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1. Definition and Background

In a few words, item response theory postulates that (a) examinee
test performance can be predicted (or explained} by a set of factors
called traits, latent traits, or abilities, and (b} the relationship
between examinee item performance and the set of traits assumed to be
influencing item performance can be described by a monotonically

increasing function called an item characteristic function. This

function specifies that examinees with higher scores on the traits
have higher expected probabilities for answering the item correctly
than examinees with lower scores on the traits. In practice, it is
common for users of item response theory to assume that there is one
dominant factor or ability which explains performance. In the
one-trait or one-dimensional model, the item characteristic function

is called an item characteristic curve (ICC) and it provides the

probability of examinees answering an item correctly for examinees at
different points on the ability scale. In addition, it is common to
assume that item characteristic curves are described by one-, two-, or
three-parameters. The interpretation of these parameters will be
described in section 3. In any successful application of jtemresponse
theory, parameter estimates are obtained to describe the test items,
ability estimates are obtained to describe the performance of the
examinees, and there is evidence that the chosen item response model,

at least to an adequate degree, fits the test data set (Hambleton,



Murray, & Simon, 1982).

Item response theory (or latent trait theory, or item
characteristic curve theory as it is sometimes called) has become a
very popular topic for research in the measurement field. There have
been numerous published research studies, conference presentations,
and diverse applications of the theory in the last several years (see
for example, Hambleton et al., 1978; Lord, 1980; Weiss, 1980}.
Interest in item response models stems from two desirable features
which are obtained when an item response model fits a test data set:
Descriptors of test items {item statistics) are not dependent upon the
choice of examinees from the population of examinees for whom the test
jtems are intended, and the expected examinee ability scores do not
depend upon the particular choice of items from the total pool of test
items to which the item response model has been applied. Invariant
item and examinee ability parameters, as they are called, are of
immense value to measurement specialists.

Today, item response theory is being used by many of the large
test publishers, state departments of education, and industrial and
professional organizations, to construct both norm-referenced and
criterion-referenced tests, to investigate item bias, to equate tests,
and to report test score information. In fact, the various
applications have been so successful that discussions of item response
theory have shifted from a consideration of their advantages and
disadvantages in relation to classical test models to consideration of

such matters as model selection, parameter estimation, and the



determination of modei-data fit. Nevertheless, it would be misleading
to convey the impression that issues and technology associated with
item response theory are fully developed and without controversy.
Still, considerable progress has been made since the seminal papers by
Frederic Lord (1952, 1953). It would seem that item response model
technology is more than adequate at this time to serve a variety of
uses {see, for example, Lord 1980) and there are several computer
programs available to carry out item response model analyses (see
Hambleton & Cook, 1977}.

The purposes of this paper are to address (1) the measurement
philosophy underlying item response theory, (2) the assumptions
underlying one of the more popular of the item response models, the
three-parameter logistic model, (3) the strengths and weaknesses of
the three-parameter model, and present gaps in our knowledge of the
model, (&) several promising three-parameter model applications, (5)
extensions and new applications of the model, and {6) several
controversies.

2. Measurement Philosophy

There are many well-documented shortcomings of standard testing
and measurement techno]ogy.1 For one, the values of such useful item

statistics as item difficulty and item discrimination depend on the

1 "standard testing and measurement technology" refers to commonly
used methods and techniques for test design and analysis.



particular examinee samples in which they are obtained. The average
level of ability and the range of ability scores in an examinee group
influences the values of the item statistics, often substantially.
This means that the item statistics are only useful when constructing
tests for examinee populations which are very similar to the sample of
examinees in which the item statistics were obtained. Another
shortcoming of standard testing technology is that comparisons of
examinees on an ability measured by a set of test items comprising a
test are limited to situations where examinees are administered the
same {or parallel) test items. But, a problem is that many
achievement and aptitude tests are (typically) suitable for
middle-ability students and so the tests do not provide very precise
estimates of ability for either high- or low-ability examinees.
Increased test score validity without any increase in test length can
be obtained if the test difficulty is matched to the approximate
ability level of each examinee. But, when several forms of a test
which vary substantially in difficulty are used, the task then of
comparing examinees becomes more complex because test scores, only,
cannot be used. For example, two examinees who perform at a 50% level
on two tests which differ substantially in difficulty cannot be
considered equivalent in ability, but how different are they in
ability? And, how can the ability levels of two examinees be compared
when they receive different scores on tests which vary in their
difficulty?

