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Introduction!

Standardized achievement testing in most American schools today involves a
heterogeneous group of students. One major source of this heterogeneity at a given
grade level is the difference in instructional experiences of students (e.g., McKnight
et al., 1987). It is little wonder that the match between the school curriculum and
what is tested continues to be of concern, e.g., Airasian and Madaus (1983), Haertle
and Calfee (1983), Linn (1983), Schmidt, Porter, Schwille, Floden, Freeman (1983),
Leinhardt (1983), Leinhardt and Seewald (1981), Mehrens and Phillips (1986), and

Miller (1986).

The research reported here extends our developments of item response
theoretic methods for achievement of heterogeneous groups of students (Muthen,
1987a,b). Within this framework, the present study expands on efforts to
disentangle the influences of ascriptive instructional backgrounds as they impact
estimation of the parameters of the achievement measurement model. The
emphasis here is on how one might model the effects of difference in instructional
backgrounds of students on the resulting achievement latent trait and observed item
difficulties. This work is being reported at a relatively early phase of the inquiry in
order to call attention to what we view to be a potentially fruitful psychometric
method for examining achievement test data obtained from students with varying
instructional backgrounds. It is hoped that presentation of the research at this stage
will stimulate discussion about the applicability of the methodology for research and
practice within the domain of large-scale instructional testing.

Item Response Theory (IRT) is a common tool for the study of item bias.
Under the IRT model, invariance of measurement parameters is assumed to hold for
different subgroups. Deviations from this assumption are viewed as item bias. To
detect bias, the group membership of the examinees is identified and the estimated
curves describing the probability of a correct answer for a given ability level are
compared across groups. A large area between curves is an indication of IRT item

bias.

As suggested by Linn and Harnisch (1981), "instructional bias" may be
mistaken as bias due to ethnicity. Recent studies have changed the traditional focus
on ethnic and gender biases in achievement tests to instructional bias. For instance,
Lehman (1986) studied algebra items for eighth grade students. Gender and
opportunity-to-learn (OTL; Anderson, 1988) in the classroom were used as grouping
variables. Relative to gender, OTL was found to be a much more important cause of
item bias. Miller and Linn (1986) used an alternative approach to the study of
instructional bias. Based on OTL and item content, cluster analysis was carried out to
create curriculum clusters, When comparing item response curves for the same item
across clusters, they found strong evidence of Instructional bias. The magnitude of
the instructional bias was clalmed to be larger than that usually found with different

ethnic groups.

The Lehman and Miller-Linn approaches build on grouping test-takers. The
grouping may depend on the sample distribution. There is also the drawback of
basing the estimation of an item’s parameters in a certain group {(cluster) on students
that may well have a wide range of OTL. Different group criteria may lead to
different conclusions.

Standard IRT techniques assume that instruction Increases the item

1 The authors would like to thank Michael Hollls and Suk-Woo Kim for valuable research
assistance,



performance through an increase in the latent trait level, while the item-trait
relationship remains the same. This assumption is usually too strong for groups of
students with widely different content coverage. Certain classes may have obtained
more extensive instruction for specific content areas so that the performance on
the corresponding item types is relatively better than on the majority of the items
for the average student. This is the cause of instructional item bias, Muthen (1987a)
pointed out the psychometric problem of traditional IRT-based item bias detection
schemes, showing a misestimation of bias in the plausible situation of many items
showing instructional bias. Muthen’s extended IRT model may serve as a better tool
for studying the instructional bias, or, as we will term it, instructional sensitivity. His
model maintains the form of an JRT model, but in addition his parameters which
quantify the extent of the effect attributed to OTL. Using similar modeling, Muthen
(19870} also considers other educational and social student background information
as predictors of item response. As Mislevy (1987) indicated, “what IRT models miss
are these systematic differences among examinees performing at the same general
level” (pp. 261-262). The assumptions of IRT which preclude the influences from
auxiliary variables are challenged and examined in Muthen's model.

