represent

the property, an isomorphism, i.e., a one-to-one relationship
must obtain between certain characteristics of the number system
involved and the relations between various gquantities (instances)
of the property to be measured.

The essence of the procedure is the assignment of numbers in such
a way as to reflect this one-to-one correspondence between these
characteristics of the numbers and the corresponding relations be-
tween the quantities.  (pp. 14-15)



Implicit in this usage is the preference not to use the term measure-
ment in the broader sense of Stevens' classic definition: "Measurement is
the assignment of numerals to objects or events according to rules" (Stevens,
1951, p. 22). Nominal scales, therefore, are not the result of measurement

but of classification. Measurement presupposes, therefore, that the object

has a property that exists in magnitudes that can be represented on either

ordinal, interval or ratio scales. And again I align myself with Torgerson
who finds it uninteresting to worry about what is or is not "permissable,"

in practice, with measurement scales of these several types:

....a major share of the results of the field of mental test-
ing and of the gquantitative assessment of personality traits
has depended upon measurement by fiat. This is clear, for ex-
ample, when curves are fitted by the process of least squares
or when product-moment correlations, means, or standard devia-
tions are computed. All of these presuppose that distance has
meaning. Hence, either explicitly or implicitly, the experi-
menter is measuring the attribute on an interval scale whose
order and distance characteristics have obtained meaning ini-
tially through definition alone.

The discovery of stable relationships among variables so mea-
sured can be as important as ameong variables measured in other
ways. Indeed, it really makes little difference whether [a]
scale of length, for example, had been obtained originally
through arbitrary definition through a relation with other es-
tablished variables, or through a fundamental process. The
concept is a good one. It has entered into an immense number
of simple relations with other variables. And this is, after
all, the major criterion of the value of a concept. {p. 24)

The "act" of measurement, then, refers generally to both the logic
of measurement and the process of constructing a test, i.e., a rule or
set of procedures operationalizing the construct in a manner consistent
with the logic of measurement. What, then, is a test theory? I would
prefer that the phrase "test theory" denote the complete act of not only

constructing the measuring instrument, but also of assessing further the



validity of that instrument including its dependabi]itxé under specified

conditions of use. In other words a theory of testing, to be compiete,
must include a measurement model, a dependability model and a validity
theory. This Tast ingredient really includes (and goes beyond) the mea-
surement and dependability models and is what justifies the usage of the
term "theory." I know of no past or current "test theory" that deals ex-
plicitly with all three aspects. Traditional test theories are theories

of dependability (some more restricted than others) with some validity

theory. The newer latent trait models are just that, models for measur-
ing a presumed construct. The focus of this paper is clearly on measure-
ment, but by way of contrasting the act of measurement with the dependabil-
ity of obtained measures.

Now suppose we had before us a small collection of the usual multiple-
choice (or true-false, completion, etc.) items of the type commonly found
on a test designed to measure a specific achievement outcome. On their
face, all such tests "look alike." However, depending upon the conceptual
model of measurement underlying the analytical process for selecting these
items, this innocent 1ooking collection could be quite different in terms
of item composition and empirical characteristics. It is the contention
here that classical theory is conspicuously lacking in explicit regard for
the potential value of the individual item. By this I mean that there is
no explicit recognition of the measurement function served by items. Class-

ical true and error models characterize the consequence of applying a mea-

ment rule--they do not characterize the essence of the rule itself.



Let's consider the "essence of a measurement rule" by continuing
the analogy with measuring a person's height. In measuring height, a
tape measure and its properties operationalize the rule. Instead of
"tape measure," let's use the simpler term "ruler." Suppose we use a
ruler (of sufficient length) to measure peoples' heights. Traditional
test theories have a lot to say about what to do with the obtained mea-
surement; they have 1ittle to say, however, about how the ruler is con-
structed in order to obtain the measure, i.e., how the ruler is calibrated
and how a numerical result eventually becomes associated with each person
as a quantitative indicant of the height of the person. In other words,
rather than the question of precision with which any given measurement is
obtained, traditional test theories take the measurements as g¢iven and
pursue the question of accuracy, i.e., how consistent the measurement
rule is over repeated applications.

Precision and accuracy are cornerstone concepts of any theory of ap-
proximate numbers. They reflect fundamentally different ideas in the mea-
surement process. Yet they are used inter-changeably in the behavioral
sciences as a synonym for reliability. Two examples out of many are the
following quotes:

The physical scientist generally has expressed the
accuracy of his observations in terms of the varia-
tion of repeated observations of the same event. The
mean of the squared deviations of these observations
about the obtained mean is the "error variance." This
is a measure of precision or reliability....We regard
reliability as the consistency of repeated measure-

ments of the same event by the same process....
{Cronbach, 1947, p. 1.}

Reliability of measurement, then, pertains to the pre-
cision with which some trait is measured by means of
specified operations....Such indices will be useful



for comparing different tests so we can ascertain
which gives us the most precise or stable scores,
and will permit us to ascertain whether the relia-
bility with which a test measures is sufficient for
our purposes....Casting reliability in terms of the
coefficient of correlation between parallel tests
provides another way of describing the precision

of measurement (Ghiselli, 1964, pp. 215-218}.

In the physical sciences, the concepts of precision and accuracy
are clearly distinguished although not always in the same way. In the
absence of empirical error, a measurement m precise to the nearest uEn
unit has an inherent absolute error equal to *u/Z. In this case, accu-
racy becomes relative error due to imprecision, i.e., (u/2)}/m. But when
empirical error exists--that is, error due to the measurer, the measuree,
and/or the measurement circumstances--accuracy {not precision) is usually
defined as in the first sentence of Cronbach's (1947) guote above. The
dictionary is of little help in sorting out any systematic distinctions.

For example, Webster's New World Dictionary (College Edition) gives us

this definition: "Precision, the quality of being precise; exactness;

accuracy." And in the same dictionary, is this definition: "Accuracy,
the quality of being accurate or exact; precision.”

At the risk of confusing the issues further, I will elect the versions
of these two concepts that serve to keep two fundamental properties of the
measurement act separable. Suppose in measuring the height of a person,
the ruler is marked off in feet; we can then measure anybody's height to
the nearest foot. This is a statement of Efecision. Included in this no-

tion of precision is the overall Tength of the ruler. If it is only 5 feet

long, the measurement of people over 5 feet tall would necessarily be much
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less precise. Precision is intrinsic in the construction of the measur-
ing instrument; it can be increased by conceptualizing and adding more
hash marks to the ruler. Half feet can be added to the ruler enabling
the measurement of height to be precise to the nearest half foot. It is
not really necessary that the hash marks be at equal intervals, or that
the addition of hash marks be midpoints of each interval,

Possibly a better conceptualization of precision is gained by defin-
ing it as the number of measurement decisions an instrument can potentially
make. The ruler calibrated in half feet can potentially make twice the
number of relative height decisions as can the ruler calibrated in feet.

To facilitate the analogy with test items, the ruler can be reconcep-
tualized as a collection of'straight sticks consisting of a 1-foot stick,

a 2-foot stick, a 3-foot stick, and so on. The more precise ruler is re-
conceptualized as a set consisting of a 1-foot stick, a l%-foot stick,

a 2-foot stick, a 2%-foot stick, etc. Measurement of height, then, is

the process of isolating two adjacent (ordinality being assumed) sticks
within which 1ies the height in question and judging which of these sticks
is closest, i.e., to within u/2 units where u fs the unit of precision,
Alternatively, the measure of a person's height is the number of sticks
surpassed by the person's height {plus u/2). If the person is judged to
be shorter (by u/2 or more) than the stick, he/she is scored zero; if tal-
ler, he/she is scored one. The person's height is then the total score
after being tested on the set of sticks. Figure 1 lays out the process
schematically. MWhether sticks are ordered as calibration marks on a ruler

or unordered and used summatively, the result is the same: The person's
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Figure 1
Schematic Representation of the

Act of Measurement
(Height as an Example)

Ordered Sticks:

3 r

o

Calibrations: 1 2 (:)

Unordered Sticks:

Scores: 0 1 | 1
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height is judged to be 3 feet to the nearest foot. That is, the person's
height is somewhere in the theoretical interval of 2% to 3% feet. Preci-

sion is inherent in the way in which the measuring instrument is calibrated

and made operational.

Accuracy is reserved here as a term for describing the degree to which
the use of the measuring instrument is error-free. Accuracy is an empiri-
cal concept given an already calibrated instrument. Indexing the level of

accuracy involves repeated measurements under the circumstances_in which

accuracy is required. In the above example, to the extent that we can con-

sistently arrive at (or close to) the same measurement of height (to the
nearest foot or half-foot depending upon which ruler we use), we have an
accurate measuring procedure. The more accurate the procedure the less
variability in obtained measurements over repeated measurement trials.

