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1. Definition of the Model

The so-called Rasch model now widely employed for item analysis,
is only one of a complete family of models described by Rasch in his
1960 text. All may be properly called "Rasch Models" since they share
a common feature which Rasch labeled "specific objectivity". This is
a property of most measurement systems which requires that the
comparison of any two objects that have been measured shall not depend
upon which measuring instrument or instruments were used. It is a
familiar feature of many everyday physical measurements (length, time,
weight, etc.). In the context of mental! testing, it means that the
comparison of two individuals who have been tested should be
independent of which items were included in the tests. Traditional
test analysis based on "true scores" does not have this property since
"scores" on one test cannot be directly compared to "scores™ on
another. (The peculiar virtues of specific objectivity and the

conditions needed to achieve it are discussed later in this report.)

Mathematical Representation

The Rasch model is a mathematical formulation linking the
probability of the outcome when a single person attempts a single item
to the characteristics of the person and the item. It is thus one of
the family of latent-trait models for the measurement of achievement,
and is arguably the least complex member of this family. In its

simplest form it can be written:



Ay
Probability [Xyj =11 = ———
Ay * Dy

where, Xyi takes the value 1 if person v responds correctly

to item i, and zero otherwise,

Ay s a parameter describing the ability of person v,
and D;j is a parameter describing the difficulty of item i.

In this formulation, A and D may vary from O to . A

transformation of these parameters is usually introduced to simplify

much of the mathematical analysis. This defines new parameters for

person ability ( ) and item difficulty ( ) to satisfy the equations:
Ay = W and Dj = W for some constant W.
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Figure 1 : JItem Characteristic Curve (?its) for the Rasch Model




A further simplification, introduced by Rasch himself and used
widely in the literature, is to fix the constant W to the natural
logarithmic base, e. In this case the model can be written:

(2) Probability [Xy = 11 = _e® , where t = (o, - &,).

1 + et 1
In this formulation, d and & can take all real values and measure
ability and difficulty respectively on the same "togit" scale.
The sign of the expression (o - § ) in any particular instance
indicates the probable outcome of the person-item interaction. If
a > & then the most probable outcome is a correct response. If
o < & then the most likely outcome is an incorrect response.
1t should also be noted that the "odds" for getting a correct
response (defined as the ratio of the probability for getting one
to the probability for not getting one) take on a particularly

simple form:

or t = logelodds)
For this reason, the Rasch model is sometimes referred to as the
"Tog-odds" model.

Alternative Units

As stated above, the model based on the exponential function
yields measures of people and ijtems on a natural scale, whose unit

is called a "logit". Rasch himself used the model in this form,



and most of Wright's publications also make use of it. Mathematically
and computationally the logit is convenient, but as an operational
unit it has two drawbacks. First, a change in achievement of one
logit represents a considerable amount of learning. Studies in
various parts of the world indicate that in a given subject area, the
typical child's achievement level would rise by rather less than half
a logit in a typical school year. In practice, many of the differenc-
es in achievement level that we need to measure are much less than
this, as is the precision yielded by our tests, so results are common-
1y expressed as -decimal fractions rather than as integers.

Secondly, logits are usually ranged around a mean of zero (this
is a matter of convention rather than necessity) so that half of all
the values obtained for parameters are typically negative. 1In
general, teachers dislike dealing with negative numbers, and the
prospect of having to explain to an anxious parent what Jimmy's change
in math achievement from -1.83 logits to -1.15 logits actually means
is too much for most of them.

The solution for practical applications of the Rasch scaling
technique is to use a smaller and more convenient unit. This is
accomplished by setting W to some value other than e. A number of
alternatives have been suggested, but the unit in the widest use after

0'2. This unit is known as the

the Togit is obtained by setting W = 3
"wit" in the United Kingdom and United States, and as the "bryte" in
Australia. Wits are typically centered around 50 with a range from

about 30 to 70. One Togit is equal to 4.556 wits. For many purposes



it is sufficient to report wits as integers. The particular value for W
is chosen so as to provide a set of easily memorized probability values,
as can be seen in the Table 1.

