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ABSTRACT

This paper proposes the use of a new extension of
standard Item Response Theory (IRT) modeling of dichotomous
variables to include external variables. The extension
requires the formulation of a model for the relationships
between both categorical and continuous external variables
and response items. Four important issues in item analysis
are addressed simultaneously:

1. Estimation of IRT tvpe item measurement
parameters.

2. Assessment of the strengths of hypothesized
antecedents to the student's latent trait level

3. Detection of item bias (differential item
performance). :

4, Testing and relaxation of the IRT requirements of
unidimensionality and conditional independence.

The model and its underlying methodology are
illustrated with data from the eighth grade US sample from
the Second International Mathematics Study.






I. Introduction

The aim of this paper is to propose the use of a new
extension of standard Item Response Theory (IRT) modeling of
dichotomous items to include external variables. Because
external variables may appear both as categorical grouping
variables and as continuous variables. This requires the
formulation of a model for the relationships between the
external variables and the response items. Given the
availability of sufficiently rich data, such extensions can
yield a more informative and powerful analysis of constructs
and their measurement than what has so far been possible by
standard IRT.

To make the discussion concrete, we will illustrate the
methodology in the context of educational achievement test
data, analyzing the eighth grade US sample from the Second
International Mathematics Study (SIMS, Crosswhite, Dossey,
swafford, McKnight & Cooney, 1985). The achievement testing
covered topics in algebra, measurement, geometry, and
arithmetric. The responses to a set of algebra items
administered at the end of the eighth grade will be related
to a set of external variables in the form of background
variables measured at the beginning of the eighth grade.
The background variables include scores on mathematics
tests, family background variables, information on the
student’s attitude towards math, and type of math class
attended in the eighth grade. This information will be
brought together in a single model. The new general feature
of this model is that it simultaneously addresses four
important issues in item analysis:

(i) Estimation of IRT type item measurement
parameters.

(ii) Assessment of the strengths of hypothesized
antecedents to the student’s latent trait level.

(iii) Detection of item bias (differential item
performance) .

(iv) Testing and relaxation of the IRT requirements of
unidimensionality and conditional independence.

While the major novelty is the inclusion of external
variables, there are several new specific features of the
analyses to be presented. One feature is the relaxation of
the conditional independence requirement for certain items
that by virtue of the question format have an association
that can not be described solely by their common dependence
on the single trait. Another feature concerns the handling
of items that have been deemed "biased", e.g., items that
are sensitive to instructional coverage, but still contain



valuable measurement information. Such items can be
retained in the model by explicitly including parameters
that describe the differential item performance. A third
feature is the potential for explaining item bias by the
influence of background variables. A fourth feature is a
stronger test of unidimensionality obtained by checking the
homogeneity of the items in relation te the background
variables, not only by considering inter item associations
as is customary. Finally, the modeling is capable of
including several sets of items of differing content in a
simultaneous analysis of several traits.

To prepare for a discussion of the general modeling
approach of Section III and the data analysis in Section V,
Section II briefly outlines relevant latent variable
measurement modeling theory for dichotomous and continuous
response variables. Section III outlines theory for the
structural equation modeling that we propose for data of
this kind. Section IV describes the response items and a
set of interesting additional variables that are available
in the SIMS data. Section V uses this modeling approach to
analyze the relationship between some of the response
variables of the SIMS data and a set of external variables.
Section 6 concludes.

The statistically less sophisticated reader may wish to
skip sections II and III and go straight to the description
of the data in section IV. Before doing do, such a reader
may wish to note that the modeling framework is given in
Figure 1, where the relationships between the dichotomously
scored y’s and the latent trait n are described in an IRT
fashion by two-parameter normal ogive item characteristic
curves, while the relationship between n and the background
variables of x is described by a standard linear regression
(although values for n need not be estimated to obtain
these regression coefficients).

II. Latent Variable Measurement Modeling

Let us consider dichotomous and continuous response
variable models. Assume a vector of p continuous latent
response variables y* that follow a standard linear
measurement model in each of g groups of students (the

student subscript i and the group subscript will be
deleted),

y*=v+An+e (1)



where n 1is the latent variable vector, & is the vector of
measurement errors, v and A are intercept and slope
(loading) measurement parameters, so that

1

E(y*)=v+ A x (2)

V{y*)

where « 1is the mean vector of n, ¥ is the covariance
matrix of n, and © is the covariance matrix of the
measurement errors, usually assumed to be diagonal.

Ay A+ (3)

When modeling dichotomous response variables we have
for variable j

1, if y. (4)
.= 1, . > T,
Y3 WYy 2T

0, otherwise

When working with aggregates of items in the form of
subscores or item parcels, we assume a continuous response
variable,

yi=y (3)

This is the standard confirmatory factor analysis
measurement framework of Joreskog (1969), extended to a
comparative multiple-group analysis in Joreskog (1971) and
Sorbom (1974, 1978), extended to a multiple factor
dichotomous response model by Christoffersson (1975), Muthen
(1978), and Bock & Aitkin (1981), and further extended to
dichotomous multiple-group analysis in Muthen &
Christoffersson (1981). For an overview, see Mislevy
(1986) .

The generality of the above type of covariance/correla-
tion structure framework makes it suitable for a wide range
of analyses involving validity issues, see Joreskog (1978}
and for instance Bohrnstedt (1983). One specific example
concerns the analysis of multitraitmultimethod matrices by
covariance structure methods; for a recent overview see
Schmitt & Stults (1986).

