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1. MEASUREMENT PHILOSOPHY

The basic assumption in latent class models designed to measure
achievement is that an examinee can be described as knowing or not know-
ing the answer to a test item, and that inferences about an examinee's
ability level should take this notion into account. The goals of an
n-item test might be to determine how many of the items an examinee knows,
which items are known or which are not known, or what proportion of items
among a domain of items are known. The problem is that examinees might
give the correct response when they do not know, or they might carelessly
give the wrong response when they know. Latent class models are an at-
tempt to measure and correct the effects of these errors when addressing
a particular measurement problem. Even if some other model is ultimately
preferred, such as latent trait model, latent class models are poten-
tially useful.

Currently it appears that correcting for guessing is more important
than might have been expected. Moreover, assuming random guessing seems
to be an unsatisfactory solution. Consider, for example, the problem of
determining the length of a criterion-referenced test where the goal is
to determine whether an examinee's percent correct true score or domain
score, p, is above or below some known constant Py If p0=.8 and n=29
items are used, the probability of correctiy determining whether P>Py is
at least .9 when p>.9 or p<.7, and when the binomial error model is assumed.
If random guessing is assumed, nearly 200 items are needed (van den Brink
& Koele, 1980), and if one allows for the possibility that guessing is

not at random, over 2,600 items are required to attain the same level of



accuracy (Wilcox, 1980). In some cases guessing might be nearly random,
but there is empirical evidence that this is generally not the case
(Coombs et al., 1956; Bliss, 1980; Cross & Frary, 1977; Wilcox, 1982a,
1982b).

Another way of describing the measurement philosophy of Tatent class
models is that an examinee's test score is & function, in part, of the
distractors that are used, and that it is important to take this effect
into account. In the past this problem was ignored, probably because
there were no reasonable ways of dealing with it, and because it was not
clear just how serious this problem was. Now, however, there are several
ways of measuring and correcting the effects of distractors. It might
appear that some latent trait models deal with guessing, but in fact
latent trait models ignore the errors that are of concern here. Thus,
these errors might have a serious effect on how latent trait models are
used and interpreted. Wainer and Wright (1980) as well as Mislevy and
Bock (1982) examined certain aspects of how guessing affects latent trait

models, but the type of guessing examined here is different.
2. THE MODELS AND THEIR ASSUMPTIONS

Generally latent class models are based on assumptions about how
examinees behave when responding to an item, or how items are related
to one another, or the manner in which tests are administered. While
a general description of latent class models is possible, such a de-
scription is not given here. Instead attention is focused on those

models that seem to have the most practical value,




A Latent Structure Model for Answer-Until-Correct Tests

This section assumes that an examinee responds to a multiple-choice
test item according to an answer-until-correct {AUC) scoring procedure.
This means that if an examinee chooses an incorrect response, another
response is chosen, and this process continues until the correct response
is identified.

AUC tests are easily administered in the classroom using especially
designed answer sheets where the examinee erases a shield corresponding
to a particular alternative. (These answer sheets are available commer-
cially, for example, through Van Valkenburg, Nooger and Neville in New
York, N.Y., and they are relatively inexpensive.) If the letter under
the shield indicates an incorrect response, the examinee erases another
shield, and this continues until the correct shield is erased.

Consider a population of examinees, and Tet L5 be the proportion
of the examinees who can eliminate i distractors from consideration.

That is, because of partial information, some of the examinees will rule
out some of the distractors without knowing the correct response. If
there are t alternatives from which to choose, and if the examinee can
eliminate t-1 distractors from consideration, the examinee is said to

know the correct response. Thus, ) is the probability that a randomly
sampled examinee knows the correct response. Note that no distinction is
made between examinees who can eliminate all the distractors via partial
information and those that know. In other words, an examinee might choose

the correct response, not because the correct answer is known, but because




the test constructor was unable to produce at least one effective distrac-
tor. Thus, it is assumed that at least one effective distractor is being
used, and presumably this problem can be minimized by choosing t to be
reasonably large. Of course the crucial step is finding someone who can
write effective distractors.