Muthen’s model may be briefly described as follows. Building on the
statistical theory of Muthen (1984), Muthen (1987b) proposed a new extension of
IRT modeling that controls for student background differences by including
background variables as covariates. Further extending this methodology, Muthen
(1987a) proposed a method for explicitly including item-specific information on
instructional differences, allowing for OTL effects on performance not only through
an increase in trait level, but also directly. This model parameterization essentially
allows for several difficulty levels for each item corresponding to different
instructional classifications. In this way, the deficiency of traditionat IRT bias
detection techniques is avoided. The instructional heterogeneity of the students is
taken into account and any differential instructional effects on the item difficulty
parameters can be directly estimated.

The Muthen (1987a) technique for detecting instructionally sensitive items
was illustrated with a very small set of 8 algebra items from the US sample of eighth
graders in Second International Mathematics Study (SIMS), Crosswhite, Dossey,
Swafford, McKnight, and Cooney (1985). The aim of this paper is to apply the
technique to detect instructional sensitivity in a more realistic setting, using the
SIMS set of 40 core items for U.S. eighth graders. This set contains items covering
algebra, arithmetic, geometry, and measurement. By this analysis, it is hoped that
types of items that are particularly susceptible to Instructional sensitivity in this
context can be discerned. Such items may be less suitable to activities of broad
assessment of more stable traits, but may be of primary interest for achlevement
assessment. The achlevement measurement process can be improved by better
understanding the link between item types and instruction in this way.
Furthermore, item analysis by standard IRT techniques would ignore instructionally
sensitive items and result in biased estimates of measurement parameters.

The Data

In brief, the SIMS data features are as follows. A national probability sample
of schoo! districts were selected proportional to size; a proability sample of schools
were selected proportional to size within school district: and two classes were
randomly selected within each school yielding a total of about 280 schools and about
7,000 students measured at the end of spring 1982, The achievement test
contained 180 items in the areas of arithmetic, algebra, geometry, and measurement
distributed among four test forms. Each student responded to a core test (40 items)
and one of four randomly assigned rotated forms (34 or 35 items) . All items were
presented in a five category multiple choice format.



In the analysis that follows, a key piece of instructional information was
obtained as follows. For each item teachers were asked two questions regarding
student opportunity to learn.

Question 1:

"During this school year did you teach of review the mathematics needed to
answer the item correctly?”

1. No

2. Yes

3. No response

Question 2:

"If in this school year you did not teach or review the mathematics needed
to answer this item correctly, was it mainly because?”

1. It had been taught prior to this school year

2. It will be taught later (this year or later)

3. It is not in the school curriculum at all

4. For other reasons

9. No response

Given these responses, opportunity-to-learn (OTL) level will be classified as
follows:

OTL: Question 1 =2, question2=19

or question 1 =1, of 9 and question 2 =1

No OTL (NTL): Question 1= 1, question 2=2,3 4019
or question 1 = 9, question 2=2,3 014

Other response combinations lead to the elimination of the observation.

The percentage distribution of OTL categories for all 40 items are given in
the left-most part of Table 1 (See Appendix A) together with proportion correct.

It seems that the percentage of students having no OTL (category NTL)
varies greatly across the items. With the exception of S items, having had OTL is
most common. However, about 1/3 of the items show NTL proportions larger than
0.33. It is also seen that the proportion correct varies greatly over the different OTL
categories. These are clear indications of the student heterogeneity.

The use of the dichotomously scored, teacher-reported OTL in our model is
noteworthy. Mehrens and Phillips (1986) used textbook serles and school
personnel ratings to study the influence of the match between what was taught and
what was tested for reading and math scores in grades 3 and 6. As Leinhardt and
Seewald (1981) pointed out, the two most common approaches to the measurement
of overlap between what is tested and what is taught are instructional-based and
curriculum-based measurement.

In the SIMS, student-reported item-specific OTL is also available. Both
teacher and student reported OTL is presumably fraught with error.  Teachers’
reporting may not be relevant for a student who was absent from or did not
understand the instruction, Students’ reporting may partly reflect his/her
perception of the item difficulty. The two ways of reporting are not highly
correlated (Lehman, 1986). We feel that the teacher-reported OTL is more
trustworthy.