Another shortcoming of standard testing technology is that it

provides no basis for determining what a particular examinee might do



when confronted with a test item. Such information is necessary, for
example, if a test designer desires to predict test score
characteristics in one or more populations of examinees or to design
tests with particular characteristics for certain populations of
examinees. In addition to the three shortcomings of standard testing
technology mentioned above, standard testing technology has failed to
provide satisfactory solutions to many testing problems: For example,
the design of tests, identification of biased items, and the equating
of test scores. For these and other reasons, psychometricians have
been investigating and developing more appropriate theories of mental
measurements.

Item response theory purports to overcome the shortcomings of
classical or standard measurement theory by providing an ability
scale on which examinee abilities are independent of the particular
choice of test items from the pool of test items over which the
ability scale is defined. Ability estimates obtained from different
item samples for an examinee will be the same except for measurement
errors. This feature is obtained by incorporating information about
the items (i.e., their statistics) into the ability estimation
process. Also, item parameters are defined on the same ability
scale. They are, in theory, independent of the particular choice of
examinee samples drawn from the examinee pool for whom the item pool
is intended although errors in item parameter estimation will be group
dependent. More will be said about this point later. Again, item
parameter invariance across samples of examinees differing in ability
is achieved by incorporating information about examinee ability levels

into the item parameter estimation process. Finally, by deriving



standard errors associated with the ability estimates, another of the
criticisms of the classical test model can be overcome.

In summary, the goal of item response theory is to provide both
invariant item statistics and ability estimates. These features will
be obtained when there is a reasonable fit between the chosen model
and the data set. Through the estimation process, items and persons
are placed on an ability scale in such a way that there is as Close a
relationship as possible between the expected examinee probabilities
for success on test items obtained from the estimated item and ability
parameters and the actual probabilities of performance for examinees
positioned at each ability level. Item parameter estimates and
examinee ability estimates are revised continually until the maximum
agreement possible is obtained between predictions based on the
ability and item parameter estimates and the actual test data.

The feature of item parameter invariance can be observed in
Figure 1. 1In the upper part of the figure are three item
characteristic curves (ICCs); in the lower part are two distributions
of ability. When the chosen model fits the data set the same ICCs are
obtained regardless of the distribution of ability in the sample of
examinees used to estimate the item parameters. MNotice that an ICC
provides the probability of examinees at a given ability level
answering each item correctly but the probability value does not
depend on the number of examinees located at the ability level. The
number of examinees at each ability level is different in the two
distributions. But, the probability value is the same for examinees
in each ability distribution or even in the combined distribution. O0Of

course suitable item parameter estimation will require a heterogenecus



distribution of examinees on the ability measured by the test. It is
possible that to some researchers the property of item invariance may
seem surprising and unlikely to be obtained in practice, but it is a
property which is obtained whenever we study, for example, the linear
relationship (as reflected in a regression line) between two
variables, X and Y. The hypothesis is made that a straight line can
be used to connect the average Y scores conditional on the X scores.
When the hypothesis of a linear relationship is satisfied, the same
linear regression line is expected regardless of the distribution of X
scores in the sample drawn. Of course proper estimation of the line
does require that a suitably heterogeneous group of examinees be
chosen. The same situation arises in estimating the parameters for
the item characteristic curves which are also regression lines
(albeit, non-Tinear).