Let us consider factor analytic modeling of achievement
variables of the SIMS type. Our interest may be in
assessing the dimensionality and strength of relation



between each observed variable and construct(s). The
observed variables may represent the subscores for the
different content areas of algebra, measurement, geometry,
and arithmetic. The subscores may be broken down in
suitable item parcels so that there are several observed
scores for each area. We may entertain the simplistic
hypothesis of a four-factor structure, assuming that the
responses within each content area are unidimensional and
that the correlations between the scores from different
areas can be fully explained by their dependencies on the
correlated constructs. We may also study the measurement
gqualities and relationships among the constructs across
subgroups of students. By multiple-group approaches we may
then test hypothesis of invariant measurement parameters in
the G groups, such as

1
|
1]
]

\Jl = \J2 \)G Y (6)

A = A =__.=fl = A (7)

If (6) and (7) are true we may next want to test the
structural hypotheses

'&G = K (8)
v (9)

¥ ¥ Tt g

We may find that for different instructional exposure
to the topics covered in the test items, invariance of Vv,
or A may not hold for certain of the item parcel scores
related to certain constructs, while for other scores
measurement invariance may be found. As noted by Miller &
Linn (1986), the instructional coverage may be assumed to
affect the construct in question homogeneously across a set
of test items, so that blas does not exist at the item
level. To further scrutinize such issues of validity in
educational achievement data, it is useful to be able to
shift the analysis from the score level down to the "micro"
item level. Such an effort will be described below,
although it should be kept in mind that the techniques to be
discussed are equally applicable on the aggregated
continuous score level

III. A Structural Model

Let y* be as in (1) and let the vector of latent
constructs follow the linear structural equation system



n=o0o+Bn + Tx+z, (10)

where o is an intercept parameter vector, B is a matrix of
slopes for regressions among the n’s (the diagonal elements
of B are zero and I - B ig nonsingular), T is a matrix of
slopes for regressions of the n ’s on the set of g exogenous
observed x variables, while ¢ is a vector of residuals.
With standard assumptions it follows that

E(y'Ix) = v+ A(L-8)Lar a1 -B)trx, (11)

-

AMI-B)YYy(r-B)yta o (12)

v (y'Ix)

This model framework was described in Muthen (1983, 1984),
where it was pointed out that structural models with
dichotomous, ordered categorical, and continuous latent
variable indicators could be fitted into the following
three-part structure:

* -
part 1: o =& (Kt -K[veh (1-B7al), (13)
(mean/threshold/reduced-form regression intercept
structure)
part 2: o, = vec {an(1 - B)"ll"}, (14)

(reduced-form regression slope structure)
part 3: o, = Kvec { AfA(I - B)'1 y(I - B) ""A + o]a}. (15)

(covariance/correlation/reduced-form residual
correlation structure)

Here, & represents a diagonal matrix of scaling
factors related to the covariance matrix V (y* | x) and the
K matrices are designed to select various elements. This
model also encompasses the LISREL formulation of Joreskog
(1973, 1977) and Joreskog & Sorbom (1984). For an overview
of the various types of modeling that are possible, see
Muthen (1983).

The parameters of the model are estimated by
minimization of the generalized least squares fitting
function

F=1/2 (s ~o) W (s -o) (16)

where s contains the sample quantities corresponding to

o, 0'={q’,0,05°), and W is an estimate of the asymptotic
covariance matrix of s. Twice the F value at the minimum
gives an approximation to a large-sample chi square test of
model fit to the restrictions imposed on ¢ . Large sample



standard errors of parameter estimates are readily
available. For technical details, see Muthen (1984).

3.1 Extending IRT to external variables: a MIMIC
structural probit model

Of particular interest in this paper is the formulation
of a special case of the above general model, namely a model
with a single construct underlying a set of dichotomous
items (letting v=0),

*
Yy =Xin+ € (17)

It is well-known that assuming a normal € that is
independent of n and has independent elements gives rise to
the two-parameter normal ogive model of Item Response Theory
(IRT), see e.g., Lord & Novick (1968). This specifies a
probit regression of each y on n . We will now extend this
IRT model to include a set of regressors X,

n=0ad¢+ Y'x + L. (18)
This model is schematically depicted in Figure 1.

The reduced-form solution for y* is
P N (19)

The reduced form regression intercept vector is A o,
the reduced-form regression slope matrix is Ay’ and has rank
one, while the reduced-form residual covariance matrix
Ay Af +0 has a single facfor correlational structure.

To standardize, we take V (y | x) to have unit diagonal
elements. We will add the multivariate probit assumption
that v*| x is multivariate normal. Note that this does not
mean that we assume normality for the y*’s or for n , but
normality is merely required for the residual ¢ and for € .
The distribution of n and the y*’s is actually to some
extent generated by the x’s.

In its continuous response form, this is the
traditional so called MIMIC (multiple indicators and
multiple causes) structural equation model described, e.g.,
in Joreskog & Goldberger (1975); see also references
therein. For dichotomous response variables, this type of
model has been studied in Muthen (1979, 1981, 1983, 1985),
and in Muthen & Speckart (1985), where it was termed a
structural probit model.

A multiple group version of the MIMIC model with
dichotomous responses would seem to be particularly useful



in analyzing the present set of achievement data, allowing a
simultaneous analysis of several groups of students with

respect to both measurement and structural properties in a
single framework.

The generalized least squares estimator becomes
computationally heavy with a large number of elements in o .
Exceeding much beyond, say, 250 elements gives rise to
unreasonable computing demands both in terms of storage and
time. While an unweighted least squares estimator, using
W=I, presumably can handle at least twice this number, it
would not give a chi-square model test, nor would standard
errors be provided. A simultaneous multiple-group analysis
would normally involve all three parts of the model.
However, in a single group analysis the 9 and o3 part of
the model need only be used, since such a model does not
impose restrictions on 0. With p denoting the number of y
variables and q denoting the number of x variables, there
are pg elements in o, and p(p-1)/2 elements in ¢3. While
problems with p=5, g=30 and p=10, g=15 could easily be
handled by the generalized least squares estimator, p=15
would restrict g to less than 10. Larger models could be
handled by ignoring the restrictions imposed on the o; part,
which would use less information in the estimation but would
give all the results needed. Here, p=20, g=10 could be
handled with somewhat heavy but not excessive computations.
In the analyses of Section 5, a single group analysis using
o, and o3 was carried out with p=8 and g=24 and a multiple-
group analysis of two groups with p=8 and g=14. While the
multiple-group analysis involved modest computing, the
single group analysis, using 224 o elements, involved
rather heavy but not excessive computing. Still, it is
clear that the analysis proposed are best suited to the
detailed scrutiny of a small set of items.

Iv. The SIMS Data

To illustrate the methodology in a realistic setting,
we will use data from the Second International Mathematics
Study (Crosswhite, Dossey, Swafford, Mcknight, & Cooney,
1985). We will be concerned with a subset of data from the
population of U.S. eighth grade students enrolled in regular
mathematics classes. A national probability sample of
school districts was selected proportional to size; a
probability sample of schools were selected proportional to
size within school district; and two classes were randomly
selected within each school yielding a total of about 280
schools and about 7,000 students measured at the end of
Spring 1982.