In preliminary analysis, we considered using three-category OTL
measurements corresponding to OTL this year, OTL prior year(s), and no OTL.
However, this approach was abandoned in favor of using dichotomous OTL for the
following conceptual and technical reasons. First of all, the prior year effect may be
hard to estimate since prior year OTL is not distinctly defined, but may refer to OTL
more than a year ago as well as OTL late in the previous year. Second, many items
showed low percentages for the prior year OTL category, leading to unstable
estimates. Third, use of the three-category OTL variables lead to high correlations
between several items’ prior year and this year OTL measurements, resulting in
multicollinearity among the predictors.

Preliminary analyses also found probable misreporting by a teacher. For two
items, the no OTL category was made up of 24 students from one class who all got
the items right. Plotting the sum of correct answers versus the sum of the
dichotomously scored OTL, this class was found to be a distinct outlier with very high
performance and rather low OTL. For these two reasons, this class was deleted from
the analyses to be presented.

In addition to the above item-specific OTL information, instructional
background information common to all items is available in the SIMS in the form
classification of each mathematics class into one of four types, basic of remedial
arithmetic (REMEDIAL), general of typical mathematics (TYPICAL), pre-algebra or
enriched (ENRICHED), and algebra (ALGEBRA). This classification is based of
teacher questionnalre data and on information on textbooks used.

In the SIMS data there is also available a set of background variables for each
student measured during the Fall of eighth grade. These variables include “preset”
measurements of mathematics, family background, educational aspiration, attitudes
toward mathematics, gender, ethnicity; see Table 2 and also Muthen {1987b}).

The premeasurements were only collected for part of the sample. The
analysis considers a total number of 3,724 students who had complete observation
on both fall and spring measurements in this set. This analysis sample involves 198
classes.

The Model

Following Muthen (1987a), detection of instructionally sensitive items
among the {tems is achieved by estimation of the following model. A diagrammatic
representation of the model Is given In Figure 1 (See Appendix A). The model will
first be described in words and then statistically.

The mathematics trait in the spring of eighth grade is an unobserved
continuous variable that is measured by, or in other words, predicts, the set of test
items. This trait will alternatively be called math ability or achievement level,
although a more careful distinction is no doubt desirable when discussing a trait for
students with varying OTL. Muthen (1987a) suggests the term “latent performance
level.” We want to study the effect of OTL on the item performance since it is
possible that having OTL enhances the specific skills needed to solve the
corresponding item correctly. Adding these variables as predictors, the modeling has
to recognize that math ability in the spring is an endogenous variable relative to the
OTL variables. The OTL variables predict the item performance but also determine a
part of the math ability level itself. To correctly modet the prediction of spring
math ability, it then becomes necessary to specify a more comprehensive set of
predictor for math ability, where OTL influence on math ability is specified as partial
effects, holding other background variables constant.



Spring math ability is here taken to be predicted by fall pretests, attitudes,
family background, demographics, class type, and OTL. These predictors influence
the math ability variable and thus, indirectly, also the performance on the test
items. The majority of the background variables are assumed to only correlate
because of their common influence on the math ability variable.

The OTL variables, however, are also allowed to influence the corresponding
test items directly, although not ali itemns are expected to have such effects. Any
such effect would be an influence of OTL over and above that which is transferred
via the math ability. Hence, the probability of a correct response for students with
different OTL would be different even if they have the same math ability. This
effect implies item bias due to instructional sensitivity in the item at hand. This can
be stated as OTL not influencing math ability homogeneously across the set of test
items. It is interesting to note that bias due to instructional sensitivity in the items
is assessed here without resorting to traditional item bias detection schemes which
necessitate a classification of students into groups with different OTL values. The
present analysis avoids the arbitrariness of such groupings in a situation where group
membership obviously varies across items. The model also presents a wealth of
other relevant information on the achievement process.