3.  Assumptions

When fitting an item response model to a test data set,
assumptions concerning three aspects of the data set are commonly made
{Lord, 1980; Wright & Stone, 1979). These three assumptions will be
introduced next.

Dimensionality. It is commonly assumed that only one ability is

being measured by a set of items in a test. Of course, this
assumption cannot be strictly met because there are always many
cognitive, personality, and test-taking factors which impact on test
performance, at least to some extent. These factors might include
Tevel of motivation, test anxiety, ability to work quickly, knowledge
of the correct use of answer sheets, and other cognitive skills in

addition to the dominant one measured by the set of test items. What
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is required for this assumption to be met adequately by a set of test
data is a "dominant" component or factor which influences test
performance. This dominant component or factor is referred to as the
ability measured by the test. This is the ability on which examinees
are being measured. AlT1 other contributing factors to test
performance are defined as errors.

Item response models in which a single ability is presumed
sufficient to explain or account for examinee performance are referred

to as unidimensional models. Those models in which it is assumed that

more than a single ability is necessary to account for examinee test

performance are referred to as multi-dimensional models. These latter

models are complex, and to date, not well-developed.

Principle of local independence. There is an equivalent

assumption to the assumption of unidimensionality known as the
assumption of the principle of local independencel (Lord & Novick,
1968; Lord, 1980}. In words, the assumption requires that the
probability of an examinee answering an item correctly (obtained from
a one-dimensional model} is not influenced by his/her performance on
other items in a test. When an examinee learns information from one
test item which helps him or her on other test items the assumption is
violated. What the assumption means then is that only the examinee's
ability and the characteristics of the test item related to the
dominant trait measured by the test influence performance.

Suppose we Tet uj be the response of a randomly chosen examinee

on items j (j=1, 2, ..., n), and uj=1, if the examinee answers the

L Actually the equivalence only holds when the principle of local
independence is defined in the one-dimensional case.
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item correctly, and Uj=0, if the examinee answers the item

incorrectly. Suppose also we let the symbols, Pj, and Qj (Qj=1—Pj)
denote the probability of the examinee answering the jtem correctly
and incorrectly, respectively. The assumption of the principle of
local independence in mathematical terms can then be stated in the

foliowing way:

11

Prob (U = uy, Up = u2, ... , Uy = up)

u 1-u u 1-u u l-u
R P L

N
j=1 3

In words, the assumption of local independence in the one
dimensional case requires that the probability of any response pattern
occurring for an examinee is given by the product of probabilities
associated with his/her successes and/or failures on the test items.
The probabilities are obtained from a one-dimensional model.

Mathematical form of the item characteristic curves. An item

characteristic curve is a mathematical function that relates the
probability of success on an item to the ability measured by the set
of items contained in the test. There is no concept comparable to the
notion of an item characteristic curve in standard test technology. A
primary distinction among different item response models is in the
mathematical form of the corresponding item characteristic curves. It
is up to the user to choose one of the many mathematical forms for the

shape of the item characteristic curves. In doing so, an assumption
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about the items is being made which can be verified later by how well
the chosen model "explains" the observed test results.

Each item characteristic curve for a particular item response
model is a member of a family of curves of the same general form. The
number of parameters required to describe the item characteristic
curves in the family will depend on the particular item response
model. With the three-parameter logistic model, statistics which
correspond approximately to the notions of item difficulty and
discrimination (used in standard testing technology), and the
probability of low-ability examinees answering an item correctly, are

used. The mathematical expression for the three-parameter logistic

curve is: ba (6 -b_)
a -
(1) Pale) (o) o ° 1, 2
gl = C4q + -C » g=1, s veay N,
9 9 I Da {8 -b_)
l1+e 8 g
where:

Pg(e ) = the probability that an examinee with ability level
answers item g correctly,

bg = the item g difficulty parameter,

ag = the item g discrimination parameter,

Cq = the lower asymptote of an ICC representing the
probability of success on item g for low-ability
examinees,

D = 1.7 {a scaling factor),

and

n = the number of items in the test.
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The parameter Cq is the lower asymptote of the item
characteristic curve and represents the probability of examinees with
lTow ability correctly answéring an item. The parameter cq is included
in the model to account for test response data at the low end of the
ability continuum, where among other things, guessing is a factor in
test performance. It is now common to refer to the parameter cq as

the pseudo-chance level parameter in the model.