Table 1

The Relationship of Logits and Wits to the
Probability of Correct Response

{ & - §) Measured (o - 6) Measured Probability of a
in Logits in Wits Correct Response
-2.198 -10 0.10
-1.099 -5 0.25
0 0 0.50
+1.099 +5 0.75
+2.198 +10 0.90

It must be emphasized that the choice of a unit for reporting is an
arbitrary matter. Most of the theoretical work on the model, and all
the computer programs for parameter estimation in common use, work in
logits--translating to wits or some other scale for reporting only if
desired.

Analytic Possiblities

Parameter estimation is a difficuit issue in latent-trait
theories. That for the Rasch model a variety of different estimation
algorithms {at least six) have become available in the Tast fifteen

years results from the mathematical simplicity of the Rasch formulation.



The basic equation models only the outcome of one particular
item-person interaction, but since it does so in terms of a probabil-
ity function, it is necessary to accumulate data from several such
interactions in order to estimate parameters or test the fit of the
model itself.

For example, the accumulation of responses of one individual to a
set of items may be used to estimate the ability parameter for the
individual, and the pattern of responses by several individuals to two
items may be used to estimate the relative difficulty of the two
items. From a {persons-by-items) response matrix it is possible to
estimate both sets of parameters {abilities and difficulties), and
also to check on whether the model is an acceptable generating func-
tion for the data. This calibration of items, and the test of

goodness-of-fit to the model, correspond to item analysis procedures

in classical test theory (but see section 5(a)later in this report).
Once items have been calibrated, equations can be developed to
predict the characteristics of tests composed of different samples of
previously calibrated items, or the performance of previously measured
people on new items. Although the simplest approach to statistical
analysis requires a complete rectangular persons-by-items response
matrix, other procedures are available to handle alternative data
structures. For example, when a group of individuals take different
but overlapping tests, the persons-by-items matrix will necessarily be
incomplete, but it is still possible to calibrate the items and

measure the people. An extreme example, in which a computer-managed



adaptive test is individually tailored to each testee (such that the
next item given depends on the responses to previous items), may lead
to a situation in which every person tested may respond to a unique
set of items. 1If the items have been calibrated in advance, it is
possible to estimate the individual's ability parameter at each step
of the sequence, and to discontinue testing when the ability has been
measured with the desired degree of precision.

Estimation Techniques

Although this paper is not the place for a detailed presentation
of the algebraic manipulation involved in the various algorithms for
parameter estimation, an outline of the different approaches may be
helpful.

Conventionally the starting point is taken to be a rectangular
matrix of persons by items in which the elements are one if a particu-
lar person responded correctly to the appropriate item, zero if he
responded incorrectly, and blank if the person was not presented with
the item. Initially we shall restrict the discussion to complete
matrices of ones and zeros such as occur when a group of N people all
attempt a test of k items. In most applications N is usually much
larger than k . Two summarizations of data contained in the N x k
matrix leads to effective strategies for parameter estimation (see
Figure 2).

One, known as the "score-group method," clusters together all
those persons who had a particular raw score, and then counts within

each cluster the number of correct responses to each item. This



P

item

. 0.
the nurber of people
who responded
b.. correctly to item i
ij .
and incorrectly to
item j.

items
123 ... K
1
2
3
. < X=1 {(correct)
- v X=0(incorrect)
Persons
N.
o .
123... >t T 1
8040 . - - .40 1170
oy 2 1.
£l 34~
the number of people o b
in score-group j who &3 .
ij responded correctly o .
to item 1. =
Q
w
s item
o
o
o
ul
34
)
[a N
. .
o -
} ¥
oy -
E
| =]
i= # correct responses to item 1.
2a : Score~group Summarization 2b :

Figure 2 : Data reduct

Pair-wise Item Summarization

ion strategies for Rasch parameter estimation.




produces a score-group by item matrix as in Figure 2A. The other
method considers the items two at a time, and counts for each pair the
number of persons who responded correctly to the first but incorrectly
to the second. This is known as the "pair-wise" approach and produces
an item by item matrix as in Figure 2B. (A parallel analysis compar-
ing the people two at a time can be developed theoretically, but has
found Tittle practical application.} Both the score-group and the
pair-wise approaches are described by Rasch in his 1960 book, but
without the development of a maximum likelihood technique he was
unable to exploit them.