More technically, the model may be presented as follows. An IRT model is
specified for measuring the trait by the set of items. In this analysis a two-parameter
normal ogive response curve model Is chosen for this measurement part (e.g. Lotd,
1980). Let us consider the influence of the item-specific OTL variables, z say, and
the student background variables, x say (premeasurements, attitudes, demographics,
and class type). In our analysis we will create an OTL dummy variable for each item

s zy = 1 represents OTL. The variable n, say. We specify the linear regression
model.

(1) n=v x+7, z+¢

where x and z are vectors of variables and { is a normally distributed residual with
zero mean, variance y, and where { is independent of x and z.

In addition to the part of predicting n, specify an influence from the z
variable for a certain item to the response for that particular item. While each
{tem’s z variable influences the item response through the variable, this part of
the model concerns the direct influence from the z to the item, over and above that
which goes through n. It is convenient to €xpress the direct influence of the z
variables on the items using a latent response variable formulation, where

2 ;=0 ify 1<
1, otherwise

where g {s a threshold parameter defined on the continuous latent response
variable Yil = Aln + Biz] +e

The latent response variable may be viewed as the specific skill needed to solve the
corresponding item correctly; when the latent response variable exceeds a
threshold, the item is correctly answered. We assume that g is a residual with mean
zero that is independent of 1 and the 2's. By adding the assumption that g; has a

normal distribution, the standard normal ogive model of IRT is obtained, except that
OTL is allowed to have direct influence on the item.

In effect this spedification allows items to have different difficulty fosx



different OTL levels (cf. Muthen, 1987a). The shift in difficulty is provided by the B
parameter. The parameters of this model may be translated to those of standard IRT,
so that each item obtains one discrimination parameter value and, in the present
case of 2 OTL categories, 2 difficulty parameter values. The formulas for the

translation are as follows. The conditional variance of y*] given the x and z variables
is standardized to 1, resulting in a residual (g) variance eﬁ =1-A2 v Let the mean

and variance of h be denoted My and W respectively. It can then be shown that
the two-parameter normal ogive parameters a (discrimination) and b (difficulty) for
item ] can be written as

) by =[Gy Bizj)Ai'l - by} g 112,

In these formulas, the trait has been standardized to mean zero and variance one.
The estimated values of a and b may be obtained by inserting model parameter
estimates in (4) and (5), where the sample means, variance, and covariances for the
x's and the z's are also used to compute the estimated p, and a,,. For each item we
can then obtain 2 estimated item characteristic curves and compute differences
between these curves. In this paper we will choose to use the simple index (called
D) discussed by Linn, Levine, Hastings, Wardop (1981), where squared probability
differences are added up over the trait range -3 to +3.

Inserting (1) in (2) gives the so-called reduced-form for the regression of the

y"s on the x's and z's. These are profit regressions, where the model imposes
restrictions on the probit slopes and residual correlations. The slopes are expressed
by the ¥, B, and A parameters of the model, while the residual correlations also
involve the remaining parameter y for the residual variance. The parameters may
be estimated by fitting the model to the probit regression slopes and correlations.

Muthen (1987¢) describes the LISCOMP computer program which builds on
theory in Muthen (1984) and encompasses the present type of model. The
technical details of our analysis will not be discussed here. The slopes and the
correlations correspond to different model parts in the LISCOMP framework and can
be analyzed together or separately. In the present case there are 40 y variables
(items) and a total of about 50 x and z variables. This yields potentially 2,000 slopes
and 780 correlations to fit the model to. This yields potentially 2,000 slopes for the
regression of each y variable on these regressions involve a nonlinear maximum
likelihood probit regression with 50 x variables on 3,724 observations and is
therefore computationally burdensome. In order to ease the computational burden,
only the slope part of the LISCOMP framework will be used to estimate the ¥'s, B's,
and A's. The y parameter will be estimated using both the stope and correlation part
through a separate analysis on a subset of about half of the items showing
particularly good measurement qualities. To further simplify computations, the
fitting of the model of Figure 1 is carried out by unweighted least-squares. Still, the
computations are heavy in that they Involve the estimation of over 100 ¥’s, B's, and
A’s. While the unweighted least-squares estimator does not provide standard errors
of estimates, follow-up analyses on subsets of items by generalized least-squares will
give indication of the magnitude of estimates needed for statistically meaningful
values.