Typically, cg assumes values that are smaller than the value that
would result if examinees of low ability were to guess randomly to the
item. As Lord (1974) has noted, this phenomenon can probably be
attributed to the ingenuity of item writers in developing "attractive"
but incorrect choices. For this reason, Cq is no longer called the
"guessing parameter". To obtain the two-parameter logistic model from
the three-parameter logistic model, it must be assumed that the
pseudo-chance level parameters have zero-values. This assumption is
most plausible with free response items but it can often be
approximately met when a test is not too difficult for the examinees.
For example, this assumption may be met when competency tests are
administered to students following effective instruction. Perhaps the
most popular of the present item response models is the one-parameter
logistic model (or commonly named the "Rasch Model" after Georg Rasch,
the discoverer of the model). It can be obtained from the
three-parameter logistic model by assuming that all items have
pseudo-chance level parameters equal to zero and by assuming all items
in the test are equally discriminating. Also, the one-parameter
model, or Rasch model as it is commonly referred to, can be produced

from a different set of measurement principles and assumptions.
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Readers are referred to Choppin (1983) for an alternate development of
the Rasch model. The viability of these assumptions is discussed by
Hambleton et al. (1978).

Item characteristic curves for the latent linear modell and the
one-, two-, and three-parameter logistic models are shown in Figure
2. Readers are referred to Hambleton (1979), Lord (1980), and Wright
and Stone (1979) for additional information about logistic test
models.

4. Strengths, Weaknesses, and Gaps

The exploration of item response models and their application to
eductional testing and measurement problems has been under study for
about fifteen years now. Certainly there are many problems requiring
resolution but enough is known about item response models to use them
successfully in solving many testing problems {see Lord, 1980;
Hambleton, 1983). Item response models, when they provide an accurate
fit to a data set, and in theory, the three-parameter logistic model,
will fit a data set more accurately than a logistic model with fewer
item parameters, can produce invariant item and ability parameters
described earlier. Some of these promising applications will be
described in the next two sections (also see, Hambleton, 1983).

On the negative side, the three-parameter model is based upon
several strong assumptions. (Of course, the one- and two-parameter
logistic models are based on even stronger assumptions.) When these

assumptions are not met, at least to an approximate degree, desirable

1. The item characteristic curves for the latent linear model are of
the form:

Pgls) =bg+ ag 0.
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features expected from applying the three-parameter model will not be
obtained. Other weaknesses, presently, of the three-parameter model
are (1) the need of rather large numbers of items and examinees for
proper item parameter estimation, {(2) the relatively high computer
costs for obtaining item and ability parameter estimates, and {3) the
difficulties inherent in interpreting a complex model for test
practitioners.

On the first point, Lord (1980) suggested examinee sample sizes
in excess of 2,000 are needed. Perhaps Lord is overly conservative in
his figure but it does appear that sample sizes in excess of 600 or
700 are needed, and a disproportionate number of examinees near the
lower end of the ability scale so that the c parameters can be
estimated properly. Because of the required minimum sample sizes,
small scale measurement problems (e.g., teacher-made tests) cannot
properly be addressed with the three-parameter model. With respect to
the second point, it is common to report high costs associated with
using LOGIST although there is evidence that the LOGIST program will
run substantially faster and cheaper on some computers. Hutten {1981)
reported an average cost of $69 to run 25 data sets with 1,000
examinees and 40 test items on a CYBER 175 ($800/hour for CPU time).
Finally, the untrained test developer will have difficulty working
with three statistics per item but as CTB/McGraw-Hill has shown in
building the latest version of the California Tests of Basic Skills,
test editors can be trained to successfully use the additional
information provided by the three-parameter mode! (Yen, 1983).