The complete independence of the concepts of precision and accuracy
should be clear: A highly precise instrument can be grossly inaccurate
{a rubber measuring stick calibrated to the 32nd of an inch) compared to
the accuracy of a less precise instrument (a steel measuring stick cali-
brated in yards). Moreover, accuracy is a function not only of instru-
ment "decay," but also of the circumstances under which it is used. Tech-
nically, therefore, we assess the accuracy of the measurement procedure which
includes error due to the instrument itself, the person doing the measurement,
the person being measured, and the environment in which the measurement pro-

cess takes place,

Given this distinction, reliability (or, more generally, dependability)

as defined by classical {and classical-like) test theory models is clearly
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a synonym for the accuracy of a test. Empirically and theoretically,
the concepts of reliability and dependability have been concepts of re-
peated measurements. In this sense, it matters Tittle whether the re-
peated measurements are replicates {strictly parallel) or samples from
a domain (randomly parallel}; that is, the generic concept of accuracy
remains intact regardless of the conceptual changes in meaning of "true
score" implied by the several classical models. So long as we envision
only the composite result of the testing process, the classical models
are quite analogous to the physical model of measurement. The test score
is analogous to the "ruler score," i.e., the obtained height measurement.
If we are interested in assessing the accuracy of a single ruler, then
we could use the original classical test theory model of strictly parallel
repeated measurements. If, instead, we are more interested in the accuracy
of a variety of rulers (wood, steel, cloth, etc.) from different manufac-
turers, then the item sampiing models of randomily parallel repeated mea-
surements would be useful. The domain of generalizability changes, but
the notion of accuracy does not--empirical estimates obtained through repeated
measurements, eitherwith the same ruler (strict parallelism) or with a
sample of rulers (random parallelism).

However, the physical model and traditional test theory models part

company when it comes to the notion of internal consistency. Inquiry in-

to the internal consistency of a ruler would be directed at the verifica-
tion of the calibrations vis-a-vis the construct in question and the se-
lected measurement unit standard--an investigation of the Erecision'of
measurement. In test theory, the inquiry is directed, as it should be,

toward the items. But in traditional theories, the inquiry proceeds by
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simply recasting items into the same role as the test, viz., repeated
measurements--aninvestigation of the accuracy of measurement,

Where in the traditional test theory models is the concept of pre-
cision? Conceptually speaking, the answer is, "Nowhere." MNow of course
precision is manifested in the test item, in particular, the difficu1tz5
of the test item. A student passing a more difficult test item evidences
more ability than does a student who can pass only a less difficult item.
The analogy with Figure 1 should be clear. The collection of items is
the ruler, conceptualized as an ordered bundle of sticks. The item dif-
ficulties are analogous to the lengths of the sticks. Measuring the ab-
ility of a student involves locating that pair of adjacent items B and A
such that the student correctly answers B {and all other items easier than
B) but not A (nor all other items more difficult than A). Traditionally,
the student's measure is the ordinal position of item B, or, equivalently,
the total number of items answered correctly by the student.

Certainly this analogy is lacking in some non-trivial respects. In
particular, the determinacy in the ordering of sticks is hardly (if ever)
realized in the ordering of items. If stick C is shorter than stick B,
and a student's height surpasses the length of stick B, then it will surely
pass that of stick C. Such is the beauty of measuring constructs we can
understand with our senses. But if item C is easier than item B, and a
student correctly answers item B, then it is not always a sure bet that he/
she will correctly answer item C as we11.6 Such is the legacy of the at-
tempt to measure abstract behavioral constructs. Moreover, the procedure
for assigning an invariant metric to the measurement of height is straight-

forward; it is much less so when using items to measure ability.
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But I believe these to be minor details compared to the conceptual
identity between sticks and items and their role as calibrations on the
"ruler." The point to be made here is that this is not the role cast
for items by classical (or classical-1ike) test theories. Lest I may
have bequn to lose some readers who are rusty on classical (and what
I am referring to as classical-1ike) test theory, I will turn to an over-
view of several such theories with the expressed intent of further illus-
trating the argument thus far presented. (Readers already familiar with
these models may skip to the Discussion in the next section with Tittle

or no loss in continuity.}

Traditional Test Theories

Some would probably argue {and justifiably so) that the sampling of
alternative approaches to follow should not be lumped into a single class
of test theories, especially one including c]assfcal test theory. I do
this here only because, in terms of their fundamental conceptualization
of the measurement process and important empirical consequences, they are

more similar to each other than to the models to be discussed next.

Classical Test Theory

The basic postulate of classical test theory defines a belief regard-
ing the composition of the raw score obtained by a student, namely, that
this observed score is simply the student's true score plus what's left
over, commonly designated as the error score.

Using some fairly standard notation and the usual matrix layout of

the scores of n students on k items, we obtain the schematic in Figure 2.
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Figure 2

Student-by-Item Raw Score Matrix and Notation

(Xsi =1 or 0 if student s answers item i correctly or incorrectly.)

Raw Composite

Items Scores
1 4 3. i k
Torxpy X X14 ST
2| X1 Xpp X,
2 3 X3
=
Q)
v
-
? ;
3 X . ¥ =3 x_.
si T
n xn] xni xnk Xn

Item Difficulties  py . . . . Pp; = L
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Using T and E for true and error scores, the classical test theory model

posits for any student s that:
X = T+ Eg (1)

A number of relationships obtain from this model when several additional
assumptions are made about the true and error score components of repeated
measurements on any students.7 Specifically, these assumptions are (a)
errors are totally random and cancel each other out; therefore, the mean
error is zero (E = 0); (b) the correlation between true and error score
components is zero (pTE = 0}; and (c) the correlation between errors over
repeated measurements is zero (pEE' = 0).

Assumption (b) leads directly to the variance composition of the
linear model above, viz., observed score variabi]ity is the sum of vari-

ability in true and error scores:

2 2 2 _
oy = oy + op (2)

Assumption (c) leads further to the fundamental theorem that the covariance
between observed scores on any two repeated measurements is equal to that

between the true scores on these measurements:

Pxx' °x%x' T PTT °1 I (3)
Finally, if a fourth assumption is added--(d) the repeated measure-
ments are parallel measurements where parallel measurements are defined as
having equal true scores (T = T) and equal error variances (UE = UE)—-
then reliability (defined as the correlation between parallel measures,
Pyy = pxx) is the equivalent of the ratio of true score to observed score

variance:
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a
pXX = (4)
oX

N'-'-l N

But this is also the coefficient of determination in predicting observed
scores from true scores (or vice versa), i.e., the correlation between
parallel measurements is equivalent to the square of that between observed

and true score components:
, , |
DXX = pXT (5)

A Tittle bit of algebraic manipulation of equations (2) and (4) gives us
an eguation for the error variance in terms of reliability and observed

score variance. In standard deviation terms, this equation is
O = 9y’ l-eyy (6)

and is commonly referred to as the standard error of measurement. Noting

again the relationship in (5), this equation also represents the standard

error of estimate in predicting X from T:
op = UXV 1—pXT (7)

So much for theory. In practice we have 0n1y what we observe--raw
scores X and the variance of these scores si which we use as an estimate
of ci. In view of the above theoretical relationships, if we can also
estimate Pyx> then estimateé for the remaining parameters can be automa-
tically computed. The estimate of reliability (denoted rxx) is usually
obtained in one or more of three fundamentally different ways with attend-
ant differences in empirical interpretation.

Reliability as Stability. This is the test-retest formulation of re-

liability as the correlation between two administrations of the same test
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over a specified interval of time. If the time interval is too Tong and
allows for true individual changes inh the construct being measured, then
the test-retest correlation has 1ittle to do with reliability. But if
the time interval is well-defined in relation to the expected consistency
in individual true scores over that period of time, then the test-retest
correlation estimates the stability form of test reliability.

Reliability as Equivalence. This is the test-retest formulation of

reliability as the correlation between two administrations of parallel
tests at the same {or nearly so) point in time. This procedure most
closely approximates the classical reliability definition but relies
heavily upon the extent of true equivalence between tests. (The same test
could, of course, be used twice, but then practice effects might lead to
inflated test-retest correlation.) This procedure most closely approxi-
mates the empirical assessment of accuracy as discussed in the previous
section.