As alluded to earlier, it is assumed that among the examinees who
do not know, some might be able to eliminate one or more distractors from
consideration via partial information. It is further assumed that once
these distractors are eliminated, the examinee guesses at random among
the a1ternafives that remain. Hence, if P; is the probability of a cor-
rect response on the ith attempt of the jtem (i=1,...,t),

t-1i

55/ t) (2.0)
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For example, if t=

I

Py = 5gf/3tL/2% 5

p2 §0/3 + Cl/zs

and ‘
Py = %o/
In general, the proportion of examinees who know the correct response is
Lyo1 =Py - P (2.1)
The model implies that

Py 2Py 2 e 2 Py (2.2)
and this can be tested by applying results in Robertson (1978). Empirical

investigations (Wilcox, 1982a, 1982b) suggest that (2.2) will usually hold.




The next section describes how one might proceed when (2.2) appears to
be unreasonable.

For N randomly sampled examinees, let X; be the number who get the
correct response on the ith attempt. The the xi's have a multinomial
distribution given by {N]pxl .. P “t where (N] = N/ (x, 0 .o % 1),

X1 t X 1 t

in =N, 0<p; sl and } p; = 1. An unbiased maximum 1ikelihood es-
timate of p; is just XT/N’ and so

tyq = (xg = x)/N (2.3)
is a maximum likelihood estimate of Cp_1s the proportion of examinees
who know the correct response. Semantically, if we compute the propor-
tion of examinees who get the item correct on the first attempt, and then
subtract the proportion who get it right on the second attempt, we have
an estimate of the probability that the typical examinee will know the
answer.

Note that ¢, 4 given by (2.3) can be negative, but ¢, , is positive
when the model is assumed to be true. This can be corrected by simply
estimating z; 4 to be zero when £t41 < 0. From Barlow et al. (1972), a
maximum likelihood estimate of Cio1 under the assumption that (2.2} holds

can be had by applying the pool-adjacent violators algorithm.

A Misinformation Model

The previous section assumed that the inequality in equation (2.2)
is true, but experience indicates that occasionally this will not be the

case. In this event a misinformation model may be appropriate. Of course




for some items an investigator might suspect a misinformation model 1is

needed before any test data are collected in which case the results in
this section might be applied without testing (2.2).

As will soon become evident, there is no specific misinformation
model, but rather a class of models that might be used. The choice
from among these models will depend on what seems to be a reasonable
assumption about how examinees behave. At the moment there are no em-
pirical procedures to aid a test constructor when choosing from among
the various misinformation models. So far, however, this does not seem
to be a serious probiem.

To better understand how to apply these models, consider the follow-
ing test item.

When a block of iron is heated until it is red hot, it
gets bigger. If the iron weighs 20 1bs. at room temper-

ature, how much will it weigh when red hot?

1) 19.8 1bs. 2} 20 1bs. 3) 20.1 1bs. 4) 20.5 1bs.
5) 20.61 1bs.

This item is similar to one investigated in Wilcox (1982b) where the ex-
aminees were approximately 14 years old. The point is that it seems rea-
sonable to suspect that some examinees will choose from among the last
three alternatives because they believe the jron weighs more when it ex-
pands. The goal then is to devise a model that takes this behavior into
account.

In this section it is assumed that the examinees belong to one of
three mutually exclusive groups: 1) they know the item, 2) they have
misinformation, 3) or they do not know, do not have misinformation, and

guess at random. For examinees with misinformation, it is also assumed



that they will choose ¢ specific incorrect alternatives before choosing

the correct response. At the moment there is no empirical method for
choosing c; this must be done based on what seems reasonable for the
item being used. For example, in the item described above, c=3 would
be considered. In some cases the resulting latent structure model can
be checked with a goodness-of-fit test, but as will be seen this is not
always the case.

For the population of examinees being tested, let ¢ be the propor-
tion of examinees who know, vq be the proportion who do not know, do not
have misinformation and guess at random, and let Vo be the proportion
who have misinformation. If an AUC scoring procedure is used, and if

P is defined as before, then for c=3 and t=b

Py =t F vy/5 (2.4)
Py = vq/d (2.5}
Py = vq/5 (2.6)
Pg = vy + v1/5 . (2.7}
Pg = /0 (2.8)

Thus, ¢ =py-p, as before and ¢z is estimated with (xl-(x2 *xg ¥ x5)/3)/N.,
The model can be tested with the usual chi-square test, and it gave a good
£it to the data in Wilcox (1982b).