There is (at least) one practical shortcoming of the three-

parameter model and its applications: There does seem to be a
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shortage of available computer programs to carry out a three-parameter
logistic model analysis. The most readily available program is
LOGIST, described by Wingersky {1983) and Wingersky, Barton, and Lord
(1982). The most readily available version of this program runs on
IBM equipment although there is evidence that the program may run
substantially faster on other computers. Additional investigation of
this finding is needed along with on-going studies to try and speed up
the convergence of estimates. In addition, there may be other ways to
improve the estimation process. Swaminathan and Gifford (1981) have
obtained very promising results with Bayesian item and ability
parameter estimates. Their results compare favorably with results
from LOGIST and they can be obtained considerably faster and more
cheaply than the same estimates obtained with LOGIST.

There are (at least) three areas in which we lack full
understanding of item response models. First, additional robustness
studies with the one- and two-parameter logistic models are needed and
with respect to a number of promising applications. What is the
practical utility of the three-parameter model in comparison to the
one- and two-parameter models? Second, appropriate methods for
testing model assumptions and determining the goodness of fit between
a model and a data set are needed. Hambleton and his colleagues
(Hambleton, 1980; Hambleton, Murray, & Simon, 1982) have made a
promising start by organizing many of the present methods and
developing several new ones. Much of their work involves the use of
graphs, replications, residual analyses and cross validation

procedures. More work along the same general 1ines would seem
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desirable. Third, there is a great need for persons to gain
experiences with the three-parameter model and to share their new
found knowledge and experiences with others.

5. AppHcations1

In this section, several promising applications of the
three-parameter logistic model! will be described briefly: Item
banking, test development, criterion-referenced testing, item bias,
and adaptive testing. Other applications of the three-parameter model
are discussed by Hambleton et al. (1978), Lord (1980), and Hambleton
(1983}).

Item banking. The development of criterion-referenced testing

technology has resulted in increased interest in item banking
(Choppin, 1976). An item bank is a collection of test items, "stored"
with known item characteristics. Depending on the intended purpose of
the test, items with desired characteristics can be drawn from the
bank and used to construct a test with known properties. Although
classical item statistics (item difficulty and discrimination) have
been employed for this purpose, they are of limited value for
describing the items in a bank because these statistics are dependent
on the particular group used in the item calibration process. Latent
trait item parameters, however, do not have this limitation, and
consequently are of much greater use in describing test items in an
item bank {Choppin, 1976). The invariance property of the latent
trait item parameters makes it possible to obtain item statistics that
are comparable across dissimilar groups. Since the item parameters

depend on the ability scale, it is not possible to directly compare

1 Some of the material in this section is taken from and/or edited
from a paper by Hambleton et al. (1978).
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latent trait item parameters derived from different groups of
examinees until the ability scales are equated in some way.
Fortunately, the problem is not too hard to resolve since Lord and
Novick (1968) have shown that the item parameters in the two groups
are linearly related. Thus, if a subset of calibrated items is
administered to both groups, the linear relationship between the
estimates of the item parameters can be obtained by forming two
separate bivariate plots, one establishing the relationship between
the estimates of the item discrimination parameters for the two
groups, and the second, the relationship between the estimates of the
item difficulty parameters. Having established the linear
relationship between item parameters common to the two groups, a
prediction equation can then be used to predict item parameters for
those items not administered to the first group. In this way, all
item parameters can be equated to a common group of examinees and
corresponding ability scale. One large test publishing company, the
California Test Bureau/McGraw-Hill, presently customizes tests for
school districts wih items calibrated using the three-parameter