Reliability as Internal Consistency. This is the test-retest para-

digm taken to its logical conclusion. For example, split-half reliabil-
ity is one form of internal consistency equal to the correlation between
two random halves of the test when adjusted upwards by the Spearman-Brown
(Spearman, 1910 and Brown, 1910) equation to correspond to the full length
test. But then we could compute a "split-fourths" coefficient by averag-
ing all possible correlations between four random quarters of the test and
adjusting this average accordingly. Eventualily, we get down to the item
Tevel, treating each item as a paraliel replicate "test." The intraclass

correlation (average inter-item correlation) stepped-up by a factor of k
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(the number of items on the total test) by the Spearman-Brown formula
turns out to be equivalent to the mean of all possible split-half coef-
ficients (computed using the Rulon-Guttman formula [Rulon, 1939 and Gut-
man, 1945]) and was originally derived by Kuder and Richardson (1937) as
their formula number 20:

ps (1 - p;) ]
KR2D = K [% -‘1317;———¥L—J (8)

s
X

Since pi(l - pi) is the variance (s?) of a binary item, this formula is

often written more generally as

xS

S FR— (9)

2

k. i
KR20 = 1 5
X

s

Moreover, since the total variance si can be decomposed into an additive
sum of all item variances and twice the sum of all possible inter-item

covariances, this formula can also be written as

r..5.5.
KR20 = J1J (10)

1 -2 ko1l —ememe
PERE K Ti3%4%

+

average inter-item covariance

1_( average k-1 (2verage 1nter—item)
k ‘item variance k covariance

From equation (10) it is evident that this estimate of reliability (a)
approaches 1 as the number of items increases (so Tong as additional
items are positively correlated with the total test score) and (b) is a

measure of the extent to which items are intercorrelated--with each other
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or, equivalently, with the total test score. Hence, the use of the term
“"internal consistency." It becomes clear, then, that this is not only

an index of reliability, but also an index {necessary but not sufficient)
of the extent to which the set of items comprising the test are measuring
the same construct {ability). In the sense of internal consistency, there-
fore, reliability has a divect bearing upon the construct validity of the
test. As noted above, it is for this reason that many traditional test
theorists and practitioners have used fhe terms "homogeneous" and "uni-
dimensional" to refer to this property of a test.

In a nutshell, these are the tenets and consequences of classical
test theory. I have ignored a few other important consequences, primarily
those having to do with the conceptualization of validity (effects of test
length, correction for attenuation, and so forth}. For purposes of com-
parison, however, the concepts so far developed are sufficient to illus-
trate what I believe to be profound differences between classical test

theory and other, perhaps more realistic, measurement models.

Item Sampling Theory

One of the more difficult assumptions to accept (and empirically
realize) is that requiring strictly paraliel tests (or items). But with
a sTight shift in perspective, this assumption can be avoided. Consider

again the Tayout in Figure 2. Suppose the k items are a random sample

from a conceptually infinite population (universe, domain, pool, bank,
etc.) of items over which a student's score would be meaningful. This

score would theoretically be the student's true score. Likewise, the n
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students can be conceptualized as a random sample from an infinite popu-
lation of students. And an item's true "score" {difficulty) is the theo-
retical average score on that item for the population of students.

In essence, what we have is the well-known random effects and anal-
ysis of variance design, i.e., an n-by-k, students-by-items, random matrix
sample from an infinite students-by-items matrix population. Once again,
a linear, additive model is assumed; adopting the convention of using
Greek letters for the population parameters, any student's (s) observed
score on any item (i) is decomposed as follows:

Kgj =0 Tty romy Feg (11)

where p = the overall mean reflecting
the general Tlevel of response
relative to no response zero;

T, = true score for students s;
Moo= rtrue score (difficulty) for item i;
i = residual or error effect which could

also be regarded as the student-by-item
interaction effect (Tﬂsi) for a design

with one random observation per cell,
With the addition of one more critical assumption--the statistical

independence of student-item responses--the components of variance mean

square expectations shown in Table 1 can be derived (Cornfield & Tukey,

1956).



-23-

Table 1

Components of Variance Mean Square Expectations
For the n x k Random ANOVA Model

Mean Expected
Source df Square Mean Square
Students n-1 MS, g2 + ko?
€ T
- 2 2
[tems k -1 MSI g + no
Error {(n - 1}k - 1) MSE ci

Now an internal consistency form of reliability can be derived
without resorting to a definition based upon strict parallelism. Already,
in accordance with the model, items can be characterized as randomly "par-
allel." We can proceed directly by defining reliability (pxx) as the pro-
portion of total score variance (oi) that is the true score variance (ai).

Since the model implies that

02 =02+ ol (12)
reliability can be expressed as
a2
o T —— (13)
02 +l02
r ke

Using mean squares as estimates of their corresponding expected values,
reliability can be estimated as
MS. - MS

N T (14)
XX
MSS
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which, with a bit of algebraic manipulation, can be shown to be identical
to equations (8), (9) and (10) above. (This form of KR20 was first derived
by Hoyt, 1941.) frﬂgg} of course, is the corresponding estimated standard
error of measurement equivalent to equation (7).

In terms of at least two important applied consequences (and there
are more), then, both classical test and item sampling theories lead to
the same result. Perhaps they are more similar than one might think. In-
deed, with the exception of the strict versus randomly parallel test dis-
tinctions, both theories are formally equivalent. It can be shown that
the Cornfield and Tukey (1956) assumptions of the random components model
imply assumptions (a), (b) and (c) above for the classical test theory
model, and vice-versa. . {(See Lord & Novick, 1968, section 2.7.)

Nonetheless, the ANOVA framework implied by the item sampling model pro-
vides a convenient conceptual and analytic rubric that "liberates" {Cronbach
et al., 1963) the several classical reliability notions--that is, the sampling
model emphasizes the multiplicity of possible reliability coefficients depend-
ing upon practical measurement consequences. Cronbach and his associates
(Cronbach et al., 1972) have formalized these concepts under the Tabel "gen-
eralizability theory." In the simplest design, namely that represented in
Figure 2, the "generalizability" coefficient is, of course, given by equation
(14), designated previously by Cronbach (1951) as coefficient alpha (a). But
other more complicated designs are also relevant and are obtained by adding
more factors (facets)--and, therefore, more than one kind of true score par-
ameter each with its corresponding reliability coefficient--to the ANOVA de-
sign. Suppose, for example, n classes are observed k times by r raters on o
occasions. We can now talk about (and compute) reliability coefficients not

only for the main effects due to observations, raters and occasions, but for
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the possible interaction effects as well. Using generalized Spearman-Brown

procedures, data from one study can then be used to estimate the k, r and o

necessary to reach desired reliability levels in a future study. Moreover,

some facets might be considered fixed and others, random; and some populations

finite, others infinite--all depending upon the practical applications intended.
However, notwithstanding the considerable conceptual and applied benefits

accrued through Tiberating classical test theory of its strict assumption

of parallel measurements, both theories conceive the fundamental dynamic of

an achievement test identically: Items play roles as replicate measurement

rules rather than calibrations on a single measurement rule. Hence, they

are first and foremost theories of accuracy--not of brecision--as these con-

cepts have been defined above.

Binomial Error Model

An interesting twist on the item sampling model occurs if we restrict
our attention to the single student s and conceptualize his/her responses
to a random sample of k items as k independent binary events, each with
the probablity T of a correct answer where Lo is the hypothetically true
proportion correct score for student s in the population of items from
whence the sample was drawn. This is the simp1e "Toaded coin-flipping"
model, i.e., a binomial model, where the probability for success (say,
"heads"} i1s p. Over repeated trials of n coin flips each, the standard
deviation of the sampling distribution (i.e., the standard error) of the
observed proportions of "heads" is well known to be v p{I-p)/n.

Translated to the notation and purpose here, the standard error {of

measurement) for student s is the standard deviation of his/her sampling
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distribution of observed proportion correct scores (Yg) on repeated ran-
dom samples of k as described in the paragraph above. This standard error

{denoted o ) is given, therefore, as

S
rll-g )
O T V// : k : (15)

S
This standard error of measurement is estimated for each student by cor-

'recting (15) for sampling bias and substituting observed scores for true

scores: — -
XS (l-XS)

e; k-1

s (16)

It should be c]eaf from equation (15) that for item sampied tests
of fixed length k, different standard errors of measurement obtain for
different true scores. Students obtaining a score of 50 percent will
have the largest estimated standard error, i.e., .5/V k-1; sES decreases
symetrically as scores either go up towards 100 percent or go down towards
0 percent.

This outcome, of course, is completely contrary to the assumption
of independence of true and error scores in the classical test theory and
item sampling models. In both of these models, the standard error of mea-
surement (equation [7]) is a constant for all students regardless of their
observed scores.