More generally, for arbitrary c,

Py =& * v/t (2.9)
Py = V2 T o/t

and
py = vy/t, 17t et L (2.11)



Slight generalizations of the model may be possible. Suppose, for

example, c=3 and t=5, as in equations (2.4)-(2.8), but for examinees with
misinformation, let Va be the proportion of examinees who choose the cor-
rect response once c=3 alternatives are eliminated. Then Pg and Pa take

the more general form

= v,v, + vl/t (2.12)

Pg = V3Yp

and

p5 = (1-\)3)\)2 + Vl/t (2.13)

Now, however, a goodness-of-fit test is no longer possible because there

are zero degrees of freedom.

Equivalent and Hierarchically Related Items, and Related

Latent Structure Models

In recent years, several investigators have proposed models based
on the notion of equivalent or hierarchically related items. Two items
are said to be equivalent if examinees know both or neither one. If in
addition, there are examinees who know the first but not the second, the
items are hierarchically related. As argued by Molenaar (1981), clearly
there are situations where it may be difficult or impossible to generate
equivalent items. However, experience suggests that there are situations
where one of these assumptions might be reasonable (e.g., Macready & Dayton,
1977; Harris & Pearlman, 1978; Harris et al., 1980).

It should be mentioned that in some instances a test consisting of
hierarchically related items is considered to be desirable and the goal

is to measure the extent to which a test has this property. Put another



way, the goal is to determine the extent to which the items on a test
form a Guttman scale. One such measure was proposed by Cliff (1977).
(See also Harnisch &Linn, 1981.)

The simplest model consists of two equivalent items, and it arises
as follows. Let ¢ be the proportion of examinees who know both items.
In contrast to earlier sections, a conventional scoring procedure is
used. That is, examinees get only one attempt at an item, and the item
is scored either correct or incorrect. Let pij be the probability of
the response pattern ij (i=0,1; j=0,1)} where a 0 means incorrect, and
a 1 means correct. Thus, P10 represents the probability of a correct-
incorrect response for a randomly sampled examinee. If 61 is the prob-
ability of correctly guessing the response to the first item when the
randomly sampled examinee does not know, and if 62 is the corresponding
probability on the second item, and if local independence holds (i.e.,

given an examinee's latent state, the responses are independent) then

z + (1-C)8182

(1-2)81(1-8,)

(1-5)(1-8,) (1-8,,).

Solving z, By» and By yields

g - P10
I Pyo * Poo
s - ol
2 Po1 * Pgo
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it can be seen that

and

For recent results on testing these equalities, see Smith et al. (1979),

and Wilcox (1982e).

Hartke (1978) describes another approach based on latent partition
analysis, and an index proposed by Baker and Hubert (1977) might also

be useful.

Hierarchically Related Items

Dayton and Macready (1976, 1980) describe very general Tlatent struc-
ture models for handling hierarchically related items. Again these models
can be used to measure guessing, and they have the advantage of includ-
ing other errors at the item level such as ¢ = Pr(incorrect |examinee
knows}. The model for AUC tests essentially sets r = 0, but the practical
implications of this have not been established.

As was the case for equivalent items, estimating the parameters in
the model requires iterative techniques. In some instances simple (closed
form)} estimates exist (e.g., Wilcox, 1980b), but these models make certain

assumptions that may be unreasonable in many situations.

3. STRENGTHS AND WEAKNESSES OF LATENT CLASS MODBELS

Latent class models have three primary strengths. First, it now
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appears that one of two models can be used to explain the observed re-
sponses to a multiple-choice test item {Wilcox, 1982b}. These models
are an oversimplification of reality (as are all models), but they seem
to give a good approximation of how examinees behave when taking a
test, Of course, future investigations might reveal that more complex
models are really needed, but so far this does not appear to be the
case.

The second strength is that many measurement problems can now be
solved that were previously impossible to address. In particular, these
models correct for guessing, or measure the effects of guessing which
in turn improves the accuracy of tests and measurement techniques.
Note that the nature of guessing in latent class models is different
from the guessing parameter in latent trait models (Wilcox, 1982c).

Third, even if some other model is ultimately preferred, a latent
class model may be useful, for example, when estimating the item para-
meters in a Tatent trait model.