The score-group method produces a (k + 1) by k matrix, but since
raw scores of zero and k do not contribute to the estimation
procedure, the summary yields k{k - 1) elements for use in the estima-
tion algorithm. The pair-wise approach results in a k by k matrix in
which the leading diagonal elements are always zero, so again there
are k{k - 1) elements in the summary on which the estimation algorithm
operates.

Analysis of the score-group matrix to separate information on
and and thus obtain fully conditioned estimates for both the item
difficulty parameters and the abilities associated with membership of
score-group 1 through k - 1 is computationally demanding and expen-
sive. The best available procedure has been programmed by Gustafsson
(1977), but, though mathematically elegant and statistically sound, it

is far too expensive for routine use. However, Wright has shown that
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estimates developed from the margins of the score-group matrix can be
developed very easily using a maximum likelihood approach. Though the
simultaneous estimation of both o and § sets of parameters
introduces a bias, a simple expansion factor applied to the results
can largely correct for this {Wright & Douglas, 1977; Habermann,
1977), and this method is widely used in practice. When the data are
summarized in a score-group fashion, they are convenient for checking
the assumption of equal discriminating power between items, and the
tests of fit developed by Wright and Mead (1976) concentrate on this.
By contrast, the pair-wise approach separates information about
the §'s from information about the o's at the beginning. The matrix
of counts summarized in Figure 2B has conditioned out all information
about variations in &, so that a fully conditional estimate of the
§'s (either by maximum 1ikelihood or least squares) can be
obtained. The ability estimates for each individual are developed

from solving iteratively the equation:

We 8y

r - I _
= wOL-&S - 0

k
i=1

1T +

where r is the raw score of the person, and the summation extends only

over those items that were attempted.
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The test of fit applied to the pair-wise summary matrix is not
very sensitive to violations of the equal discrimination power assump-
tion (see section 3), but instead focuses on the issue of local
independence between items (Choppin & Wright, in progress). In
practice, therefore, the two approaches may be regarded as
complementary.

Though slower than the Wright estimation algorithm based on
score-group marginals, the pair-wise approach has the considerable
advantage of being able to handle incomplete data matrices--corres-
ponding to all those applications in which not every person attempts
every item. It is thus of particular interest in such fields as

adaptive testing and item banking (Choppin, 1978, 1982).

2. The Measurement Philosophy and Primary Focus of Interest

Although it turns out that the mathematical details have much in
common with those of "item response theory", Rasch derived his models
from a very different standpoint. In the first paragraph of the
preface to the book which launched his ideas on measurement (Rasch,
1960) he quotes approvingly an attack by B.F. Skinner on the applica-

tion of conventional statistical procedures to psychological research.

The order to be found in human and animal behavior
should be extracted from investigations into
individuals ... psychometric methods are inadequate for
such purposes since they deal with groups of
individuals. (Skinner, 1956, p. 221)
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Group-centered statistics, which form the backbone of convention-
al psychometric practice (factor analysis, analysis of variance,
etc.), require the clustering of individuals into discrete categories
or populations, and further make assumptions about the nature of
variation within these categories which Rasch viewed with grave
distaste. The alternative was to develop methods which would work
with individuals.