We can, hﬁwever, derive a single standard error of measurement for
the binomial model by simply computing the mean of the individual sES
To do this requires generalizing the binomial error model for an individ-

ual's score to that for a distribution of scores. (See Lord and Novick,
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1968, Chapter 23.) And in so doing, a couple of interesting results
emerge. Assuming a linear relationship between true and observed scores,
the usual formulation of reliability as the ratio of true score to obser-
ved score variance leads to the following estimate for internal consistency:

R21 = EZ(::GZ—Y)} (17)

X

This, of course, is Kuder and Richardson's formula 21 developed originally
as an approximation to KR20. Clearly, it is a function only of the obser-
ved score mean {or mean item difficulty since n p = x ) and observed score

variance. KR21 will always be less than KR20 unless there is_no variation

in item difficulties. When all items are of equal difficulty, they are,

of course, equal to their average and formula (17) becomes identical to
formula (8).

Analogous comparisons hold for the standard error of measurement.
For the binary model, it follows that the estimated correlation between
true and observed scores is v KR2I and the estimated standard error of

measurement is:

s' = sxf 1 - (KR21) (18)

€

It can be easily shown that s; is the mean of the individual student

standard errors of measurement S. - This quantity will always be greater
S

than its analogue in classical and item sampling models (equation [7] with

sample estimates) unless, again, item difficulties are equal.

Discussion

Thus, excepting the test construction consequences of strict versus
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randomly parallel items, all three "traditional" models appear, for all
practical intents and purposes, to be equivalent when item difficulties
are equal (or nearly so). This makes a lot of sense when one teases out
the subtle differences in the conceptions of true score inherent in each
model. In the general binary error model, the true score is a parameter

of the item population, but each student receives a different randomly

sampled set of items. Ordinarily, a student will have different true

scores on each of those item samples, but these are not the true scores
of interest. Rather, it is the mean of these true scores (the item popu-
lation true score) that is to be estimated for each student. A similar
conception of true score holds for the item saﬁp]ing model except that

each student responds to the same randomly sampled set of items. The

classical model is a degenerative form of the item sampling model where

all ms are equal. But in the event that items are all of equal difficul-
ties, true scores will be identical, in each item sample, and, of course,
these are identical to the true score in the population. However, if this
is not the case, and students respond to different item samples, more vari-
ation can be expected to enter into any summary statistics designed to re-
flect measurement error.

So where in these "traditional" test theories is the concept of pre-
cision as I have defined it? MWhere do the theories speak to the construc-
tion and calibration of the measurement device? Again, the answer is no-
where. I am not, of course, suggesting that items go unrecognized in
traditional test theories. However, I am suggesting that the item param-

eters, for example, in the model specified by (11), are there mostly by
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default. Moreover, I'm suggesting that precision, which is indeed gained
in the composite test score, is serendipitous--items are invariably non-
parallel and tests are usually long encugh with sufficient variation in
item difficulties so that total scores are at least positively and monoton-
ically related to the underlying ability continuum. Put slightly differ-

ently, I am suggesting that the wrong theoretical framework for concept-

ualizating the act of measurement has been used to evaluate what turns out

to be a fairly common and intuitively sensible approach to the measurement

of ability.

Consider this ironic outcome in terms of classical test theory: dif-
ferences in item difficulties (desirable building blocks for measurement)
are evidence for violating the fundamental assumption of parallelism for
the internal consistency form of reliability. Moreover, such differences
automatically put a ceiling on the maximum level of KR20 {or alpha) due to
the ceiling on phi coefficients when marginal proportions are not identical.
For these reasons, we all learned that the "best" possible test was one with
items of near equal difficulty and, preferably, all at the .5 level to maxi-
mize the potential for total score variance--all nice ingredients for norm-
referenced applications. Not surprisingly, it is under the "ideal" condition
of equal item difficulties that all three traditional test theory models are,
for practical intents and purposes, identical.

This "ideal" student-item response pattern highlights the folly of
treating items as merely short (the shortest) repeated tests. As implied
above, maximum KR20 obtain when items are at the .5 difficulty level and -

all students either get all items right or wrong. For a k-item test, then,



-30-

half the students have a score of k and half have a score of 0. Clearly
little information is obtained when only two decisions can be made. (La-
tent trait models, which attack the issue of calibrating test items directly,
can not even utilize "perfect" response vectors since they have no utility

in pinpointing locations on the latent continuum.) Equally ironic impli-
cations of this "ideal" score matrix occur for validity coefficients.

(See Loevinger, 1954.) It is a rather sad commentary that "something fishy"
about classical test theory was smeiled early on by scholars who continued

to propagate the methods:

It may be, if items of graded difficulty levels are
used, that counting one point for each item correct
is not a proper scoring method. The score assigned
should rather be a best estimate of the difficulty
level reached, anajogous to that used in the Binet
test.... Another limitation in the theory here de-
veloped should be pointed out. The criterion of max-
imizing test variance cannot be pushed to extremes.
Test variance is a maximum if half of the population
makes zero scores, and the other half makes perfect
scores. Such a score distribution is not desirable
for obvious reasons, yet current test theory provides
no rationale for rejecting such a score distribution.
Obviously the "best" test score distribution is one
which accurately reflects the "true" ability distri-
bution in the group, but there is perhaps little hope
of obtaining such a distribution by the current pro-
cedure of assigning a score based upon sheer number
of correct answers. At present the only solution to
such difficulties seems to lie in some type of abso-
lute scaling theory... (Gulliksen, 1945, pp. 90-91.)

As a final example of the ironies inherent in classical models con-
sider the classical test theoryrnotion of a constant standard error of
measurement for every possible score. Does it make sense that particular
high (or low) scoring students would have the same random error distribu-

tions around their true scores as would intermediate scoring students?
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At a purely intuitive level this doesn't make much sense at all. The bi-
nomial error model makes it clear that errors are smaller at the ends of
the score distribution and larger towards the center. This makes perfect
sense if we think of sampling items as analogous to sampling balls from
an urn to achieve accuracy of estimation--blue balls are items answered
correctly, red ones are incorrect items, and a student's estimated true
score is the proportion of blue balls obtained when selecting k balls at
random from the urn.

But it makes no sense if items are conceived as fundamental building
blocks of the measurement process. In this case, "error" ought to become
much more associated with the precision of meaéurement. In fact, the error
pattern should be the complete reverse of that predicted by the binomial
model. Errors would be larger toward the extremes of the score distribu-
tion and smaller towards the center. At the extremes, we know nothing
about the ability level of persons scoring O or k on a k-item test. The
analogy to physical measurement is again instructive. It is equivalent
to selecting that bundle of sticks of appropriate length such that they
can center on the person's height. If the smallest stick is too long (a
O-scorer) or the longest stick too short {a 1-scorer), we have failed to
measure the person’s height to within the given units of precision.

In sum, it can be said that classical {and classical-Tike) test

theories are good models for assessing the dependability of measurements

whose internal measurement properties are already well understood or at
least accepted as given. (Generalizability theory becomes particularly

useful in these circumstances as noted previously.) But they are poor
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models for directing and assessing the development of item-based measures
which, as suggested by the physical measurement analogy, rely upon item
difficulties as proxies for calibrations on the "ruler." Again, many
achievement tests produce useful results serendipitously for the obvious
reason that practitioners of classical testing methods sense the necessity

for incltuding items of varying difficulty. But the reasons for the even-

tual presence or absence of items on their tests are the wrong ones, being

rooted in a "theory" of dependability rather than measurement. I will now

turn to an illustrative survey of some measurement models which are the-

oretically oriented in the Tatter direction.

Cumulative Test Models

For lack of a better one, I am using the term cumulative to refer to
a rather heterogeneous class of measurement models which explicitly acknowl-
edge the measurement function of items as heretofore discussed. If not
already obvious, the descriptive value of this term will be apparent shortly.
A potpourri of these models will be presented in just enough detail to high-
1ight how they radically differ from classical (and classical-like) test
theories in their conceptual approach to the measurement act. All these
cumulative models approach the measurement act directly (using the items-
as-sticks notion) relying on item difficulty variance.for precision and
calibration and the total score {or a function of the total score) as an
indicant of the ability being measured.8

Before beginning this survey, I wish to note a side benefit to using

the "“items-as-sticks" notion in developing a measurement rule (i.e., test).
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In 1963, a seminal article by Glaser stimulated the so-called criterion-
referenced testing movement. Soon thereafter, an important article by
Popham and Husek (1969} rightly noted the inappropriateness of norm-or-
jented classical test theory methods for handling the development and
analysis of criterion-referenced tests. The Titerature virtually exploded
with attempts to adapt classical test theory to fit the requirements of
criterion-referenced tests.‘ The focus of these efforts was quite mis-
directed. The fundamental issue was not testing or even purpose of test-
ing; rather, it was an issue of measurement. The proper role of items in
a test forces (or should force) the test constructor to match item con-
tent with the cognitive processes to be assessed. Assuming a singular
construct and a scalable set of k items having different difficulties

k + 1 "mastery" levels can be assessed. "Criterion-referenced testing,"
therefore, is simply sensible measurement.9 Of course, following sensible
measurement, one can always (a) select a particular mastery level for cri-
terion-referenced decisions or (b) compile group statistics for comparative

purposes, thereby developing norm-referenced test interpretations.