The achievement test contained 180 items in the areas
of arithmetic, algebra, geometry, probability and
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statistics, and measurement distributed among five test
forms. Each student responded to a core test (40 items) and
one of four randomly assigned rotated forms (34 or 35
items). All items were presented in a five category
multiple choice format. In Section 6 our analysis will not
include probability and statistics and will only use the
core items within the other areas, 8 each for algebra,
geometry, and measurement, and 16 for arithmetic. In this
chapter, the responses to the eight algebra items will be of
particular interest.

The instructional coverage of algebra, and the
mathematics curriculum in general, is rather varied for U.S.
13 year olds. Hence, to complement the item response
information for these algebra items, we will utilize a
class-level variable which categorizes the mathematics
classes into four types, basic or remedial arithmetic
(REMEDIAL), general or typical mathematics (TYPICAL), pre-
algebra or enriched (ENRICHED), and algebra (ALGEBRA).
Furthermore, we will check the plausibility of our analyses
by drawing from class-level, item-specific, information on
teacher reports of Opportunity To Learn (OTL), where a
student is regarded as having OTL if the teacher taught or
reviewed the mathematics needed to answer the item correctly
either during this year or prior school years.

The responses to the SIMS items discussed above were
collected at the end of the eighth grade. The achievement
level obtained by the student on the various aspects of the
mathematics content has at that point of time been
influenced by factors such as the type and amount of
instruction given during the school year, initial aptitude,
motivation, and interest in the topic¢, and a variety of
socio-demographic and other variables. Regarding algebra
achievement, the outcome should be strongly related to the
type of class attended, since in the eighth grade the
content of the algebra test would usually only be well
covered in the enriched (prealgebra) or algebra classes. To
a certain extent, selection into such classes takes place
based on the student’s seventh grade scholastic performance
in mathematics, particularly the central topic of
arithmetic. The participation in eighth grade algebra
classes may have important consequences since this allows
students to take calculus in high school, which in turn
opens up possibilities to study science and mathematics
topics in colleges and universities (see alsoc Kifer, 1984).

Much could be learned if student post-test performance
could be related to the mathematics course taken and to
student characteristics as they entered the course. With
the SIMS data we are in the fortunate position of having
available a set of such external measurements from the
beginning of the eighth grade. Fall 1981 "pre-test" data
was gathered for a large portion of the "post-test" students
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measured in the spring of 1982. We will use this additional
data to study both the algebra post-test item responses and
a set of external variables in the framework of a model that
relates the post-test algebra achievement to pre-test
predictors. These additional pieces of background data will
now be briefly described.

The pre-test data were gathered in the same way as the
post-test data. The new set of variables to be used in our
model in addition to the post-test algebra items includes
pre-test scores on the core items of algebra, measurement,
geometry, and arithmetic, measurements of father’s and
mother’s education, father’s occupation, ethnicity, gender,
attitude measurements describing the student’s interest in
more education, how useful he or she thinks mathematics
knowledge will be, and his or her attraction to mathematics,
and finally information on class type. The measurement and
scoring of these background variables is described in Table
1. The abbreviations of Table 1 will be used from now on.
It is important to note that some of the variables were
measured only at the post-test occasion, particularly MORED,
USEFUL, ATTRACT. These three measured were taken from
Delandshere (1986).

Insert Table 1 about here

The wording of the eight post-test algebra core items is
given in Table 2.

Insert Table 2 about here

The sample used for analysis is the match between post-
and pre-test students that have complete data on all
variables except father’s occupation. For this variable
there was unfortunately a large portion of missing data and
it was decided to retain such observations by including
missing data as a special category, in addition to the dummy
coded categories Low, Middle, and High. The analysis sample
is, however, only a subset of the two pre- and post-test
data sets and in order to judge the effects of the missing
data, Table 3 gives descriptive statistics for relevant
variables form each of the three data sets. For purposes of
simplifying the analyses, the variables have all been
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transformed to a 0-1 range. The analysis sample has
somewhat higher means than the other samples both on
variables thought to be positively correlated with
achievement and on post-test algebra performance.
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Insert Table 3 about here

Although not included directly in our analysis in
Section 6, we will also utilize the item-specific OTL
measurements on the post-test algebra items in order to
enhance our understanding of the analysis. The upper panel
of Table 4 gives the percent correct on each item broken
down by class type, while the bottom panel gives the
corresponding OTL means.

Insert Table 4 about here

v. Analysis of the SIMS Data by a Structural Model

Let us now analyze the SIMS data using the modeling
framework presented in Sections 2 and 3. It may be noted
that the proposed analyses can not be handled by present IRT
software, nor by present structural equation modeling
software, such as LISREL. The estimation and testing of the
models to be presented was carried out by an experimental
version of the LISCOMP computer program (Analysis of Linear
Structural Equations by a Comprehensive Measurement model),
developed by the author. The program provides limited
information generalized least-squares estimation of the
model parameters as they appear in the three-part structure
of Section 3. Standard errors of estimates and a large-
sample chi-square test of fit to the restrictions on the
three model parts are also provided.

We consider the MIMIC model of Figure 1. The y vector
of response items correspond to the eight items of Table 4.
The ¥ vector of regressors consists of the 17 background
variables given in Table 1: PREALG, PREMEAS, PREGEOM,
PREARITH, FAED, MOED MORED, USEFUL, ATTRACT, NONWHITE,
REMEDIAL, ENRICHED, ALGEBRA, FEMALE, LOWOCC, HIGHOCC,
MISSOCC, and seven interaction terms, between NONWHITE and
the three class type dummies, between PREARITH and the class
type dummies, and between NONWHITE and PREARITH. 1In a
preliminary analysis we also included interactions between
sex, PREALG, and the class type dummies, but these were not
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found significant. The latent variable construct, Post-tegt
algebra achievement as Measured by the core itens, is Viewed

construct. Thig was done for two Treasons. oOpe TYeason
relates to the fact that our analysis Sample was obtained by
"list-wise deletion" of incomplete cases where judging fron
Table 3 the missingness appeared to be Somewhat Sselective,
If the missingness on the y’s can pe largely bredicted by
the includeg X’s, the bias that coulg potentially have
resulted in the Parameters of the regressions may be small

{c.f. Marini, Olsen, & Rubin, 1980). a Second reason is

type, and Pretest arithmetic Score, again to reduce
potential bias, Furthermore, Muthen (1986) foung that in
addition to Pretest scores and demographic variables class

Section V.1 deals with certain weaknesses in the actual
data analysis. The reader who merely wants to view the
analysis as illustrations of the potential of the new type
of modeling may want to skip to section 5.2.