Individual-centered statistical techniques require
models in which each individual is characterized
separately and from which, given adequate data, the
individual parameters can be estimated. It is further
essential that comparisons between individuals become
independent of which particular instruments - tests, or
items or other stimuli - within the class considered
have been used. Symmetrically, it ought to be possible
to compare stimuli belonging to the same class -
measuring the same thing - independent of which
particular individuals within the class considered were
instrumental for the comparison. ({Rasch, 1960, p. vii}

In this excursion into what he later calls “specific
objectivity", Rasch is echoing a theme developed explicitly by
L.L. Thurstone three decades earlier:

A measuring instrument must not be seriously affected
in its measuring function by the object of

measurement. To the extent that its measurement
function is so affected, the validity of the instrument
is impaired or limited. If a yardstick measured
differently because of the fact that it was a rug, a
picture, or a piece of paper that was being measured,
then to that extent the trustworthiness of that
yardstick as a measuring device would be impaired.
Within the range of objects for which the measuring
instrument is intended its function must be independent
of the object of measurement. (Thurstone, 1928,
p.547).
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Reliance on this form of analogy to the physical sciences is
guite characteristic of latent trait measurement theorists. Wright
{1968, 1977) also uses the yardstick as a convenient metaphor for a
test item. Others (Eysenck, 1979; Choppin, 1979, 1982) have pointed
out the similarities between the measurement of mental traits and the
measurement of temperature. The underlying premise is that although
psychological measurement may be rather more difficult to accomplish
than is measurement in the fields of physics and chemistry, the same
general principles should apply. Features which are characteristic of
good measurement techniques in physics should also be found in the
fields of psychology and education.

Rasch himself draws out the similarity between the development of

his model, and Maxwell's analysis of Newton's laws of motion in terms

of the concepts force and mass (Maxwell, 1876)}. The second law links

force, mass and acceleration in a situation where although accelera-
tion and its measurement have been fully discussed, the concepts mass
and force are not yet defined. Rasch (1960, pp. 110-114) considers
the necessity of defining the two concepts in terms of each other, and
shows how appropriate manipulation of the mathematical model {the
"law") and the collection of suitable data can lead to the (comparati-
ve) measurement of masses, and the {comparative) measurement of
forces. He points out the close analogy to his item-response model
which links ability, difficulty and probability. Ability and
difficulty require related definitions since people need tasks on
which to demonstrate their ability, and tasks only exhibit their

difficulty when attempted by people. Since his model is
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"specifically objective", data can be collected so that the two sets
of parameters are capable of separate estimation (as with force and
mass) .

This approach to measurement is the primary focus of interest for
the Rasch model. Individuals are to be measured through the estima-
tion of parameters characterizing their performance. These parameters
shall be interpretable by comparison with the parameters estimated for
other individuals (as in norm-referencing) and/or in conjunction with
the parameter estimates for test stimuli (as in criterion-
referencing}.

3. Assumptions made by the Rasch Model

The basic assumption is a simple yet powerful one that derives
from the requirement of specific objectivity, so central to Rasch's
thinking about measurement. It is that the set of people to be
measured, and the set of tasks (items) used to measure them, can each
be uniquely ordered in terms respectively of their ability and
difficulty. (Ability and difficulty as already described.) This
ordering permits a parameterization of people and tasks that fits the
simple model defined in section 1 above.

The basic assumption has a number of important implications. One
such assumption is that of local independence. The probability of a
particular individual responding correctly to a particular item must

not depend upon the responses that have been made to the previous
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items. If it did, then altering the sequence of items that made up a
particular test would alter the ordering of people on the underlying
trait {in violation of the basic assumption). Similarly, local
independence requires that the response of an individual to a particu-
lar item is not affected by the responses given by other people to the
same item. If it were, then it would be possible, by selective
clustering of people, to change the ordering of items in terms of
their difficulty (in violation of the basic assumption).

Another implication that follows from the basic assumption of the
model is sometimes stated (rather confusingly) as "equality of
discrimination". It must be emphasized that this does not mean that
all items are assumed to have equal point-biserial correlation indices
with total test score, or with some external criterion. Rather, it
means that the signal/noise ratio represented by the maximum slope of
the characteristic curve of each item is assumed to be the same for
a2ll items. If the slopes were not the same, then at some point the
characteristic curves for two items would cross. This would mean that
the ordering of the items in terms of difficulty for persons of lower
ability would not be the same as the ordering for persons of higher

ability (see Figure 3). This again violates the basic assumption.
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Uni-dimensionality is also a consequence of the basic
assumption. If the performance of people on a set of items depended
on their individual standing on two or more latent traits, such that
the ordering of people on these latent traits was not identical, then
it would be impossible to represent the interaction of person and
task with a single person parameter for ability.