Guttman's Scalogram Analysis .

David Walker (1931, 1936, 1940), perhaps the first person to recognize
the value of the doubly ordered raw score matrix, began a series of investi-
gations on the relationship between response patterns and the resultant
shape of score distributions. In the course of this inquiry, Walker con-
ceptualized the ideal response pattern and attempted to index departures
from this pattern, a condition he nicknamed "hig" after the term "higgledy-

piggledy" to describe the apparent haphazardness in non-ideal response
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patterns. But his interest centered on implications for test score scatter
rather than the more profound implications for measurement itself.

Guttman {1944} reversed this focus and formalized a scaling procedure
for assessing the degree to which items conformed to the ideal response
pattern. Figure 3a presents an example of an ideal cumulative response
pattern for 20 students responding to five items. However, that this is
an ideal pattern is not immediately obvious until the score matrix is ar-
ranged in rank order on both student scores and item difficulties. One
such convient "double sorting” of the score matrix orders students from
highest to lowest scores and items from easiest to most difficult. In
Figure 3b we see the cumulative nature of the scoring pattern inherent in
the unsorted data as presented in Figure 3a. Figure 4 presents the same
score distribution, but this time there are some "errors," i.e., student-
item responses which do not fit the ideal pattern. For example, student
8 should have answered item 1 correctly and item 5 incorrectly, thereby con-
tributing two student-item response errors to the total 20x5 (i.e., nk)
possible student-item responses. Finaily, Figure 5 depicts yet again the
same score distribution but with many errors résu1ting in a very poor cum-
ulative pattern.

To index the degree of cumulativeness present in the pattern, Guttman
used a deterministic approach. All deviations (e} from the ideal pattern
are errors, i.e., the approach makes no allowance for probable deviations.
An obvious index then is the proportion of non-errors in the entire response

matrix (1-e/nk). Guttman named this index the coefficient of reproducibil-

ity (REP) insofar as it reflected the extent to which the response pattern
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Figure 3a

Unsorted Cumulative Response Pattern
for a Hypothetical Ideal Score Matrix
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Figure 3b

Sorted Cumulative Response Pattern
for a Hypothethical Ideal Score Matrix

(Rep = 1.00; €S = 1.00; o =
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Figure 4

Moderately Cumulative Response Pattern

(Rep = .86; CS = .63; o = .57)

[ TEMS
1 2 3 4 5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0
0 1 1 1 0
0 1 1 0 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 1 0 0 0
1 1 0 0 0
1 0 0 1 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
15 11 10 9 5
.75 .55 .50 .45 .25



STUDEMNTS

10
11
12
13
14
15
16
17
18
19

20

-38-

Figure 5

Poor Cumulative Response Pattern
(Rep = .74; CS = .46; o = .49)
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could be perfectly reproduced from the student scores or item difficul-
ties. Thus,

REP = 1- e (19)
nk

But REP can never be smaller than the average of the observed item diffi-

culties (pi) or easinesses (qi=1—pi), whichever are greatest. That is:

Min(REP) = EMax(pi,qi) (20)

k
The degree of improvement (IMP) over minimum reproducibility is, there-
fore,
IMP = REP-Min(REP) (21)

Moreover, the maximum possible improvement is
Max(IMP) = 1-Min{REP) (22)

Thus, a more realistic appraisal of the degree to which items scale, above
that expected by the marginal results alone, can be seen in the ratio of
IMP to Max(IMP). Denoted the coefficient of scalability (CS) by Menzel
{1953), this index can be written as follows:

REP-Min(REP)
1-Min(REP)

S = (23)

It has usually been recommended that reasonable scalability requires REP
>.9 and (S>.6. The score matrices in Figures 3a, 4 and 5 depict what are
ideally, moderately and weakly cumulative response patterns. These descrip-
tors are clearly reflected in the values of REP and CS accompanying each
score matrix.

There are probably three basic reasons why Guttman scaling received

little favor in the achievement testing arena. First, for reasonably homo-
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geneous objective domains, it is difficult to write achievement items
which scale well. In fact, Guttman devised the scalogram procedure for
attitude measurement, where it is often easier to write items with dis-
tinctly different affective magnitudes (item "difficulties”) covering the
same essential domain. Second, Guttman made unrealistic claims regarding
the power of scalogram analysis to test unidimensionality, thereby opening
up the procedure to a barrage of criticism, (See, for example, Festinger,
1947 and Loevenger, 1948.) In Tine with the discussion of unidimensional-
ity earlier in this report, Guttman would have treaded firmer ground were
he to have simply suggested that a scalable set of items is necessary but
not sufficient evidence that a set of items measures the same thing to
within reasonable evidence of content (and/or construct) validity. Third,
and probably most critical, the model was deterministic and offered no
statistical (i.e., probabilistic) tests of fit. (See Torgerson,.1958.)

But no criticism was ever directed at the most important notion be-
hind Guttman's approach, namely, the measurement role of items as, in
essence, calibrations on a "yardstick." The approximation to the ideal
pattern (Figure 3b) would most Tikely be the acknowledged goal of most
achievement test constructors. Yet, instead of expending considerable
effort in mapping the cognitive consequences of instructional units and
writing, testing, modifying and rewriting relevant items that do begin
to show nice cumulative properties, test constructors have been content
to build tests on the classical test theory principle of redundancy, i.e.,
repeated measurements to realize reliability (as internal consistency).

As an interest%ng aside note, even the deterministic nature of Gutt-

man- scaling was rendered a non-issue by a number of writers. Perhaps
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the most ingenious approach was based upon Cox's (1954} analysis of co-
variance model for cumulative repeated measurements (see Maxwell, 1959
and Ten Houten, 1969). Other techniques were investigated by Goodman
(1959), Sagi (1959) and Schuessler (1961). The point of this note is
simply that attention needs to be redirected towards the underlying prin-
ciples of measurement and away from the worry of more or less sensitive
statistical indicators--not that the latter are unimportant, but that

the former are much more so.

Loevinger's Homogeneity Analysis

In her 1947 monograph, Jane Loevinger delivered what I believe to
be among the best and most provocative critiques of classical test theory;
and she followed up with an equally provocative critique of item sampling
theory in 1965. To be sure, some of Loevinger's criticisms were a bit
overstated, particularly her judgment that the axioms of classical test
theory were circular (see Novick, 1966). But generally, her view regard-
ing the inappropriateness of treating items as repeated measurements and
her switch in focus from reliability to constructing cumulative scales
represents the fundamental contribution.

Like Guttman, Loevinger's approach is based upon deviations from the
ideal response pattern. Unlike REP (and its derivatives}, however, her
homogeneity index (H) reflects these discrepancies in terms of maximum
expectations given the difficulty level of the items. Assuming items are
arranged in ascending order of difficulty, then for any two items i and j

the usual four-fold classification table obtains:
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Item j
A, O
1 a b atb pi=(afb)/n
Item i '
0 c d c+d q1=(c+d)/n
atc b+d n=a+b+c+d
P i

(atc)/n  (b+d)/n

a, b, ¢, and d are the number of students in each of the respective pos-
sible score patterns. Since we have arranged the data assuming item i

is easier than j, atb must be greater than atc; in proportion terms,

p1->pJ--
Ideally, no one ansering the more difficult item correctly would
answer the easier item incorrectly. The ideal four-fold classification

table would then Took like this:

Item j
1 0
1 a b a+b
Item i
0 0 d d
a b+d n

But in the actual testing process, "errors" do occur and ¢, the number of
students getting the more difficult item right but the easier item wrong,
is often not zero. These are the deviations from the ideal scale types

in Figure 4 and 5.
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Loevinger's index of "homogeneity" focuses Jjust on the outcomes a
and ¢, that is on the easier item's scoring pattern for those students
answering the more difficult item correctly (heavily outlined column in
above schematics.) In other words, the index is based upon the conditional
probability p1|j of answering item i correctly given that item j is answered
correctly. In the general case, this probability is given by the number of
students a who answered both items correctly divided by the total number