logistic model.
Test development. The three-parameter model is presently being

used by a number of organizations in test development (e.g.,
CTB/McGraw-Hi1l, ETS). The three-parameter model provides the test
developer with not only sample invariant item parameters but also with
a powerful method of item selection (Birnbaum, 1968). This method
involves the use of information curves, i.e., items are selected
depending upon the amount of information they contribute to the total

amount of information supplied by the test (Lord, 1980)1. oOne of the

1 Readers are referred to Hambleton (1979) for an introduction to item
and test information and efficiency curves.
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useful features of item information curves is that the contribution of
each item to the test information function can be determined without
knowledge of the other items in the test. When standard testing
technology is applied the situation is very different. The
contribution of any item to such statistics as test reliability cannot
be determined independently of the characteristics of all the other
items in the test.

Lord (1977) outlined a procedure for use of item information
curves to build a test to meet any desired set of specifications. The
procedure employs a pocl of calibrated items, with accompanying
information curves, such as might be obtained from the item banking
methods described earlier. The procedure outlined by Lord consists of
the following steps:

1. Decide on the shape of the desired test information curve.

Lord (1977) calls this the target information curve.

2. Setect items with item information curves that will fill up
the hard-to-fill areas under the target information curve.

3. After each item is added to the test, calculate the test
information curve for the selected test items.

4. Continue selecting test items until the test information
curve approximates the target information curve to a
satisfactory degree.

An example of the application of this technique to the development of
tests for differing ranges of ability (based on simulated data) is

given by Hambleton (1979).
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Criterion-referenced testing. A principal use of a criterion-

referenced test is to estimate an examinee's level of mastery (or
"ability") on an objective. Thus, a straightforward application of
the three-parameter model would produce examinee ability scores.
Among the advantages of this application would be that items could be
sampled (for example, at random) from an item pool for each examinee,
and all examinee ability estimates would be on a common scale. A
potential problem with this application, however, concerns the
estimation of ability with relatively short tests.

Since item parameters are invariant across groups of examinees,
it would be possible to construct criterion-referenced tests to
"discriminate" at different levels of the ability continuum. Then, a
test developer might select an "easier" set of test items for a pre-
test than a posttest, and still be able to measure "examinee growth"
by estimating examinee ability with the three-parameter model at each
test occasion on the same ability scale. This cannot be done with
classical approaches to test development and test score interpreta-
tion. If we had a good idea of the 1ikely range of ability scores for
the examinees, test items could be selected so as to maximize the test
information in the region of ability for the examinees being tested.
The optimum selection of test items would contribute substantially to
the precision with which ability scores were estimated. In the case
of criterion-referenced tests, it is common to observe substantially
lower test performance on a pretest than on a posttest; therefore, the
test constructor could select the easier test items from the domain of

items measuring an objective for the pretest and more difficult items
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could be selected for the posttest. This would enable the test
constructor to maximize the precision of measurement of each test in
the region of ability where the examinees would most likely be
located. Of course, if the assumption about the location of ability
scores was not accurate, gains in precision of measurement would not
be obtained.

The results reported in Tables 1 and 2 (from Hambleton, 1979)
show clearly the advantages of "tailoring" a test to the ability level
of a group. Of course, the potential improvements depend on the
validity of a test developer's assumption about the examinee ability
distribution. If he or she uses an incorrect prior distribution as a
basis for designing a test, the resulting test will certainly not have
the desired characteristics.