A further assumption and one which s mathematically very
convenient, albeit somewhat unrealistic {(at least on multiple-choice
jtems), is that there is no random guessing behavior. The model
requires that for any test item, the probability of a successful
response tends asymptotically to zero as the ability of the person
attempting it is reduced (see Figure 1).

Similarly, there is a built in assumption, which has been much
less carefully explored, that as the ability of the person being
considered increases, the probability of a successful response to any

given item approaches one.
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4, Strengths and Weaknesses and Gaps in the Development

The strong features of the Rasch model when compared with other

measurement models are:

(a) The combination of specific objectivity, a
property taken for granted in the field of
physical measurement, and the model's mathematical
simplicity.

(b} Deriving from this, the separability property
which permits the estimation of person-parameters
and item-parameters separately.

(c) The existence of several algorithms for parameter
estimation some of which are extremely fast and
which work well with small amounts of data.

(d) The inbuilt flexibility of the system. As with
other latent trait models which are defined at the
item level, there is no requirement that tests be
of a fixed length or contain the same items.

(e) The close parallels that exist between the Rasch
model and the conventional practice of calculating
raw scores based on an equal weighting of items.
Rasch models are the only latent-trait models for

which the raw score, as conventionally defined, is
a sufficient statistic for ability (and

correspondingly the raw difficulty or p-value of
an item is a sufficient statistic for Rasch
difficulty).

Against this it must be admitted that there are areas of
considerable weakness., The most serious focuses on the assumptions
made by the model. These are, in general, too strong to carry full
credibility. In practice some real data appear to fit the model
rather poorly. The assumptions of local independence and of no
guessing (which are crucial to the model} are not strictly met in
practice. Although the psychometrician may be able to reduce the

guessing problem through the avoidance of objective items, and may be

able to structure the test and the conditions under which it is
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administered to improve local independence, in real life situations
these problems are rarely completely eliminated. The model also
demands {as do most others) uni-dimensionality {or, as Rasch calls it,
conformability), and while the items that comprise many existing tests
fail to meet this criterion, the problem is less critical. If one has
control over the test construction phase of a measurement program,
then it is possible to build sets of items which satisfy the
uni-dimensionality assumption moderately well.

One feature of the model which has been described as a weakness
(Goldstein, 1979; Divgi, 1981) is that it implies a unique ordering of
items, in terms of their difficulty, for all individuals. This
appears not to be sufficiently sensitive to the effects of instruc-
tjonal and curriculum variation, and stands, therefore, as an import-
ant criticism {(but see Bryce, 1981).

The seriousness with which such objections need to be considered
depends upon the nature of the measurement task being addressed. Most
educational instruction programs aim at increasing the learning of the
student and thus at increasing his ability to solve relevant test
items. We would usually expect the ability to solve all relevant test
jtems to increase--but the relative difficulty of the items could (and
normally would) remain unchanged. While this is the dominant goal of
instruction, the model can handle the situation appropriately, and the
occasional changes in relative difficulty brought about by alternative
curricuta {see, for example, Engel, 1976 or Choppin, 1978) can shed
considerable 1ight on the real effects of the instructional program.

If, however, a section of curriculum is aimed specifically at breaking
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down some piece of learning and replacing it with another (i.e. making
some items more difficult to solve, and other easier) such as may
occur during revolutionary changes in society, then we may well feel
that the simple model proposed is inadequate to describe the
situation. In this case the items measuring the "old" Tearning and
the "new" do not seem to belong on the same scale. Such circumstanc-
es, however, are not routine in the United States.

Similarly, we find in general that the ordering of item difficul-
ties is the same with respect to all students. Where one student
differs significantly in finding some item much harder or easier than
predicted by the model, then we have valuable diagnostic information
about that individual (Mead, 1975)}. In practice we rarely find
evidence for such differences, and where they do occur the interpreta-
tion is usually clear and direct {for example, the student missed
instruction on a particular topic). If we were attempting to measure
in an area where there was no common ordering of item difficulties for
most students, then the model would appear quite inappropriate. Such
situations may be simulated by creating test items whose solution
depends upon luck or chance, but this is far removed from purposive
educational testing.