V.1 Analysis caveats

analyses related to the sampling, the temporal ordering of
the variables, ang the potentiail of measurement error and
omitted variables in the set of X’s, problems which may
Cause bias in the regressions, First of all, our analyses
ignore the complications of stratifieq sampling anqg
multilevel, hierarchical observations. Although we realize
that these features may have non-negligible consequences
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advanced eighth grade classes and post-test achievement.
These scores presumable reflect attitudes built up both
before and during the eighth grade, although they are most
likely not a direct reflection of the post-test performance.
Furthermore, the pre-test scores are created from a small
number of items, giving rise to low reliability. Although
the rotated form items could have been used, this was
avoided since it would have either involved equating of
observed scores or using IRT techniques with sets of items
many of which may have low validity at the pre-test due to
rather limited OTL. For the 16 pre-test arithmetic items,
an attempt was made to avoid the influence of measurement
error by instead using factor scores. These were obtained
in the form of estimated ¢ values from a marginal maximum
likelihood estimation (see Bock & Aitkin, 1981) of the 16
items with a three parameter logistic model using the
computer program BILOG (Mislevy & Bock, 1984). Although
reduction of measurement error would have been even more
desirable for the other subtests, which involve fewer items,
it was judged that the small number of items and the
heterogeneous OTL measures for these subtests might not
yield reliable results by IRT methods. For algebra and
measurement, one item each was rejected as invalid in
relation to the total 40 item score. This results in
"favoring” the variable PREARITH in the search for
influential regressors. However, it was thought to be
important to try to measure this variable well since it may
be viewed as a proxy for final seventh grade mathematics
achievement, which is an important factor in deciding eighth
grade curriculum.

A further measurement flaw included a 40% missingness
on Father’s occupation. We should also note that the
Ethnicity category NONWHITE is a very heterogeneous group
consisting of 741 students, broken down as 8% American
Indians, 41% Blacks, 17% Chicano, 6% Latin, 9% Oriental, and
19% oOther. In terms of omitted variables, parental income
may be a predictor of class type but was not measured, and
it would have been very valuable if more general ability
measures had been available before entrance into the eighth
grade instead of merely fall pretest scores. Also, measures
of reading comprehension and vocabulary would have been of
interest since they might play a role in "word problems".

Preliminary analyses were carried out on the post-test
response items in order to investigate the presence of
guessing (or non-zero lower item characteristic curve
asymptote) and/or violations of unidimensionality in the
algebra items. Marginal maximum likelihood estimation of
the two and three parameter logistic IRT models was carried
out in BILOG and unidimensionality was tested both via
LISCOMP’s limited information GLS procedure and via the full
information estimation procedure of TESTFACT (Wilson, Wood,



& Gibbons, 1984; see also Bock, Gibbons, & Muraki, 1985), in
both cases assuming zero lower asymptotes. While
unidimensionality could not be rejected using these
approaches, the likelihood ratio chi-square test of zero
lower asymptotes obtained a value of 46 with 8 degrees of
freedom. Although the large sample size of 4,320 yields a
strong power for rejection and lower asymptotes may not be
well estimated from such small number of items, there seems
to be a possibility of some nonzero asymptotes. The
influence of this on our two-parameter model would
presumably be a slight underestimation of the corresponding
slope (loading) and a biasing of the threshold, while
structural parameters may be relatively unchanged.
Anticipating the analysis discussion below, it is
interesting to note that neither the difficult Item 1 nor
Item 5 exhibits significant asymptotes, either when
analyzing the 8 algebra items alone or together with the
other core items in a 40 item analysis (39 items were
actually used due to one flawed item).

V.2 A structural model for all students: Model 1

In the first step of the analysis we will consider the
strongest and most restrictive model, where achievement is
viewed as a unidimensional construct, so that a single
latent variable intervenes in the regressions of the y’s on
the x’s, without any direct regression paths from x’s to
y’s. This model will be called Model I. It should be noted
that in this first step of the analysis, the categorical
grouping variables of class type, gender, and ethnicity are
included as dummy coded variables among the set of x’s. Our
intention is to let the analysis of Model I, and
modifications thereof, assist in generating ideas for
subsequent simultaneous multiple-group analyses, where the
grouping is based on such categorical variables, and where a
more detailed analysis is possible. For our first analysis
of the whole analysis sample of 4,320 students, the complete
set of assumptions in Model I may not be entirely realistic,
since we include all the different types of eighth grade
classes, while Table 4 clearly shows that percent correct
and OTL varies greatly and in different patterns for
different items over these classes. Nevertheless, this may
be useful starting point for our analysis.

Model I is an overidentified model, which imposes 188
restrictions on the reduced form regression slopes and
residual correlations. The standard IRT unidimensionality
assumption with conditional independence contributes 20
restrictions, since 28 reduced form residual correlations
are described by 8 parameters related to the measurement
part. The concept of an intervening latent variable



construct in the regressions of the y’s on the x’s
contributes the remaining 168 restrictions, since 192
reduced form regression slopes are described by merely 24
structural regression slope parameters. Hence, in terms of
restrictions imposed, the content of the model is largely a
result of using the external variables of X and imposing
MIMIC restrictions on the regression slopes for y on x.
Utilizing external variables in this way gives a more
powerful assessment of measurement qualities for the y’s
than would be obtained by considering responses to the y’s
alone as in standard IRT.

The large-sample chi-square test of fit to the 188
restrictions of Model I obtained a value of 681. This
represents a significantly misfitting model. However, given
the power resulting from the large sample size of 4,320, the
value is in our opinion small enough to warrant attempts of
modifying details of this first approximation rather than
rejecting it in its entirety. Throughout, we will use the
chi-square test results more as descriptive measures of
overall fit for a sequence of models fitted to the same data
than as a rigorous hypothesis testing instrument. 1In terms
of such a descriptive useage, some experience with
structural models for dichotomous response data lead us to
judge as reasonable fit a chi-sgquare to degrees of freedom
ratio scaled to a sample size of 2,000 that is less than say
1.5 (this ratio is 1.7 for Model I). We know that there may
be clear substantive reasons for lack of fit in parts of
Model I and we will not be satisfied with the model as it
stands, but investigate the possible reasons for misfit in
an attempt to arrive at a modified Model II.