Ttem bias. Identifying biased items in a test usually involves
comparing the performance of the subgroups of interest (e.g., Blacks,
Hispanics, and Whites) on the test items. The problem that arises is
that differences among the subgroups due to bias is confounded with
any true differences in abilities among the subgroups. Needed is an
item bias detection method that can control for true ability
differences. Via a three-parameter model analysis, it is possible to
compare corresponding item characteristic curves. At each ability
level, independent of the proportion of examinees in each subgroup who
are located at the ability level, the expected proportion of successes
in each subgroup,obtained from the ICCs, can be compared. The ICCs
estimated in each group, in theory, do not depend upon the underlying

ability distributions. Any differences in the curves, beyond the
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usual sampling errors, can be attributed to differential subgroup
responses to the items, i.e., bias. It is becoming routine practice
for several large test publishers to investigate bias in test items
with the aid of the three-parameter logistic model. Since the
three-parameter model often provides a somewhat better fit to test
data at the lower end of the ability continuum (Hambleton et al.,
1982) than less general logistic models, the three-parameter model may
be more useful than other Togistic models for studying bias.

Adaptive testing. Possibly the first and most well-developed

application of the three-parameter logistic model to date is adaptive
testing (Lord, 1980; Weiss, 1980)}. In adaptive testing each examinee
is administered a set of test items "tailored" or "adapted" to his/her
ability level. Clearly, total test scores cannot provide an adequate
basis upon which to compare examinees. Some examinees will be
administered sets of test items which are substantially more difficult
(or easier) than the test items administered to other examinees. By
calibrating test items using the three-parameter logistic model in
advance of the actual testing, and using the three-parameter model to
estimate examinee ability levels, examinees can be compared even
though the test items administered to different examinees may differ
substantially in difficulty. Because of the ready availability of the
computer, scoring difficulties associated with the use of the
three-parameter model can be overcome easily.

The U.S. military is firmly committed to the use of adaptive
testing with the three-parameter model in many of its testing

programs. Presently a feasibility study is being conducted along
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with the preparation of plans for adaptive testing implementation and
evaluation of the total adaptive testing system.

6. Possible Extensions/New Applications

Numerous researchers are presently addressing the development of
new item response models. For example, Samejima (1979) is exploring
the development of multidimensional models in which item options are
ranked based on their relationship to ability, and characteristic
curves are produced for each option. McDonald (1982) has provided a
general formulation for generating a wide range of multidimensional
linear and non-linear polychotomous item response models. Bock,
Mislevy, and Woodson (1982) have described a two-parameter item
response model which can handle continuous data and where the unit of
analysis can be a group (e.g., the classroom or a school). This model
will be especially useful in program evaluation investigations. A
minor variation of the three-parameter model which appears to have
some utility is a model in which a common value of the ¢ parameter is
used for all test items (Wingersky, 1983). This revised
three-parameter model will receive some use in the coming years. A
four-parameter logistic model has also been suggested (the fourth
parameter is the upper asymptote) but it appears to have very 1imited
practical usefulness. Al1l of these new models can be viewed as
modifications/extensions of the three-parameter logistic model and
they will undoubtedly receive study from researchers in the coming
years.

Because of the newness of the IRT area, all applications of the
three-parameter model might legitimately be classified as new. For

the purposes of this paper, "new applications” will be those which to
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date have not been published. Two new applications, then, of the
three-parameter mode} to the problems of item selection (Hambleton &
de Gruijter, 1983) and score prediction (Hambleton & Martois, 1983)
will be described briefly next.

Item selection. Item response models appear useful to the

problem of item selection because they lead to item statistics which
are referenced to the same scale on which examinee abilities are
defined. In addition, it should be noted that IRT provides a
procedure for placing a cut-off score which is normally set on a
proportion-correct scale defined over a domain of items on the same
scale as the test items and the examinees {Lord, 1980). Therefore,
the usefulness of a test item for measurement at any point on the
ability scale can be assessed.

Hambleton and de Gruijter (1983) described a nine step procedure
for selecting test items using three-parameter model jtem statistics,
and via a computer simulation study showed the advantages, at least in
the absence of errors associated with item parameter estimates, of
item selection with the aid of IRT over a standard item selection
procedure.