A weakness of latent class models is that certain technical prob-
Tems still need to be solved. These include better ways of scoring an
n-item test, testing the model used in Wilcox (1982e), and finding a
strong true-score model that is reasonable when the model in Wilcox
(1982a) gives a poor fit to data. Also, some examinees may give an
incorrect response when they know, but the seriousness of this problem

is not well understood.
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4. PRESENT AREAS OF APPLICATION

This section outlines some of the measurement problems that can now

be solved with latent class models.

The Accuracy of an Item and the Effectiveness of Distractors

In addition to estimating the proportion of examinees who know the
item, the latent structure models for AUC tests can be used to estimate
the probability of correctly determining whether a typical examinee knows
the item. More specifically, assume it is decided that an examinee knows
thé correct response if the correct answer is given on the first attempt
(i.e., a conventional scoring procedure is used). For a randomly sampled
examinee, the probability of correctly determining whether he/she knows
is just © = 1-p, (Wilcox, 1981a), and this is estimated with = 1-x,/N .
Note that when (2.2) is assumed 0 < p, <, in which case % <t< 1.

The parameter t is-a function of two important quantities. The first
is the proportion of examinees who know the answer, i.e., Cio1? and the
second is the effectiveness of the distractors among the examinees who

do not know. To see this more clearly, note that
t
+ 7 op; . (4.1)

When Le-1 is close to one the item accurately reflects the true latent
state of the examinees because presumably examinees who know will choose
the correct response on their first attempt. As Cy_q Moves closer to
zero, the accuracy depends more on the effectiveness of the distractors.

Thus, it may be important to determine how well distractors are perform-
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ing among the examinees who do not know.

It can be shown that the distractors are most effective when guess-
ing is at random which corresponds to
Po = P3 = vor =Py (4.2)
(Wilcox, 198la). This suggests (4.2) be tested, and/or we estimate how
"far away" the P; values are from the ideal case where (4.2) holds.
Testing (2.3) can be accomplished by noting that the conditional
distribution of Xose s Xy given Xq is multinomial with parameters N-—x1
and pi/(l—pl), i=2,...,t. Thus, the usual chi-square test can be
applied. That is, compute
(x;-(n-x )/ (£-1))? (4.3)
2 (Nexy)/(t-1)

~a
I~

i

If X2 is greater than or equal to the 100(1-«) percentile of the chi-square
distribution with t-2 degrees of freedom, reject the hypothesis that (4.2)
holds. For recent results on using (4.3), see Chacko (1966), Smith et al.
(1979), Wilcox (1982e}.

Empirical results indicate that guessing will not be at random. Thus,
a more interesting guestion might be to determine whether the distractors
are "close" to the ideal situation where (4.2) holds. The first step in
solving this problem is to choose a measure of how unequal the P; values
are (i = 2,...,t). Many such measures have been proposed which have similar
properties {e.g., Marshall & Olkin, 1979; Bowman et al., 1971). One of
these is the entropy function which was used by Wilcox (1982a), and another

is Simpson's measure of diversity (Simpson, 1949} given by
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Writing (4.3) as

-(N-x
it is seen that the usual maximum Tikelihood estimate of Simpson's measure

of diversity, namely, (xi/(N—xl))Z, is a simple linear transformation

I ~1 ¢t

i=2

of Xz. Since X2 is better known than Simpson's measure of diversity, X2
will be used here.
It is helpful to note that the smallest possible value for X2 is

L = §2i1 [(n-x)(2r+1) = (-1)r(r+1}] - nixg (4.4)

where r is the largest integer satisfying r(t-1) < n-x, (Dahiya, 1971}.

The maximum value is

M = (n-xl)(t—Z) {4.5)
(Smith et al., 1979}. The closer X2 is to M, the more effective are the
p

distractors. Since L and M are known, the relative extent to which X
is close to M can be determined. In particular,

E = (X%-L)/(M-L)
measures the effectiveness of the distractors being used, where O<E<I.
If E=0, the distractors are as effective as possible in determining

whether an examinee knows the correct response. As E approaches 1, the

distractors become less effective.
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Comparing Two Items

[f the AUC model is assumed, and if independent estimates of the Py
values for two items are available, it is possible to test the hypothesis
that one of the jtems is at least as effective as the second by applying
results in Robertson and Wright (1981). The null hypothesis of interest

k

here is that } pi/(l—pl) >
i=2 i

pj/(l—pi), k=2,...,t-2 where pf is the p.
Lo i i

g 7

value for the second item. Let Ty and 1, be the value of 1 for two items.
Another way of comparing two items is to test whether the first item is
better than the second by testing whether T12Tp In effect this approach
compares the overall effectiveness of the two items in terms of the popu-
lation of examinees, while the approach previcusly described is to compare

the effectiveness of the distractors among the examinees who do not know.