Experience over the last two decades suggests that the
simplification made by the model in requiring a unique ordering of
items is met adequately in practice. Deviations, where they do occur,
are indicators of the need for further investigation (Dobby &
Duckworth, 1979; Choppin, 1977). There seems little reason, there-

fore, to regard this as a weakness of the Rasch approach.
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5. Areas of Application

The basic form of the model proposed by Rasch, and described in
section 1, dealt with the simplified situation where only two possible
outcomes of a person attempting a test item were considered {i.e the
response is scored "right" or "wrong"). For this reason, perhaps,
most of the applications so far developed have been confined to the
use of "objective" test items for the measurement of achievement since
these are most naturally scored in this fashion.

(a) Item Analysis

The most frequent application of the model has been for item
analysis. Users have wanted to confirm that the model fits data they
have already accumulated for existing tests; they seek clues as to why
particular tests are not functioning as well as they should; or in the
construction of new tests they seek guidance as to which items to
include and which to omit.

It is probably true to say, however, that the Rasch model has not
proved particularly valuable in any of these three roles. It can
detect lack of homogenity among items, but is probably less sensitive
to this than is factor analysis. It can identify items that do not
discriminate or for which perhaps the wrong score key has been
selected, but it seems no more effective at this than is the more
traditional form of item analysis. The exception to this generaliza-
tion probably comes when tests are being tailored for a very specific
purpose. Wright and Stone explore this in "Best Test Design" (1979).
Careful adherence to all the steps they outline would probably yield a

test with better characteristics for the specific and intended purpose
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than would a test produced on the basis of only traditional forms of
item analysis and the crude criteria they employ.

(b) Scaling and Equating

A serious problem of traditional testing is that the "score"
produced can only be interpreted in terms of the particular test
used. The development of norms for standardized tests is an attempt
to overcome this problem but this too has serious limitations. Latent
trait scaling has been used to tackle this question directly. With
the Rasch model, the raw scores on one test are mapped onto their
latent trait scale, and different tests can of course have their
scores mapped onto the same scale (provided always that the dimension
of ability being measured is the same). The method has been used to
compare "quasi-parallel" tests (e.g., Woodcock, 1973; Willmott &
Fowles, 1974); to link the tests given at different stages of a
longitudinal study (Engel, 1976; Choppin, 1978); and to check on the
standardization characteristics of batteries of published tests (Rentz
& Bashaw, 1976, 1977).

It should perhaps be noted that although equating using the Rasch
model appears more flexible than traditional procedures in that only
the difficulty level of the two tests is being compared and other
characteristics such as test length, the distribution of item
difficulties, etc. maybe quite different, there is an implicit assump-
tion that the "discrimination power" (in the sense discussed above) of
the items in the two tests are comparable. As a rule this implies
that the item types are similar. Attempts to use the Rasch model to
equate multiple choice and essay type tests on the same topic have led

to inconsistent and bizarre results (Willmott, 1979; Vincent, 1980).
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(¢c) 1ltem Banking

Ttem banks take the equating of test scores to its logical limit
by calibrating all possible performances on all possible tests
composed of items drawn from a fixed set (the bank}.

When a family of test items is constructed so that they
can be calibrated along a single common dimension and
when they are employed so that they retain these
calibrations over a useful realm of application, then a
scientific tool of great simplicity and far reaching
potential becomes available. The "bank" of calibrated
jtems can serve the composition of a wide variety of
measuring tests. The tests can be short or long, easy
or hard, wide in scope or sharp in focus. (Wright,
1980).

An item bank requires calibration, and although in theory there
are alternative approaches, in practice the Rasch model has proved by
far the most cost effective and is the most widely used (Choppin,
1979).

(d) Quality of Measurement.