Test score predictions. The concept of item banking has

attracted considerable interest in recent years from school districts,
state departments of education, and test publishing companies. When
jtem banks consist of test items which are technically sound and
validly measure the objectives or competencies to which they are
referenced, the task of producing high quality tests is made

considerably easier. Item banks are most often used to construct
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criterion-referenced tests (CRTs) or mastery tests or competency
tests, as they are sometimes called. What is not commonly available
for use with these CRTs are derived scores such as percentiles.
Derived scores are not always valued but on occasion they are required
by school districts who receive federal funds (e.g., Title I} for they
must evaluate their funded programs with national norms (e.g.,
percentile scores).

In theory, the problem faced by school districts who require
information for (1) diagnosing and monitoring student performance in
relation to competencies and (2) normative scores for the comparison
of examinees is easy to solve. Teachers can use their item banks to
build classroom tests on an "as-needed" basis, and when the need
arises, they can administer any necessary commercially available
standardized norm-referenced tests. But this solution has problems:
(1) the amount of testing time for students is increased, and (2) the
financial costs of school testing programs is increased. On the other
hand, when testing time is held constant, and norm-referenced tests
are administered, there is less time available for instructionally
relevant testing (i.e., CRTs}. A more satisfactory solution would
allow teachers to administer test items measuring objectives of
interest in their instructional programs, and at the same time, allow
for normative scores to be estimated from the test items which are
administered. An often used solution of selecting a norm-referenced
test to provide normative scores and criterion-referenced information
through the interpretation of examinee performance on an item by item
basis is not very suitable criterion-referenced measurement and will

not insure that all competencies of interest are measured in the test.
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Hambleton (1980) suggested a possible item response model
solution to the problem of providing both instructonal information and
normative information from a single test. A latent ability scale to
which a large pool of test items are referenced can be very useful in
obtaining normative scores from tests constructed by drawing items
from the pool. A norms table can be prepared from the administration
of a sample of items in the pool. Then the norms table can be used
successfully with any tests which are constructed by drawing items
from the pool. Local norms can be prepared by districts who build
their own item banks. A test publishing company probably would
prepare national norms for selected tests constructed from their item
banks.

Hambleton and Martois (1983) recently finished a study in which
it was found that both the one- and the three-parameter logistic
models resulted in excellent predictions of how examinees performed on
a norm-referenced test. Predictions were made from tests with items
that were easier, comparable to, or harder than items in the normed
test. Similar results were obtained in three subject areas at two
grade levels. Further research along the same general lines seems
highly desirable because of the importance of the problem area.

7. Controversies

Perhaps 1ike any emerging area, item response theory has
generated considerable controversy and strong emotional feelings in
support of one model versus another. Much of the debate has centered
on the choice between the one- and three-parameter logistic models.

There has also been some controversy surrounding the utility of
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Bayesian estimators {Samejima versus Novick and Swaminathan) and the
appropriateness of item response models for the analysis of aptitude
versus achievement tests. On this latter point there is some feeling
that items on achievement tests are instructionally sensitive and
therefore item response model statistics will not be invariant in pre-
and post-instructional groups.

With respect to the choice of the one- versus the three-parameter
logistic model, a number of guestions have arisen:

1. What is the effect of boundary constraints placed on item
and ability parameter estimates obtained with LOGIST?

2. What is the practical utility of the three-parameter model?
In most practical settings, won't the two models produce
highly similar results?

3. What is the additional cost of running a three-parameter
model analysis and is the practical utility of the gains
that accrue worth the financial costs and the added
complexity which results?

4. Since examinees can guess the answers to multiple-choice
test items, the three-parameter model should be selected on
the basis of this a priori consideration {Traub, 1983).
5. How well do the item response models fit any data sets?
This point is in dispute because many of the present
goodness of fit statistics have been found to be
inappropriate (e.g., see papers by Wollenberg, 1980; Divgi,
1981).
These and other questions will undoubtedly be addressed in the coming
years. Answers will contribute to our knowledge of the three-
parameter logistic model and the situations in which the model should

be used.
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