The fact that Model I is strongly over-identified
offers the opportunity to check the appropriateness of the
various assumptions involved and to relax some restrictions
if judged necessary. This would not be possible in a
straightforward multivariate regression of the y’s on the
x’s, but is the result of our notion of a single latent
construct. To aid in attempts to check the fit of the
various restrictions, so called modification indices will be
used. They are similar to what is provided in the LISREL
structural equation modeling program (Joreskog & Sorbom,
1984). Such an index reflects the expected improvement in
fit if a restricted parameter, such as one set to zero, is
allowed to be freely estimated. The indices to be used in
this version of LISCOMP are not scaled to represent the chi-
square metric as in LISREL, but are merely the first-order
derivatives of the parameters. It should be noted that the
use of these modification indices as a data exploration
device may be dangerous. The information from the various
indices for a certain model can be misleading since they may
be highly correlated, the information really only pertains
to freeing up one parameter at a time, the indices are only
good approximations for models that are close to a well

17
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fitting one, and we may capitalize on chance in our data.
Below, we will try to use these indices with care in
conjunction with substantive considerations.

The modification indices for Model I are given in Table
5 below. The indices in the top part of the table gives
information on which direct paths from x’s to y’s may need
to be freed from their restriction to zero. These paths
correspond to the broken arrows of Figure 1. The indices in
the bottom part of the table gives information on potential
violations of the conditional independence assumption of
zero correlations among the residuals. In this table, the
first-order derivative modification indices have reversed
signs so that the present sign describes the expected
direction of change from zero in a parameter. The
derivative values have also been divided by 10 and rounded.

Insert Table 5 about here

Scrutinizing Table 5 in conjunction with other
substantive information will lead us to Model II. Let us
only consider the three largest modification indices for
Model I, marked by asterisks in Table 5. Starting with Item
i’s index of 17 for the ALGEBRA class dummy (comparing to
the category of Typical classes), we have an indication of a
positive direct "effect" of membership in algebra classes on
the performance on Item 1 (c.f. Muthen, 1986). It should be
kept in mind that this direct influence occurs over and
above the influence of the latent achievement construct on
Item 1. This implies that students with the same algebra
achievement level, but belonging to different class types,
may perform differently on Item 1; algebra class membership
gives an advantage. Hence, we have a suggestion of "item
bias", or rather instructional sensitivity in Item 1. This
empirical suggestion makes substantive sense when we
consider our auxiliary information. This is the only one of
the algebra items that deals explicitly with "solving for
x". Table 4 shows that this is the hardest of the eight
items, with a large difference in proportion correct between
students of typical and algebra classes, and with the
largest difference in OTL between typical and algebra
classes. From Table 4 we see that Items 6 and 7 have
somewhat similar features, but none of these items exhibit
large ALGEBRA modification indices in Table 4. It seems as
if in this set of items the lack of instructional coverage
in typical classes has a particularly detrimental effect on
the response to Item 1.



The largest modification index for direct x to y paths
in Table 5 occurs for Item 5 on the dummy variable FEMALE.
This suggests a gender item bias. The negative sign would
imply that, for given achievement level, Females perform
worse on Item 5 than Males. We may note that this item
involves a "word problem" in a way the other items do not.
This potential gender difference will be further analyzed
below. The largest modification index in Table 5 occurs for
a correction between the measurement error of Item 6 and 8,
suggesting a violation of the conditional independence for
these two items in the form of a positive correlation. From
the item wording of Table 2 we do in fact note that both
items, and none of the others, involve a direct translation
of a word problem into a mathematical formula. Hence it is
possible that the correlation may indicate the presence of a
specific skill, in addition to the algebra achievement
construct, required for such a translation.

v.3 A structural model for all students: Model II

Let us now free up the above three parameters that were
fixed to zero in Model I and consider the modified Model II.
This model obtained a chi-square value of 441,59 with 185
degrees of freedom. The difference in chi-square from Model
I is 240 with 3 degrees of freedom. Given the sample size
we regard this outcome as an indication of a reasonable
overall fit in the major parts of the model, although
further adjustments could be made. Some interesting details
may be noted before we consider the estimates of Model II.
First, in this case the freeing up one of the three
parameters at a time would by use of the largest
modification indices lead to the same final result,
irrespective of the order in which this was done. Second,
the major results in terms of general magnitude and
significance of structural coefficients remain largely
unchanged when going from Model I to Model II. Third, for
Model II the modification index for PREARITH x ALG has been
reduced to almost zero from the Model I value of 9, the
Model I value of 10 for item 8 on FEMALE has only been
reduced to 8, the Model I value of 8 for Item 3 on ENRICH
remains the same , and the Model I value of -8 for Item 5 on
NONWHITE also remains the same. The remaining major
modification indices now appear among the error correlations
with a few values of about 10.

The parameter estimates for Model II are given in Table
6, where the first part of the table gives measurement
parameter results and the second part gives results on
structural parameters. For the measurement part we also
give estimated reliabilities for each item.
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Insert Table 6 about here

The estimated reliabilities are in some cases rather
low, although we must bear in mind that these are item level
responses. Since Item 1 and 5 are directly related to both
the latent construct to be measured and one of the
regressors, these two items, in relation to the other items
in the set, are not homogeneous with respect to the set of
regressors (c.f. Muthen, 1985). Regarding the structural
parameter estimates, we find expected strong, significant
influences on achievement from PREARITH and PREALG, and the
other pretest scores, but also from USEFUL, ALGEBRA, FEMAIE,
and HIGHOCC. The significance of the last three dummy
variables implies that given other regressor values being
equal, membership in advanced classes rather than typical
ones, being female, and having a father in the high
occupation category rather than the middle one, are
conditions associated with a higher level of algebra
achievement as represented by the latent variable construct.

In addition to this, we find from the bottom of Table 6
that for a given value of the achievement construct,
membership in algebra classes and being female,
respectively, is associated with a higher level of
performance on item 1 and a lower performance on item 5,
respectively. From the estimated parameters and the sample
mean vector and covariance matrix for x, we may also
calculate the mean and variance of the latent variable
construct and the proportion of variation in this construct
that is accounted for by the set of regressors. We obtained
a mean of 2.20, a standard deviation of 0.87, and 73% of the
variation was accounted for. Using the mean and standard
deviation we can translate the measurement parameter
estimates to standard IRT a and b values on a 0,1,0 scale
(see below in relation with Table 8).