An important development that is facilitated by latent trait
scaling is the calculation of an index to indicate the quality of
measurement for each set of test data, and if necessary for each
person attempting a test or for each item. The Rasch model, for
example, yields an explicit probability for each possible outcome of
every interaction of a person and an item. Where, overall, the
probabilities of the observed outcomes are too low we may deduce that
for some reason the Rasch model does not offer an adequate description
of a particular set of data. If the probabilities are generally in
the acceptable range, but are low for a particular item, then we may
conclude that this is an unsatisfactory item. Perhaps it does not

discriminate, or is addressing some different dimension of
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achievement. If the probabilities are generally acceptable but are
Tow for a specific person, then we may conclude that this person was
not adequately measured by the test (perhaps he guessed at random, was
insufficiently motivated, or misunderstood the use of the answer
sheet). The reporting for this person of a low measurement quality
index would imply that the person's score should be disregarded and
that a retest is appropriate.

A recent extension of this approach involves trying to identify
within the vector of item responses from a particutar individual those
portions which provide reliable measurement information, on which
items {or groups of items) the subject appears to have guessed at
random, and how the total vector of responses may be selectively
edited in order to provide a more reliable estimate of the subject's

level of achievement.

6. Extensions to the Basic Model

Two types of adaptation and extension will be considered here.
The first centers around the notion of sequential testing in which
evidence of the level of ability of the subject is accumulated in
Bayesian fashion during the test session and may be used to determine
which items are to be attempted at the next point of the sequence
and/or when to terminate the testing session. This approach relies
upon the existence of difficulty calibrations for a pool or bank of

test jtems. Most of the reseach that has been done so far has
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employed computers to manage the testing session: to select items for
the subject to answer, to keep track of measurement quality, to
generate up-to-date estimates of the ability of the subject (together
with the appropriate standard errors) and to decide when the session
should be terminated. Wright and Stone (1979) point out that individ-
ual people can do most of this for themselves if provided with
suitable guidelines and computational aids, and in many circumstances
making the learner responsible for evaluating his own learning is a
useful thing to do.

The second area of development from the basic Rasch model is in
the extension from simple dichotomous scoring of items (right-wrong)
to a more complex system. Two separate situations need to be
considered. The first is when an item is not answered completely but
enough is done to earn some partial credit. Data would then consist
of scores in the range 0 to 1 for each item. The other case is that
which typically occurs with rating scales or attitude measures when
the respondent is asked to choose one from among a finite number of
discrete categories, and each category contains information about the
standing of the respondent on some latent trait. ODouglas (1982) has
considered the theoretical implications of generalizing the basic
Rasch model %o include both these cases, and it turns out that almost
everything that can be done for dichotomous items can also be done for
these more complex methods of scoring. For the rating scale problem
both Andrich (1977) and Wright and Masters (1982) have found it

convenient to concentrate on establishing the location of thresholds
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(the point at which the probability for responding in one category
passes the probability of responding in the next one - Figure 4}.
Wright and Masters have produced some interesting theorems about the
importance of these thresholds being properly ordered, and about the
spacing of thresholds that maximizes the information gained. There

have been few practical applications of this approach to date.

Figure 4

—
-

latent trait

Figure 4 : The Probability of Responding in various categeries.

For the analysis of "partial credit" data two computer programs
(CREDIT by Masters and POLYPAIR by Choppin} have been devised and
applied to real data sets. The latter program, for example, was used
in the assessment of writing skills which forms part of the British

National Assessment Program,



- 26 -

7. Points of Controversy

In some ways the Rasch model represents a revolutionary approach
to educational measurement that discards many time-honored constructs
in testing theory (e.g., true score, measurement error, and
reliability). On the other hand, it can be viewed as providing a
comprehensive and sound mathematical underpinning for the conventional
practice of using raw scores, and shows that in most testing applica-
tions raw scores are all that are required. From this point of view
the Rasch model may be seen as less radical than other Tatent trait
models. Perhaps because the former view of the model was the first to
catch the imagination in the United States and has dominated efforts
to poputarize it, it has been a subject of continuing controversy.