-of students atc who answered item j correctly:

p. .
= 2 .1
Pilj atc  p; (24)

where pij is simply the proportional equivalent of a, viz., a/n, which is
the probability of answering both items i and j correctly.. In the ideal
case, perfectly homogeneous items (1ike in Figure 3b}, ¢=0 and pi]j=1‘

In the perfectly heterogeneous case, we would expect items to function
|j=p‘i by (24)

above. An index of homogeneity between the two items i and j can then

completely independently, i.e., p1j=pipj, in which tase P;

be formed as follows:

observed improvement in P; over

|3
Hi' = that expected under perfect heterogeneity
J maximum possible such improvement if

items were perfectly homogeneous

= Py o Py : {25)
1- Pj '

In form and intent, this coefficient is analogous to the coefficient
of scalability (23) proposed for Guttman scaling. But Hij has a number of

further properties. Among the more interesting is the following:
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Mo = o1 (26)
1] Maxi¢ij5

where ¢1j is the ordinary Pearson product-moment correlation between two
jtems which, since the items are binary, is also the fourfold point cor-
relation computed as:

p

_ Pig " PiPy

%3 7 pya3pa;

(27)

But ¢1j cannot reach unity unless the marginals P; and pj are equal, i.e.,
unless the item difficulties are equal. This is exactly the circumstance
under which the two items are useless for purposes of precision, i.e., they
replicate the same calibration information rather than add decision points
to the scale. And of course this is exactly the condition most suited
for classical test theory, a theory of accuracy.

However, we can "correct" ¢ij by dividing it by the maximum possible

value it can assume in the case of unequal P; and Py That is

P. = PP
Max(4::) = 1 (28)
and thus
¢4 P:: - PP
i oo i i 29
Max (¢ ;) Pj = PiP; (29)

Upon dividing both numerator and denominator of {29) by pj, the equivalency
given by {(26) is verified..

But the result is more than algebraic. The maximum ¢ij is obtained
when all the students answering item j correctly also answer item i cor-
rectly, i.e., when Pij7P5 This, of course, is the ideal cumulative re-

J

sponse pattern shown in the above schematic. Thus, ¢ij/Max(¢ ) is really

1J
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measuring the extent to which this ideal is obtained and ranges from
0 to 1 accordingly. Unfortunately, this index suffers a bit from the
fact that it can also be 1 in value for items of equal difficulties
when the b cell is also zero. Even in the extreme case of Figure 6,

the overall index (H_} of homogeneity (see below) is unity. Guttman

t
indices suffer from the same problem. In effect, the scaling indices
being presented here are necessary but not sufficient indicators of
the cumulative nature of the test items. (See footnote 8.) We must
also, therefore, have some indication of item difficulty spread over
the ability range of interest.

To complete the discussion of Loevinger's approach, we note that a
weighted average of Hij can be formed for all item pairs i and J (such

that p1>pj) yielding an overall index of test homogeneity (H The most

t)'

straightforward approach to constructing H, is to reconsider equation (29}

t
which was formed as a ratio of equations (27) and (28). Since the item
variances in the denominators of (27) and (28) cancelled out, (29) is,
in effect, the ratio of the observed covariance of items i and j to the
maximum possible covariance given the P; and pj. An overall index can

then be formed as a ratio of the sum of the'k(k—l)/Z unique observed co-

variances to the sum of the corresponding k(k-1)/2 maximum covariances:

i} 'iﬂ#zj(P.. - p.p.}

H J 1 (30)
t 2z (p. - p.p.
1.#‘].(DJ PsP5)
Cov. .
R N
MaxiCoviji
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Figure 6

A Degenerate Case:

{Rep =13 CS =15 a=1)

ITEMS

1 2 3 4 5
1 1 1 1 1
] 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 c 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
10 10 10 10 10
.50 .50 .50 .50 .50
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where Covij denotes the covariance between items i and j. Some algebraic

manipulation of (30) will verify that it can also be written as

) qui H

RS i] -
12
g = 5 ) (31)
i#J
i.e., H s a weighted (by qui) average of Hij = ¢1j/Max(¢ij)' This

makes intuitive sense since qui is the expected proportion of errors
in the completely heterogeneous (non-cumulative) case.

It should be clear that Ht is an average inter-item statistic assess-
ing the degree to which all possible ordered item pairs are homogeneous
(in the cumulative sense) on the average. Thus, it does not increase
merely as a function of increased number of items as does the internal
consistency coefficient o in traditional test theory. This is as it

should be since H, 1s intended to index the cumulative structure of items

t
while o is aimed at assessing the reliability of repeated item measurements.
Ironically, Horst (1953), capitalizing on the seductively simple re-

lationship between H and the intraclass reliability coefficient of class-

t
ical test theory, has proposed "blowing up" Ht by a factor of k using the
Spearman-Brown prophecy formula to correct the ceiling effect problem of

unequal item difficulties in classical test theory. To his credit, Horst
is among the few test theorists who has recognized conceptual differences
between reliability and homogeneity and devoted ample space to Loevinger's
work in his book on measurement theory (Horst, 1966). But although I can

relate to the intended use of the modification offered by Horst, the modi-

fication once again confuses fundamental measurement issues by commingling
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the concepts of precision and accuracy.

Consider, first, the specifics of the modification. The intraclass
reliability (rii) in classical test theory is the reliability of the
average single-item test. It can be shown that by adjusting T upwards
by a factor of k using the classical Spearman-Brown formula, we end up
with the KR20 (or o) formula for reliability at the total test level.
Noting that ri; can be defined as the ratio of the average inter=item cov-

ariance to the average item variance, i.e.,

.:5.5. Cov. .
_ 5555 ] OVy (32)

Var,
i

3

the relationship given in equation (10) leads directly to the Spearman-

Brown "correction" as follows:

K r..

_ 11
KR20 = 1 kT)v- (33)

Now the maximum possible i given the disparities in item difficulties

15 . Max(Covi.i
Max(r,.) = ——— 1 (34)

] —_——
1 Vari

If we correct rii in the usual manner, it is obvious that

.. Cov. .
Max}l y - = Hy (35)
i Max(Coviji

The suggested modification by Horst, therefore, is to substitute the
corrected r.., i.e., Hes in equation (33), thereby making it possible

for KR20 to reach unity even when item difficulties are unequal.
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k Ht

Corrected KR20 =
1+ ik-lth (36)

Consider, second, the implication of this formula. A test can be
perfectly homogeneous by adding an infinite number of mostly heterogen-
eous items so long as they are positively correlated. Now this seems rea-
sonable for achieving increasingly accurate measurements; but it does not
necessarily Tead to increased precision and a more scalabie set of jtems.
Suppose, for example, the test is doubled in Tength by adding k parailel
items, i.e., items that are equal in difficulty, one-for-one, to those in
the original test and that scale identically to those in the original test.
We now have twice the test information at each ability level but still the
same number of ability levels represented in the test. Suppose, again,
that the new items are equally scalable but have difficulty levels between
those of the original items. We now have the same information at each
ability level but twice the number of ability levels that can be assessed.
Formulas such as (36} "blow-up" the index indiscriminately thereby conflat-
ing the issues of accuracy and precision.

Horst (1966} makes an effort to distinguish reliability and homo-
geneity by noting that reliable items are a necessary but not sufficient

condition for high H Thus, high Ht is, in part a function of reliability.

L
Now this is true for reliability at the item level. But it is not true

for reliability (as internal consistency) at the test level. Again, I

am trying here to clearly separate the precision obtained througn calibrat-

ing a homogeneous or unidimensional test from the accuracy of test.
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Bentler's Monotonicity Analysis

I include a discussion of Bentler's (1971) approach here primarily
to emphasize that multidimensionality is not an intractable issue when
measurement is conceived and operationalized as a cumulative scaling pro-
cess. Thus far I have avoided the issue of empirical dimensionality
suggesting, instead, that a scalable or homogenéous set of items plus
reasonable evidence of content validity is a necessary but not sufficient
condition for unidimensionality. Although I {and others) often use the
terms unidimensional and homogeneous synonymously, it should be understood
that the former is not an automatic consequence of the latter.