V.4 A simultaneous structural analysis of males and
females in typical classes

In Muthen (1986), the above analysis is taken further
by considering class type differences. Here, we will
instead study in more detail the differences and
similarities in measurement and structural parameters across
gender. A simultaneous, two-group analysis will be carried
out for students of typical classes. In these models, 14 x
variables from the original set remain after eliminating
class type and gender related dummies. Table 7 gives
descriptive statistics for these regressors. We note that
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Insert Table 7 about here

that Males have slightly higher means on variables
associated with high achievement, except for USEFUL. The
proportion correct for the post-test algebra items in
typical classes were for Males: 0.14, 0.65, 0.50, 0.40,
0.47, 0.51, 0.37, 0.50, and for Females: 0.14, 0.69, 0.50,
0.46, 0.38, 0.53, 0.35, 0.56. The OTL values are given in
Table 4 and do not vary appreciable over gender.

In the multiple-group analysis the effect of gender
can be studied in more detail than was possible in the
single-group analysis of Model II. In Model II, gender
differences were only captured the intercepts of the
achievement and the latent response variable regressions.
Although interaction terms between gender and other
regressors in Model IT could have been accommocdated in the
achievement construct relation, the dummy variable approach
would not for instance be able to handle gender differences
in measurement slopes (loadings). Also, in a multiple-group
analysis it is easier to separately deal with tests of
invariance in the measurement and the structural part.

In this analysis we will apply a multiple-group version
of the Figure 1 MIMIC model. Since the same measurement
instrument was used for the two sexes, we will test the
notion of invariance in the measurement thresholds and
slopes (loadings) for the eight response items, allowing all
other parameters to differ across the two groups. Based on
the previous analysis results for all students, we will
however allow the threshold and slope of Item 5 to vary. As
a base line model we will first consider a multiple group
analysis of males and females where no parameters are
invariant, in order to assess the appropriateness of the
MIMIC model itself. With 236 degrees of freedom, this
resulted in a chi-square value of model fit of 366. This
fit is judged as satisfactory. The total sample size is
2,417 broken down as 1,150 males and 1,267 females.

The addition of invariance of measurement intercepts
and slopes, except for Item 5, resulted in a chi-square
value of 381 with 248 degrees of freedom, yielding a non-
significant chi-square increase of 15 with 12 degrees of
freedom compared to the base-line model. Also adding
invariance for Item 5, however, resulted in a chi-square
difference test value of 33 with 2 degrees of freedom. This



strong rejection of the invariance notion for Item 5 is in
line with our single-group results for Model II in all class
types. The parameter estimates for the multiple-group model
of invariant measurement threshold and slopes, except for
Item 5, is given in Table 8.

Insert Table 8 about here

From the measurement part of Table 8 we see that Item 1
has the lowest correlation with the latent achievement
construct. This is in line with the low OTL value of 50% in
Table 4. For Item 5, the gender difference in thresholds
and loadings translates into (see Muthen & Christofffersson,
1981, equations 28 and 29) a two-parameter normal ogive a
(discrimination) and b (difficulty) value on a 0,1, © -
metric of 0.81 and 0.09 for males and 0.65 and 0.51 for
females. Hence, the male item characteristic curve is
shifted to the left from the female curve and is steeper,
thereby favoring males. The reason for this gender
difference is, however, unclear. The availability of
further external variables such as a reading comprehension
test might possibly have been able to shed light on this
matter (c.f. Muthen, 1985).

Regarding the structural slopes, the results are rather
similar to those for all students in Model II of Table 6.
In the present model the intercept difference in the
structural relation for the latent variable construct is not
significantly different from zero. However, estimating the
construct mean from the estimated coefficients and the
sample mean vector for the x’s, we find a value of 1.81 for
males while females obtain 1.88. This difference should be
viewed in relation to the male standard deviation of 0.67
and the female standard deviation of 0.63. Although males
seemed to have slightly higher means on important regressors
in Table 7, females end up with a higher post-test
achievement level. The proportion of variation in the
construct accounted for by the x’s is 66% for males and 68%
for females.

In addition to imposing restrictions of measurement
parameter invariance, it is also of interest to study the
differences in the structural parameters across gender. For
instance, are the possible higher level of the achievement
construct for females due to the fact that females have
higher slopes on important regressors (the important
variable USEFUL would however be an important exception)?
Adding the restriction of invariant structural slopes,
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yields a chi-square difference of 29 with 14 degrees of
freedom, while restricting only the slopes for PREARITH to
be equal across sex yields a chi-sguare difference value of
2 with 1 degree of freedom. There seems to be some evidence
of differences in some of the slopes, although PREARTH seems
to have equal predictive strength for the two sexes.

VI. Conclusions

The MIMIC structural modeling approach was found to be
quite useful with the present data where there was a
particular interest in post-test responses and where pre-
test data was available. Using a single model framework
that extends the boundaries cof IRT, we were able to
simultaneously deal not only with issues of measurement
qualities, but also differential item performance in

different subgroups and differential prediction of
achievement.

Other versions of the general model of Section 3 would
be relevant in other situations. The external x variables
need not only appear as background variables, predicting the
dichotomous y’s. For instance, we may be interested in the
differential predictive validity in different groups of a
set of items or subtest scores for which certain constructs
are hypothesized. Here, careful measurement modeling
carried out on the exogenous side may lead to better
predictions of a certain y criterion. The use of structural

modeling in such situations does not seem to have been fully
explored.
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TABLE 1

Description of External Variables

PREALG

PREMEAS

PREGEOM

PREARITH

FAED

MOED

MORED

USEFUL

Proportion of correct reponses on seven pre-
test core items.

Proportion of correct responses on seven pre-
test core items.

Proportion of correct responses on eight pre-
test core items.

Estimated pre-test theta based on the three-
parameter logistic model using 16 items.

The highest type school attended by father or
male guardian.

1 = very little schooling, or no schooling at
all

2 = primary school

3 = secondary school

4 = college, university or some form of

tertiary education

As in FAED, but for respondent’s mother or
female guardian.