Analysis Results

Preliminary analyses were performed by standard IRT techniques. Using the



two-parameter logistic model and marginal maximum likelihood estimation provided
by the BILOG program (Mislevy & Bock, 1984), it was revealed that item 10 was very
hard and had deficient measurement properties. The subsequent analyses were
performed with only 39 test items. An item factor analysis strongly supported the
notion of unidimensionality for this set of items. A scree plot of the latent roots for
the tetrachoric correlation matrix is given in Figure 2. Note that this is only a rough
assessment of the dimensionality of the items since the items may correlate not only
due to the trait but also due to the OTL influence.

The estimation of the influence of the background variables on the ability
will be discussed first. Next, the estimates of the measurement parameters relating
the item responses to the ability will be presented. Finally, we will turn to the
estimates of primary concern in this paper, namely those representing the effect of
instructional sensitivity.

Relating the Ability to Background Variables

The estimates from the regression of the trait on the background variables
are given in Table 3. Although standard errors of estimates are not provided for this
model, generalized least-squares estimation on a subset of items indicate that
estimates larger than pretest variable related to arithmetic dominates the prediction
of spring math ability. This is natural since this is the area of mathematics best
covered up to eighth grade and since performance on these kinds of tasks influence
the selection of students into more advanced math classes where they get further
training that enhances their ability. One may note that the prearithmetic variable
correlates 0.76 with the posttest sum of correct answers. Among non-pretest
variables, finding mathematics useful is the most important one.

The y-parameter estimates for the effect of OTL variables on the math ability
will not be presented here. Overal}, the effects are negligible. The prediction of
math ability by fall measurements is quite successful in that the estimated portion of
varlation in math ability explained by the various background variables is 76%.

When using the SIMS data to illustrate the approach to assessing instructional
jtem sensitivity, Muthen (1987a) only included the OTL variables and not the other
background variables used here. Given our present model, omitting these other
background variables would lead to biased estimates of the item parameters and their
instructional sensitivity. However, we have found that such biases are small for the
data, probably due to the rather small correlations between the OTL variables and
the other background variables. This is a useful finding for situations where pretests,
or other early performance measures, are not available.

Relating the Items to the Ability

The measurement of the trait n is reflected in the A parameters representing
*

the slopes (factor loadings) in the regressions of the latent response variables y on
the trait n. The estimates of these are given in Table 4, which also contains the
estimated values of the threshold t and of the corresponding IRT parameters, one a
and two b’s for each item calculated as in (4) and (5). Table 4 also contains the
corresponding estimates of IRT parameters a and b as obtained by standard analysls,
here carried out by marginal maximum tikelihood in the BILOG program (Mislevy &
Bock, 1984). The wording of each of the 40 items is given in Appendix B.

Table 4 shows that items 3, 6, 7, 17, 19, 21, 39 have L-values less than or
equal to .45 and are not good measurements of the math ability trait, It is
interesting to note that six of these seven items have geometric or spatial content
with exception of item 17, all these items had NTL values of at least .25.



1t is also interesting to note that standard IRT estimation of a and b
parameters as compared to our approach gives results that are rather similar for a but
quite different for b. Two explanations may be offered for this. One is that our
results come from a model that extends the standard IRT to background variables,
giving a fuller description of the trait where it Is determined not only by item
performance but also by predictors thereof. In statistical terms the model is strong
in that the notion of undimensionality is extended to not only explain item
interrelations but also relations between items and predictors. While this 1s largely a
matter of using more information for estimation, the second reason relates to bias in
the standard IRT estimation due to use of the wrong model. Under 2 model that
allows for direct OTL influence on the items, the use of a standard IRT model ignores
both student heterogeneity in the item parameters and that in addition to the trait
the OTL influence also causes dependency among the items.