The most strident arguments are not concerned with how best to use the
Rasch model, but whether or not its use is ever appropriate.

To some extent the Rasch model has been central in the general
attack on latent trait theory as applied to the measurement of student
achievement. Goldstein (1979) who has led this attack on the other
side of the Atlantic, stresses the fundamental difference between what
he regards as well-ordered traits such as aptitude and intelligence on
the one hand, and the complex pattern of behaviors that we call educa-
tional achievement on the other. In his view it makes no sense to
apply any unidimensional model to the assessment of achievement.

Less extreme in their implications are the arguments within the

latent trait camp about whether the Rasch (i.e., one-parameter) model
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is adequate for achievement testing, or whether a more complex
(usually three-parameter)} model is indicated.
It is important to differentiate two kinds of usage. One is in

test construction where in general the users of Rasch models appear to

be on firm ground in claiming that a strategy to develop and select
items that conform to the Rasch model will produce better test instru-
ments than would other more conventional strategies. The other type
of usage is concerned with the analysis of existing test data (for
example, the massive data sets of NAEP or the accumulated files of SAT
material at ETS) where items are likely to be so varjed {and in many
cases so0 poor) that it is comparatively easy to show that the Rasch
model is not appropriate. Devotees of the Rasch model react to this
by dropping the non-fitting items (which may well be the majority) and
working with those that are left--but this cavalier approach does not
commend itself to many researchers. If one is interested in analyzing
and scaling data sets which include some possibly very bad items, then
something Tike the three-parameter model is going to be needed.

This difference of emphasis among the areas of application has
its origins in contrasting views of measurement philosophy. As
Hambleton (1983) makes clear, the Rasch model can be regarded as a
special case of the three-parameter model when the discrimination
parameters are held equal, and the "guessing" parameter is fixed at
zero. Mathematically, this view is undoubtedly correct--but
philosophically, it is very misleading. Rasch developed his model, in

ignorance of Lord's seminal work on item characteristic curves, on the



- 28 -

basis of a set of features which were necessary for an objective
measurement system. For measurements with the required properties he
found that his model, or a simple mathematical transformation of it,
was the mathematically unique solution. The three-parameter model
that forms the basis of Lord's Item Response Thoery is not, and cannot
be, "specifically objective". Those whose main interest is in
understanding existing data sets, and therefore in careful modeling of
observed ICCs, see Tittle benefit or relevance in speific object-
ivity. Those who wish to construct instruments to measure individuals
optimally tend to prefer the approach which offers the stronger and
more useful system. ICCs which reflect the behavior of inefficient or
ineffective items have little interest for them. As has been suggest-
ed earlier in this paper, the Rasch model supports a range of applica-
tions which goes well beyond what a latent trait model that is not
specifically objective can manage.

In the view of this writer, much of the energy which has fueled
professional arguments over which is the better model (and the many
research studies whose main goal was to compare the effectiveness of
the two models in exploring a particular set of data) stem from a
failure to appreciate that the two models are basically very
different, and were developed to answer different guestions. MHNeither
is ever "true". Both are merely models, and it seems clear that in
some applications one is of more use than the other and vice versa.

Among users of the Rasch model there is 1ittle that is currently
controversial, due in no small part to the dominance of two computer

programs now in use around the world (BICAL developed by Wright and
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his associates in Chicago, and PAIR developed by Choppin in London)}.
One current issue that requires clarification concerns the status of
"tests of fit". It is generally conceded by Rasch users that whereas
better tests of fit are available for the Rasch model than for most
other psychometric models, they still leave a 1ot to be desired. 1In
most cases, showing that an item does not fit the model merely
requires collecting a sufficiently large body of data. The area of
disagreement 1ies between those who prefer to treat fit/misfit as a
dichotomous categorization and draw up decision rules for dealing with
test data on this basis, and those who prefer to regard degree of mis-
fit as a continuous variable which needs to be considered in the con-
text of the whole situation. The present writer belongs in the latter
camp, but is prepared to admit that many of the "rules of thumb" that

have been developed lack much theoretical or empirical basis.
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