Responses to the question "After this year,

how many more years of full-time (including

university, college, etc.) education do you
expect or plan to complete?"

none at all (0 years)

up to 2 years

more than 2 years - up to 5 years
more than 5 years - up to 8 years
more than 8 years

(€, IV N
E I |

Average score of four attitude items scored:
Strongly disagree (1), Disagree (2),
Undecided (3), Agree (4), and Strongly agree
(5). These items are:

1. I can get along well in everyday life
without using mathematics (Reversed).



ATTRACT

2. A knowledge of mathematics is not
necessary in most of occupations
(Reversed) .

3. Mathmatics is not needed in every day
living (Reversed).

4. Most people do not use mathematics in
their jobs (Reversed).

Average scores of five attitude items.

Scoring is in the same way as for USEFUL and
the items are:

1. I would like to work at a job that lets
me use mathematics.

2. I think mathematics is fun.

3. Working with numbers makes me happy.

4. I am lococking forward to taking more
mathematics.

5. I refuse to spend a lot of my own time

doing mathematics (Reversed).



TABLE 1 Con’t.

Description of External Variables

Ethnicity dummy coding (0 = White): 1 NONWHITE

Class type dummy coding (0 = Typical class):

REMEDTIAT
ENRICHED
ALGEBRA
Gender dummy coding (0 = Male):

FEMALE

Father’s occupation dummy coding

(0 = Middle): 2
rowocc
HIGHOCC
MISSOCC

Notes:

1. The non-white category consists of American Indian,
Black, Chicano, Latin, Oriental, and Other.

2. The LOWOCC category of Father’s occupation consists of
the classifications Unskilled and Semi-skilled worker, the
Middle category consists of Skilled worker, clerical, sales
and related, the HIGHOCC category consists of Professiocnal
and Managerial, and the MISSOCC category consists of no
response and unclassifiable response.



TABLE 2

Wording for Eight Post-test Algebra Core Items

HOOmW»

HOOQm

If 5x + 4 = 4x - 31,
then x is equal to

=35
=27
3
27
35

If P=1W and if P = 12
and I, = 3, then W is equal to

A 3/4
B 3
c 4
D 12
E 36

(-2) x (-3) is equal to

A -6
B -5
C -1
D 5
E 6

If 4x/12 = 0, then x
is equal to

P
N WOo

The air temperature at
the foot of a mountain
is 31 degrees. On top
of the mountain the
temperature is -7
degrees. How mnuch
warmer is the air at
the foot of the
mountain?

-38 degrees
-24 degrees
7 degrees
24 degrees
38 degrees

HO 0w

A shopkeeper has x kg
of tea in stock. He
sells 15 kg and then
receives a new lot
weighing 2y kg. What
weight of tea does he
now have?

X - 15 - 2y
X + 15 + 2y
X - 15 + 2y
X + 15 - 2y
None of these

EHQDOoD



TABLE 2 Con’t.

Wording for Eight Post-test Algebra Core Items

7. The table below compares
the height from which a
ball is dropped (d) and
the height to which it
bounces (b).

d 50 80 100 150

b 25 40 50 75

Which formula describes
this relationship?

A b=24da
2
B b =24
cC b =4d/2
D b=4d+ 25
E b=d4d - 25
8. The sentence "a number x

decreased by 6 is less than
12" can be written as the

inequality

A X - 6 > 12
B X -6 > 12
C X - 6 < 12
D 6 - x > 12
E 6 - X < 12



TABLE 3
Descriptive Statistics for the Different SIMS Samples

Pre-test Sample ' Post-test Sample  Analysis Sample
(N =6517) (N= 7248) (N = 4320)
Mean 5.0 N Mean §.D N  Mean S.D. N

PREALG 040 025 6353 —_ - — 043 026 4320
PREMEAS 049 025 6353 - — — 051 024 4320
PREGEOM 033 023 6353 — — — 035 023 4320
PREARITH

(OBS. SCORE) 039 023 6353 - — — 052 026 4320
PREARITH

(THETA SC.) — — - - - — 040 018 4320
FAED - - — 0.80 0.24 6831 0.82 023 4320
MOED — - — 0.79 022 6879 030 021 4320
MORED — — — 0.75 020 6931 077 0.19 4320
USEFUL — — - 071 019 6878 0.72 0.19 4320
ATTRACT - - - 0.54 0.20 6856 0.54 020 4320
NONWHITE - — - 0.26 044 6694 0.22 041 4320
REMEDIAL — - - 0.08 027 7248 0.07 025 4320
ENRICHED — — — 022 041 7248 025 043 4320
ALGEBRA —_ — - 0.13 034 7248 0.13 033 4320
FEMALE - - — 0.52 050 7024 0.53 050 4320
LOWOCC - - - 0.18 0.38 7248 0.18 Q.39 4320
HIGHOCC — — - 0.11 032 7248 (.13 033 4320
MISSOCC - - — 042 049 7248 039 049 4320
POSTALG1 — —_ — 021 041 7013 022 041 4320

POSTALG2 - - — 069 046 7013 0.72 045 4320



POSTALG3
POSTALG4
POSTALGS
POSTALG6
POSTALGT
POSTALGS

ALG OTL%

Table 3 (Con't)

- 0.57
- 0.49
- 0.45
-— 0.55
- 0.39
- (.56

- 0.71

0.50
0.50
0.50
0.50
0.49
0.50

0.26

7013
7013
7013
7013
7013
7013

6914

0.58
0.51
047
0.57
0.40
0.59

0.72

0.49
0.50
0.50
0.49
0.49
0.49
0.26

4320
4320
4320
4320
4320
4320
4224



TABLE 4
Proportion Correct and Opportunity to Learn (OTL)

Proportions for the Eight Post -Test Algebra Core Items

by Class Type
Item
1 2 3 4 5 6 7 8
" Class Type Proportion Correct

REMEDIAL  0.09 0.44 0.14 0.22 0.14 030 022 031
TYPICAL 0.14 0.67 050 043 0.42 052 036 0.53
ENRICHED 0.22 0.81 073 0.63 0.55 0.63 046 0.68
ALGEBRA 0.65 0.90 090 0381 0.71 0.85 058 0.84
TOTAL 022 072 058 051 0.47 0.57 0.40 0.59

OTL Proportion
REMEDIAL.  0.21 0.61 043 041 0.65 0.09 016 0.20
TYPICAL 0.50 0.85 097 0.6 0.93 040 038 0.64
ENRICHED 0.78 096 094 094 095 047 058 0.83
ALGEBRA 0.95 095 1.00 095 1.00 095 0.81 1.00
TOTAL 0.61 0.87 093 080 092 0.46 047 070
Table 4 (cont.)