Preferring the term monotonic (instead of cumulative), Bentler quite
cleverly recognized that Yule's Y coefficient (a simple function of the
more familiar Yule's Q coefficient) for association in a four-fold table
(see Yule, 1912) possessed none of the drawbacks of ¢ or ¢/¢max when sub-
jected to an ordinary principal components factor analysis. For any two

items i and j, this index, renamed the monotonicity coefficient by Bentler

since he developed it in a more general form, is given as follows:

m = bc - ad
bc + ad + 2 abcd

(37)

where a, b, ¢ and d are as given in the four-fold table Tayout in the
previous section. The nice thing about Yule's association measure is

that it becomes 1 (or -1) only when one (or more) cells are empty. These
include exactly those four-fold response patterns of cumulative scales;
and a principal components factor analysis of the inter-item m-matrix will

recover two or more cumulative scales embedded in a set of items.
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As an index of homogenity, m is very similar to Hij' And, like
Loevinger, Bentler proposes the average of all k(k - 1)/2 inter-item
monotonicity coefficients, m, as an overall measure of inter-item homo-
geneity. But then, like Horst, Bentler becomes concerned with the
length of the test not being represented in the index. Thus, he pro-

posed the same Spearman-Brown transformation of m for a final, overall

measure of the test's homogeneity (h),

h = 'E;”" — (38)

and, in my view, falls into the same trap of mixing up fundamentally dis-

tinct measurement issues.

Sato's Student-Problem (SjP) Matrix Analysis

Sato (1980) developed yet another means for indexing departures from
the perfect Guttman or cumulative scale. But this time the notion seems
to have caught on. It is difficult to tell at this time whether it is the
novelty of the procedure {and its more sophisticated mathematical basis)
or whether more methodologists have begun to internalize the need to recon-
ceptualize the proper measurement role of items. In any case, Sato's con-
tribution reiterates the appropriate focus for understanding the measure-
ment act, viz., the doubly ordered student-by-item (problem) matrix of
raw responses (e.g., Figures 3b-5).

Interestingly, Sato's approach, unlike those discussed previously,

utilizes a mathematical model of the ideal non-cumulative response pattern.

An index of fit, then, is based on the extent of observed response pattern
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departure from the perfectly heterogeneous model. Specifically, any
ordered student-by-problem (item) matrix can be partitioned into sections
corresponding to the expected ideal cumulative patterns based on either
the student scores, the S-curve, or problem scores (item difficulties),
the P-curve.

Figure 7 depicts the process of analyzing the student-problem matrix
in this manner. Figure 7 is simply Figure 4 again, but this time the cum-
ulative student and problem score distributions are presented, separately,
and superimposed, on the S-P matrix itself. As an exercise, superimpose
the S-curves and P-curves appropriate for the matrices in Figures 3b and
5. You will discover that in the ideal case (Figure 3b) the S- and P-curves
are coincident; and in the case of poor cumulative response pattern (Fiqure
5), the curves are quite far apart and much more so than they are for the
moderately cumulative pattern exhibited here (and in Fiqure 4).

Thus, the area between the S- and P-curves--proportional to the number
of student-item responses between the curves--reflects the degree of depar-
ture from the ideal cumulative response pattern. (In general, the number
of student-item responses between the S- and P-curves is close to, but is
not functionally related to, the total number of Guttman errors, viz., twice
the number of 0's above, or 1's below, the S-curve.) To construct an index
similar to the coefficient of scalability for Guttman scales, the maximum
possible area between the S- and P-curves must be calculated for the per-
fectly heterogeneous student-problem response matrix of the same dimensions
and mean performance. Sato models the ideal heterogeneous matrix by assum-

ing simple binomial sampling for problems and students. Thus, the cumulative
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binomial distributions with parameters k and p and parameters n and p
model the S- and P-curves respectively. Denoting the areas between the
observed and binomial S~ and P-curves as A{n,k,p) and AB(n,k,E) respec-
tively, Sato's disparity coefficient is given as follows:
D = A(n,k;El (39)
AB(n,k,p)

(A more computationally tractable estimate of D is given by Sato, 1980.)

This index reaches 1 in the case of perfect heterogeneity and 0 in
the case of a perfect cumulative (homogeneous) response pattern. It there-
fore varies inversely (and I expect quite highly) with the other indices
of homogeneity discussed in this section. Moreover, Sato (1980} defines
analogous coefficients at the individual student and problem levels (called
caution indices} which serve to highlight those students and items which
depart considerably from ideal expectations. Loevinger (1947) developed
a similar index for items whereas Guttman relied exclusively on visual in-
spection of the response matrix. In the final analysis, the increasing pop-
ularity of Sato's approach is most likely due to the emphasis placed on the
raw score matrix, with handy indices (for spotting aberrant cases) of great
practical utility for the ordinary classroom teacher. For recent develop-
ments in the U.S., see Tatsuoka (1978), McArthur (1982), Harnisch and Linn
(1981), and Miller (1981}.

Rasch Measurement: A Latent Trait Mode]

Latent trait theory, or item response theory (Lord, 1980), refers to

a whole class of statistical measurement models based on the same fundamen-
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tal conception of the measurement act guiding the cumulative models sur-
veyed thus far. However, Tatent trait models make important allowances
for those "minor" points we glossed over while drawing the analogy to

the physical sciences. Specifically, these were the points relating to
the variability of both the item difficulty positions as "hash marks"

on the "ruler" and the underlying ability continuum itself, as one moves
from one "ruler" to the next. Four our purposes here, we will review
only the simplest of the latent trait models, viz., the 1l-parameter model,
developed three decades ago by Georg Rasch. A number of good presentations
and/or reviews of latent trait models generally, and the Rasch model in
particular, currently exist. Some examples are: Rasch (1980 reprint of
1960 edition); Wright and Stone (1979); Hambleton and Cook {1577; see

that entire issue of the Journal of Educational Measurement); Lord, 1980;

and Traub and Wolfe (1981).

The Rasch model (and latent trait models generally) assumes a single
invariant ability parémeter and specifies a probability function over
the entire 0-1 range that any item will be answered correctly by students
of a given ability. Specifically, Rasch first approached the problem by
imagining independent person and item parameters reflecting, respectively,

ability and difficulty (or, its reciprocal, easiness). Second, he envi-

sioned the same cumulative response pattern as the ideal outcome when per-
sons with varying abilities encounter items of varying difficulties. But
he modeled the process probabilistically, not only to avoid the determinism

of previous approaches, but to establish an invariant measurement scale --

so Jong as the model fits the empirical reality of the test data in guestion.
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The model he selected is a simple odds ratio, i.e., the odds (Bgi)

of student s with ability AS correctly ansering item i with difficulty

Di are given as

3=

egi B 5? (40)
;

Instead of odds, we can use the more convenient 0-1 scale of probability.
If Psi is the probability of student s answering item i correctly, then,

by definition, Psi = 6;1/(1+0;1). Thus equation (40) can be rewritten as

P .= (41)

It should be clear that, as hypothesized, the model predicts a lower
chance of success for a student with lower ability encountering a rel-
atively more difficult item, a higher chance of success for a student

of higher ability encountering a relatively less difficult item, and a
50-50 chance of success when the ability of the student and the difficulty
of the item are identical. These are invariant properties of the person
and the item and are presumed to be independent of each other as well as
of the other abilities of the persons being measured and the other dif-

ficulties of items doing the measuring. Again, this specific objectivity

(as Rasch calls it) is operational only to the extent that these presump-
tions fit the reality of the data.
Equation (40) becomes computationally more tractable as a simple

Tinear function by taking the logarithm of both sides, i.e.,

1og (§ .) = log (A

L1 ;) - log (D) (42)

i
Likewise, equation (41) can be so converted; but it is usually expressed

in exponential form using the natural base e and the substituted parameters
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o Sz

). In other words, e S - AS and e | = D.

o = log (AX) and 61 = 1oge (D, 5

s i
and equation (41) becomes the so-called Togistic function

Ots-ﬁ_i

P.=—e————_ (43)

0f course, the same logic is embedded in (43} as was in (41), except now
the interplay of person encountering item is reflected in the difference
between the transformed ability parameter G and difficulty parameter 85
When equation (43) is graphed for all possible values of this difference,
i.e., for g4 = a, - &; where -«< g < +=, the so-called response charac-

s
teristic curve results (see Figure 8). This represents the simplest lo-

gistic model, often called the l-parameter model, since Psi is really only
dependent upon the single discrepancy Eei Alternatively, for fixed diffi-
culties 61 or abilities o the ogive in Figure 8 represents equally well

the item characteristic or person characteristic curves respectively,

The rather elegant simplicity of the Rasch technique for scaling is
realized through this important property of the model: the student raw
scores (rs) and observed item difficulties (pi) are sufficient data from
which to derive the best estimates of o and 61 respectively. Inreffect,
the double ordering of the student-by-item raw score matrix best estimates
the ordering that would occur were we to know the actual o and 8. Thus,
persons with the same raw score r from the same set.of items will receive
the same ability estimate @

To estimate an o« and &, therefore, the n x k raw score matrix is merely

collapsed row-wise such that rows now constitute the k+l possible raw scores
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and cell entries are the proportions of persons in the rth raw score
group correctly answering the ith item. If the index r is substituted
for the index s in equation (43), it should be clear from the above prop-
erty that these cell proporticns (ﬁri) are all estimates of their corres-

ponding Pri' In general, then, there are k(k+l) equations of the form

>
4]

10 (In practice, no infor-

with only 2k+1 unknown values of the o« and 3.
mation is provided by raw scores classes r = 0 or k or by observed item
difficulties p = 0 or 1 and these rows and/or columns, should they occur,
are eliminated for purposes of analysis.)