Characterizing Tests

Let <. be the value of ¢ for the ith item on an n-item test. A nat-

n
ural way of describing the accuracy of a test is to use Tg = ) ts;. This

. i
i=1
is the expected number of correct decisions about whether a typical (ran-
domly sampled) examinee knows the answer to the items on a test. If, for

example, . = 7 andrn = 10, then on the average, 7 correct decisions would

5
be made about whether an examinee knows the answer to an item, but for 3
of the items it would be decided that the examinee knows when in fact he/
she does not.

Estimating T is easily accompiished using previous results. In
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particular, for a random sample of N examinees, let X5 7 0 if the jth
examinee gets the ith item correct on the second attempt; otherwise

X.. = 1. Then

1) ) ! N
. = N L X
i=1 j=1

%]
L3

is an unbiased estimate of Tg

The k Out of n Reliability of a Test

Once test data is available, the question arises as to how certain
we can be that T, is large or small. That is, we want to estimate the
Pr(;S gro)(cf. Tong, 1978). This problem is similar to one found in
the engineering 1iterature where the goal is to estimate the k out of n
reliability of a system. Bounds on this probability can be estimated
without assuming anything about cov(xij, Xi'j') (Wilcox, 1982e}. The
procedure is outlined below.

Let Zi:l if a correct decision is made about whether a randomly
sampled examinee knows the ith item on a test; otherwise z.=0. For a
randomly sampled examinee Pr(zi=1) = Ty Note that from previous results
Pr(zi=1) = Pr(xij=l). The k out of n reliability of a test is defined
to be

pK = Pr(fzi > K)

This is the probability that for a typical examinee, at least k correct
decisions are made among the n items on a test. By a correct decision
is meant the event of correctly determining whether the examinee knows

an item. Knowing Pk yields additional and important information about
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the accuracy of a test. An estimate of Py is not available unless
cov(zi,zj)=0, or n, the number of items, is small. (See Wilcox, 1982qg,
1982j. )

For any two items, let Pl be the probability that a randomly se-
lected examinee chooses the correct response on the kth attempt of the
first item, and the mth attempt of the second. (It is assumed that both
items are administered according to an AUC scoring procedure.) Let
Kij(i=0,...,t-l; 3=0,...,t-1) be the proportion of examinees who can
eliminate i distractors on the first item and j distractors on the
second. Then, under certain mild independence assumptions

t-k t-m

p =
KM 420 jso

The equation makes it possible to express the Kij'S in terms of the
pkm's which in turn makes it possible to estimate SF for any i and j.
Next Tet ¢ be the probability that for both items, a correct de-

cision is made about an examinee's Tlatent state. It can be seen that

e =kpq,e-1 P
and so ¢ can also be estimated.

For the ith and jth item on a test, let €;s be the value of &,

J
and define
n-1 E
S = £
i=1 j={+1
UK=TS-K

where t_ was previously defined to be T and

S
VK = {25 - K(k-1})/2).
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Then from Sathe et al. (1980)
o 2 (Vg = (K-2)) Uy 1/[n(n-Ke1)] .

If 2v < (n+K-2)UK_1

K-1

L 2((Ke-1)0y | -V

¢ k-1’
(K*-K) (K*-K+1)

where K* + K-3 is the iargest integer in ZVK_l/UK_l. Two upper bounds
are also available. The first is

p = 1+ ((n+K-1)Uy - 2V, )/Kn

and the second is that if 2Vk < (K—l)UK;

op <1 -2 1y - ¥y
(K-K*)(R-F%+1)

where K* + K - 1 is the largest integer in ZVK/UK.

What these results mean is that we can estimate quantities that in-
dicate whether i is Targe or small. For example, suppose the right
side of the third to Tast inequality is estimated to be .9, and that

2V < (n+K-2)Uk_1. This does not yield an exact estimate of oy but

k-1 -
it does say that o, is estimated to be at least .9. Thus, this would
indicate that the overall test is fairly accurate. If, for example, the
above inequalities indicate that p, < .95 and o, > -1, this does not

give very useful information about whether Py is reasonably large. If

P = .1 we have a poor test.