Sample Size

REMEDIAL TYPICAL ENRICHED ALGEBRA TOTAL
299 2417 1061 543 4320



All Students. Model I (N = 4,320)

TABLE 5
Modification Indices for a Structural Model.

Iteml Item?2 Item3 Item4 Item5 Item6 Item7 Item 8

PREALG 2
PREMEAS -1
PREGEOM 1
PREARITH -1

FAED -3
MOED -1
MORED 0
USEFUL -1

ATTRACT 3
NONWHITE 3
REMEDIAL 3
ENRICHED -9
ALGEBRA  *17
FEMALE 0
LOWOCC 1
HIGHOCC -1
MISSOCC 1
NONW X REM 2
NONW X ENR 0
NONW X ALG 2
PREARITHX 1
REM
PREARITHX -4
ENR
PREARITHX 9
ALG

NONW X 1
PREARITH

Direct Relationships Between Items and Regressions

b O O LW O O OC = =

]
[

S o= o= W N



Table 5 (Con't.)

Measurement Error Correlations

Item 2 5

Item 3 2 -1

Ttem 4 3 0 7

Ttem 5 6 -12 7 -11

Itemm 6 4 10 -4 4 5

Item 7 1 2 -6 -5 13 2
Item 8 4 -3 -8 2 -7 *21

* Freed parameter in Model II.



TABLE 6

Parameter Estimates for a Structural Model.
All Students. Model I (N = 4,320)

Measurement Parameter Estimates

Response Thresholds Loadings

Itern Est. Est./S.E. Est. Est./S.E. Reliabilities
Item 1 2,19 27 0.54 16 0.19
Ttem 2 1.23 14 0.88 22 0.41
Item 3 1.91 20 1.00 *  -- 0.49
Item 4 1.76 20 0.82 23 0.37
Item 5 1.85 20 0.89 23 0.42
Item 6 1.59 19 0.82 22 0.37
Item 7 1.57 21 0.59 19 0.22
Item 8 1.34 17 073 21 0.32

Error correlation for Items 6 and 8

0.12 5

* Parameter is fixed to set the metric of the latent variable construct.



Table 6 Cont'd.
Structural Parameters with the
Latent Construct as Dependent Variable

Regressor Estimate Estimate/S.E.
PREALG" 0.68 11
PREMEAS 0.45 7
PREGEOM 0.33 5
PREARITH 2.09 16
FAED 0.07 1
MOED 0.02 0
MORED 0.18 3
USEFUL 0.45 7
ATTRACT 0.04 1
NONWHITE -0.02 0
REMEDIAL 0.07 1
ENRICHED 0.22 3
ALGEBRA 0.56 4
FEMALE 0.14 6
LOWOCC 0.02 1
HIGHOCC 0.12 3
MISSOCC 0.05 2
NONW X REM 0.10 1
NONW X ENR 0.19 3
NONW X ALG -0.18 -1
PREARITH X REM -1.45 -3
PREARITH X ENR -0.10 -1
PREARITH X ALG -0.54 2
NONW X PREARITH -0.19 -1

Item - Regressor Relations not Mediated by Latent Construct

Item 1on ALGEBRA 0.86 13
Ttem 5on FEMALE -0.35 -8
Latent Construct

Residual Vanance 0.20 13



TABLE 7

Means and Standard Deviations for Males and Females

in Typical Classes

Male (N =1,150)

Female (N =1,267)

Regressors Mean S.D. Mean S.D.
PREALG 0.38 0.23 0.37 0.23
PREMEAS 0.50 0.23 0.45 0.23
PREGEOM 0.33 0.22 0.29 0.19
PREARITH 0.37 0.17 0.36 0.15
FAED 0.81 0.23 0.79 0.23
MOED 0.80 0.20 0.78 0.21
MORED 0.74 0.20 0.74 0.19
USEFUL 0.69 0.19 0.73 0.17
ATTRACT 0.52 0.20 0.54 0.20
NONWHITE 0.21 0.41 0.23 0.42
LOWOCC 0.21 0.41 0.20 0.40
HIGHOCC 0.11 0.31 0.11 0.31
MISSOCC 0.37 0.48 0.40 0.49
NONW X PREARITH 0.06 0.13 0.07 0.14




Figure 1.

A MIMIC Structural Probit Model



TABLE 8

Parameter Estimates for a Simultaneous Structural Model
Analysis of Males and Females in Typical Classes

Measurement Parameter Estimates
(Thresholds and loadings invariant over gender, except for item 5)

Response Thresholds Loadings Reliabilities
Item Est. Est/S.E. Est. Est/S.E. Males Females
Item 1 2.16 18.79 0.55 1007 0.13 0.11
Item 2 1.50 9.58 1.09 14.66 0.39 0.36
Item 3 1.83 12.61 1.00* --- 0.35 0.31
Item 4 1.83 13.54 0.90 14.25 0.29 0.26
Iem 5 0.40 0.30
Males 206 1191 1.10 12,51
Females 213 1172 097 11.69
Item 6 1.74 12.59 0.98 1443 0.33 0.30
Item 7 1.71 1445 0.72 1222 0.20 0.18
Item 8 1.52 11.65 0.88 14.00 0.28 0.26

Structural Parameter Estimates

Males (N= 1.150) Females (N =1.267)
Regressors Est. Est/S.E Est. Est./S.E.
PREALG 0.46 9 0.61 7
PREMEAS 0.51 5 0.46 5
PREGEOM 0.43 4 0.23 2
PREARITH 1.67 9 2.01 10
FAED -0.12 -1 0.14 2
MOED 0.19 2 0.00 0
MORED 0.14 1 0.20 2
USEFUL 0.62 6 0.34 3



ATTRACT

NONWHITE

LOWOCC

HIGHOCC

MISSOCC

NONW X PREARITH

Latent Construct
Intercept

Latent Construct
Residual

Table 8 (Con't.)

-0.01
0.1
0.02
0.12
0.12

-0.76

0.00 *

0.15

0.11
0.02
-0.03
0.06
-0.07
-0.17

0.12

0.13

*Fixed parameter
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