There are several approaches to the solution of these equations and
testing the fit of the results to what the model predicts. (See references
noted previously.) The important point for our argument here, however, is
that this model again conforims to the measurement of a property as we ordin-
arily conceive of it. Moreover, when this particular model fits the data
reasonably well, the parameter estimates of a and § are reasonably indepen-
dent of the particular ability and difficulty 1évels of specific student
and item samples, thereby providing viable approaches to normally thorny
testing problems such as test equating, item banking, tailored testing, and
so forth,

Finally, it is interesting to note that for each person's ability
estimate, there exists a so-called standard error estimate. But the only

thing this estimate has in common with the standard error in traditional
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test theories is its name. The latent trait standard error is really
based upon an information function that reflects the level of precision

at the various ability calibrations. It bears no relationship whatsoever
to any notion of item/test replication, i.e., accuracy {or dependability).
Thus, the latent trait standard error is an index of precision and behaves
accordingly, i.e., it is larger for ability estimates towards the extremes
and lower for ability estimates towards the center of the item difficulty

range.

Summar

To summarize the foregoing view and review, test theoreticians and
practitioners must carefully distinguish their model of measurement from

their model of the dependability of measurements. The former refers to

the concept of precision that is applied in the construction of tests.

The latter refers to the concept of accuracy that is applied to the result
of testing under specified conditions of use. Items play a central role

in measurement models; in models for dependability, they are of incidental
importance insofar as the accuracy of estimated ability measurements is of

primary importance. Clearly, truly useful test theories necessarily re-

quire both measurement and dependability models.

Classical (and classical-like) test theories are really models for
the dependability of measurements. They are good for assessing the ac-
curacy of the results of a testing process when the process is conceived
as one (or several) of a great many (often infinite) measurement attempts.

When each of the repeated measurements is conceived as a replicate (per-
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fectly parallel) measure, we have classical test theory as originally
developed. When the measurements are conceived as a random sample from
a domain of interest (i.e., randomly parallel measures), we have the
item sampling versions of classical test theory. At the core of all of
these theories, however, is the concept of repeated measurements. When-
ever the results of behavioral assessments can be so conceived, classical
test theories, in particular generalizability theory, enjoy a wide range
of application. (See the recent review by Shavelson and Webb, 1981.)

But these test theories "dig their own grave" when they attempt to
translate repeated measurements concepts to the internal structure of
the test itself. Recasting items into the role of strictly parallel (or
randomly paraliel) measurements can't help but give rise to "test construc-
tion" procedures based on maximizing inter-item relationships. This pro-
cedure automatically eliminates items reflecting ability at the upper and
Jower ends of the "ruler." Thus, empirical evidence for internal consis-
tency {(in the reliability sense) or homogeneity/unidimensionality (in the
construct validity sense) is based upon the wrong covariance structure.

In contrast, measurement models attack the issue of test construction
directly. They assume a singular construct from the start (relying prim-
arily upon content validation) and proceed to develop items of varying
difficulties analogous to hash marks on a ruler. To the extent that the
set of items fits the cumulative response pattern expectation, we have
evidence (necessary, but not sufficient) that our measurement goal has
been achieved. Once satisfactorily constructed, it is quite appropriate

that the instrument be subject to all relevant forms of dependability and
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validity procedures under the conditions for use in actual practice.
These several ingredients comprise a complete test theory.

Moreover, it should be possible to incorporate dependability at the
item level as well. The schematic in Figure 9 portrays the data box neces-
sary to sort out -- at least in theory -- the contrasts between test pre-
cision and both item and test accuracy. Vertical slices of the data box
contain the data necessary to assess the accuracy of items at each diffi-
culty level for all ability levels. Horizontal slices contain the data
necessary to test the scalability of items representing the difficulty
levels for each replication. Cross slices could be used to assess the ac-
curacy of items at the various difficulty levels holding ability constant.
Collapsing the data box along the difficulty dimension produces the data
matrix necessary for assessing accuracy at the test level. Of course,
generalizability facets could be crossed or nested with the repeated mea-
surement trials to assess accuracy (dependability) under different condi-
tions. The complete empirical suggestion of Figure 9 may be quite intract-
able from an operational viewpoint, although, for some highly specifiable
items domains {e.g., arithmetic fundamentals) onwhich ability varies system-
atically with other measureable examinee characteristics (e.g., age}, it
may not be too far-fetched.

In conclusion, classical test theory has probably enjoyed a long life
not only because of psychological well-being through cognitive dissonance
reduction, but because tests have never really been developed without vari-
ation in item difficulties. It is time now that we construct tests with
varying item difficulties by design--not by happenstance--and use item

analysis techniques that correspond to an appropriate theory of measurement.
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Figure 9

A Model for Contrasting Accuracy
with Precision and Calibrating a Test
of a Singular Achievement Construct

Item Difficulty
Levels
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Moreover, it is fitting that this view forces upon us an issue of perhaps
even greater importance, namely, the correspondence of item structure

with the cognitive process to be assessed. (See, for example, the argu-
ments recently advanced by Glaser, 1981.) It may well be that the sim-
plistic notions of dichotomous responses (right-wrong) to multiple choice
or true-false items are unrealistic indicators of the cognitive processes
underlying the abilities we try to measure. Different measurement models
from those outlined here may offer more realistic solutions. (For example,
see the recent latent class approaches such as Wilcox's (1981) answer-

until-correct scheme.)
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Footnotes

I will use the term "traditional" to refer to classical and classical-
like test theories, a distinction that will be clearer in the sequel.

I have chosen Spearman's (1910} work, apparently inspired in 1908 by
G. Udny Yule (see Yule, 1922}, to mark the beginning date for classi-
cal test theory,

It is important to note at the outset that I do not intend to extol
any one notion of what it means to measure achievement. Rather, I
wish to explicate a popular intuitive notion of measurement and the
extent to which it is compatible with existing measurement theories.

In general, I prefer the term "dependability" to the older term "re-
1iability." As used in generalizability theory {Cronbach et al.,
1972}, dependability denotes reliability under specified conditions
of use. At times throughout this report, however, I will use the
term "reliability" to facilitate the discussion of traditional test
theory concepts.

I am using the term "difficulty" here more in a parametric sense than
as a synonym for observed p-values.

The analogy could be improved upon in this regard by imagining the
sticks to be subject to increases or decreases in length as a func-
tion of various and sundry effects (some random and some systematic)
due to all aspects of the measurement context. This is a less sadis-
tic equivalent of Lumsden's (1976) flogging wall test.

Two classical test theory frameworks are in general use. One arises
out of the definition of error as proposed originally by Spearman
(1910). The other arises out of a definition of true scores as pro-
posed originally by Brown (1910) and elaborated by Kelley (1924).
The former approach is presented here since it's simpler. All deri-
vations end up being the same so that it is a purely academic matter
which approach is "better." See Gulliksen's (1950) seminal volume
?n cl?ssica1 test theory and the good hisorical overview by Tryon
1957).

An important caveat should be stated here: Except for the latent
trait models, the illustrations I have selected do not in and of
themselves provide sufficient information for calibrating items
and estimating precision. Nevertheless, they are useful both
historically and heuristically for underscoring the point of this
discussion, viz., the contrast between dependability and measure-
ment.
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Footnotes (continued)

[ am using the phrase "criterion-referenced testing" in the more
profound sense rather than simply as a procedure for assessing a
criterion level of performance. The critericon is, rather, the
content and the attempted isomorphism between the content and the

measurement rule. To quote Glaser (1963)}: "Criterion-referenced

measures indicate the content of the behavioral repertory, and
the correspondence between what an individual does and the under-
lying continuum of achievement." {(p. 520)

Although useful for expository purposes here, this is not really
the best procedure for estimating o and 6. (See Choppin, 1983.)
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