Estimating the Proportion of Items an

Examinee Knows

It is a simple matter to extend previous results to situations when
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a single examinee responds to items randomly sampled from some item domain.
For example, let q; be the probability of a correct response on the ith
attempt of a randomly sampled item. Let y1(1=0, ... , t=1) be the pro-
portion of items for which the examinee can eliminate i distractors. It

is assumed that each item has at least one effective distractor, so

Yioq is the proportion of items the examinee knows. It follows that
t-1 .
4; = jEO Yj/(t'1)
which is the same as equation (2.0} where oF and gy are replaced with
95 and Yy In fact, all previous results extend immediately to the pres-

ent case,

Criterion-Referenced Tests

A common goal of a criterion-referenced test is to sort examinees
into two categories. (See Hambleton et al., 1978a; Berk, 1980; and the

1980 special issue of Applied Psychological Measurement.) Frequently

these categories are defined in terms of some true score, and here the
true score of interest is Yio1® the proportion of items in an item do-
main that an examinee knows. The goal is to determine whether Yio1 is
larger or smaller than some predetermined constant, say v'.

It is known that guessing can seriously affect the accuracy of a
criterion-referenced test (van den Brink & Koele, 1980). Moreover,
assuming random guessing can be highly unsatisfactory (Wilcox, 1980c).
Another advantage of the AUC scoring model is that it substantially re-

duces this problem (Wilcox, 1982c). For some results on comparing
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by the investigator. In this case the joint probability function of

YaseresYy 15
1 t £y, |
) L P /95!

T(yO)(Zyi I[y'i=n'i] ;

1
where 1 is the usual indicator function given by

o g = 00 9
Yi7hy 0, if otherwise

For the special case ny=ny=...=n, the probability function becomes

Y ;
P; /y1--

f 3 ct+

nr(yy)

i=1

which has the same form as the negative multinomial except that for some

J, yj=n, and 0 < Y5 < n-1, i#j.

~

The maximum Tlikelihood estimate of q; is q; = yi/YO’ so the maximum
likelihood estimate of Yeo1° the proportion of items an examinee knows,
is ;t-l = &1 - &2 (Zehna, 1966). If the model is assumed to hold, ;t-l
may not be a maximum likelihood estimate. Instead one would estimate

vi.q to be zero when v, ; < 0; if the estimates of q; (i=1,...,t) do not

v

satisfy the inequality Gy 2 Gp 2 +-- 2 G apply the pool-adjacent-violators
algorithm (Barlow et al., 1972).

Wilcox (1982d)  shows that if the goal is to compare y, , to the
known constant y', as in criterion-referenced testing, and if Yi17Z v
is decided if and only if ;t—l > y' the sequential and closed sequential
procedures have the same level of accuracy. Moreover, it appears that
the closed sequential procedures nearly always improves upon the more
conventional fixed sample approach. More recently Wilcox (1982f) pro-

posed two tests of Qq=e .+ =qys and methods of determining the moments of
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the distribution were also described,

A Strong True Score Model

Strong true score models attempt to relate a population of examinees
to a domain of items. In many situations an item domain does not exist
de facto, in which case strong true score models attempt to find a family
of probability functions for describing the observed test scores of any
examinee, and simultaneously to find a distribution that can be used to
describe the examinees' true score.

Perhaps the best known model is the beta-binomial. If y is the num-
ber of correct responses from an examinee taking an n-item test, it is

assumed that for a specific examinee, the probability function of y is

nl _y n-y
1- .
] @ 1-a)
For the population of examinees, it is assumed that the distribution of

q is given by
+ - -
r{r+s) q" 1 (l_q)s 1

where r > 0 and s > 0 are unknown parameters that are estimated with ob-
served test scores. Apparently Keats (1951) was the first to consider
this model in mental test theory.

The beta-binomial model has certain theoretical disadvantages, but
experience suggests that it frequently gives good results with real data.
A review of these results is given by Wilcox (1981d). However, the model
does not'always give a good fit to data, and some caution should be exer-
cised (Keats, 1964). In the event of a poor fit, a gamma-Poisson model

might be considered (Wilcox, 1981d).
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When the beta-binomial is assumed, many measurement problems can
be solved. These include equating tests by the equipercentile method,
estimating the frequency of observed scores when a test is lengthened,
and estimating the effects of selecting individuals on a fallible measure
(Lord, 1965). Other applications include estimating the reliability of
a criterion-referenced test {Huynh, 1976a), estimating the accuracy of
a criterion-referenced test {Wilcox, 1977c}, and determining passing
scores (Huynh, 1976b).

A problem with the beta-binomial model is that it ignores guessing.
Attempts to remedy this problem are summarized by Wilcox (1981d}, but
all of these solutions now appear to be unsatisfactory in most situations.
This is unfortunate because it means that a slightly more complex model
must be used. More recently, however, Wilcox (1982a, 1982b) proposed
a generalization of the beta-binomial model that takes guessing into ac-

count, and which gives a reasonably good fit to data.

Some Miscellaneous Applications of Latent Structure Models

Several applications of latent structure models have already been
described, and there are several other situations where they may be use-
ful. For example, Ashler (1979} derives an expression for the biserial
correlation coefficient that includes ¢, _;, the proportion of examinees
who know an item. Wilcox (1982g) discusses how to empirically determine
the number of distractors needed on a multiple-choice test item, and

Knapp (1977) discusses a reliability coefficient based on the latent state
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point of view., (See also Frary, 1969.) Macready and Dayton (1977)
iTlustrate how the models can be used to determine the number of equiv-
alent items needed for measuring an instructional objective, and Emrick
(1971) shows how the models might be used to determine passing scores.
Note that Emrick's estimation procedure is incorrect (Wi]cox & Harris,
1977), but this is easily remedied using the estimation procedures al-

ready mentioned; closed form estimates are given by van der Linden (1981).

5. POSSIBLE EXTENSIONS AND CONTROVERSIAL ISSUES

The AUC models assumed that examinees eliminate as many distractors
as they can and then guess at random from among the alternatives that
remain., A recent empirical investigation suggests that the random guess-
ing portion of this assumption will usually give a reasonable approxi-
mation of reality (Wilcox, 1982k). MNo doubt there will be cases where
this assumption is untenable in which case there are no guidelines on
how to proceed.

A theoretical advantage of the Tatent structure model based on
equivalent or hierarchically related items is that they included not
only guessing, but errors such as Pr(incorrect response | examinee knows}.
The practical implications of this are not well understood.

Wilcox (1981a) mentions that under an item sampling model for AUC
tests, an examinee with partial information can improve his/her test
score by choosing a response, and if it is incorrect, deliberately
choose another incorrect response. Thus, if (yl-yz)/n is used to esti-

mate ¢ the estimate would be higher for such an examinee because Yo

t-1°
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is Tower. Four points should be made. First, this problem can be
partially corrected by estimating the qi's with the pool-adjacent-vio-
lators algorithm (Barlow et al., 1972, pp. 13-15). Second, if an ex-
aminee is acting as described, it is still possible to correct for
guessing by applying the true score model proposed by Wilcox (1982a).

If it gives a good fit to data, estimate &, ; to be ql—(l—ql)E(ql).

The third point is that there is no indication of how serious this prob-
lem might be. Finally, a new scoring procedure is being examined that
might eliminate the problem.

It has been argued (e.g., Messick, 1975) that tests should be homo-
geneous in some sense. Frequently this means that at a minimum, ,a test
should have a single factor. A sufficient condition for the best known
Jatent trait models (see e.g., Lord, 1980; Wainer et al., 1980; Hambleton
et al., 1978b; Choppin, 1983) is that this assumption be met (cf. McDonaid,
1981). In general, the latent structure models described in this paper
do not require this assumption. One exception is the eguivalent item
model. (See Harris & Pearlman, 1978.) The point is that in this paper,
no stand on this issue is needed, i.e., it is irrelevant whether a test
is homogeneous when applying, say, the answer-until-correct scoring pro-
cedure, or the corresponding strong true-score model.

Wainer and Wright (1980) and Mislevy and Bock (1982) have studied
the effects of guessing on latent trait models, but these investigations
do not take into account the results and type of guessing described here.
If guessing proves to be a problem, perhaps latent class models can be

of use when latent trait models are applied.
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