Instructional Sensitivity

Of greatest interest in this paper aré the estimated B parameters
representing the direct effects of OTL on the item performance, thereby indicating
instructional sensitivity in the items. The estimated B's and the corresponding
measures of distance between the probability curves (item characteristic curves) are
given in the rightmost part of Table 1. The implications of the estimates in this part
of the table are best understood by a discussion of the items that show substantial
instructional sensitivity.

Consider first ftem 17. This is a geometry item which for its correct solution
requires knowledge of the definition of an acute angle. From Table 1 we note that
13% have had no OTL for this item of whom 38% get the item right, while 62% get
it right with OTL (this year or prior years). The B estimate for OTL is positive
reflecting the extra advantage, over and above what the trait level would predict, of
having OTL versus not having OTL. Note that while the proportion correct for an
item is an estimate of marginal probability given the trait and is therefore the
appropriate measure of instructional sensitivity. Several items have large
differences in proportion correct for OTL versus no OTL, while having negligible B
effects. In order to gauge the importance of the corresponding shifts in the
conditional probabilities, Figure 3 shows the standardized probability curves over the
trait range 3 to +3.

For an average trait value of 0, the extra advantage of OTL is estimated as an
approximate increase of 0.15 for the probability of a correct answer. The
corresponding curve distance (D value) 15 .32.

A working hypothesis for a particularly strong reason for instructional
sensitivity is that the item is definitional in nature and represents early learning on
the topic of angles. It is therefore rather hard for students who have not been
exposed to it, while rather easy once exposed to it. A harder item may show less
instructional sensitivity since even with OTL many students may get it wrong. An
{tem such as number 17 may be less valuable as an indicator of a more general trait
than an indicator of exposure in a certain limited area. From Table 4 we note that
item 17 is among the group of items that we identified as having rather poor
measurement qualities, with an estimated L value of .43 (an estimated a value of
.45).

Consider next item 39. As is seen in Appendix B, this item refers to
knowledge about the coordinate system. Here, a rather large group of 30% have no
OTL. In terms of proportion correct, the item seems rather easy for the OTL
category (0.63) while rather hard for no OTL (0.33). There is a substantial difference
between the estimated probability curves for OTL versus no OTL (0.35). Like item
17, this instructional sensitivity in item 39 seems to correspond to definitional



learning such that the item becomes quite easy when the student is exposed to this
knowledge. And the item Is a poor indicator of the trait (see Table 4) and is in fact
the worst one. As shown in the estimated probability curves of Figure 5 the
discrimination (the slope) is very small. This would mean that getting the item
correct involves little of general math ability, but merely indicates the specific
knowledge of the definition, a plausible explanation for this item.

Other items also show substantial instructional sensitivity and may further
support the hypothesis of introductory definitional content. To solve item 38, a
student needs to know the definition of percentage, followed by a straightforward
arithmetic operation, item 16 calls for knowledge about multiplying negative
integers and parentheses, and item 3 deals with the simplification and solution of a
routine algebra equation. But unlike items 17 and 39 discussed above, items 38 and
16 provide good measurements of the trait.

The proposed methodology represents a new way to study the instructional
sensitivity of achicvement items. Given sufficlently rich data, instructionally
sensitive items can be detected while at the same time gaining information about
the achievement process through the estimation of a comprehensive model that
goes well beyond those of standard IRT analytical methods for examining
achievement test data.

The exact nature of the benefits to be gained from estimating the effects of
instructional opportunities on both the latent ability, depends on the specific
empirical context in which the methodology is employed. Naturaily, the
heterogeneity of the pool of achievement items and of the student population
tested matter. What also matters is adequacy of the specification of the model of
achievement and of the measurement of instructional opportunities and other
characteristics.

In the present case, there was considerable heterogeneity in the
mathematics instruction experiences of students; some students were still enrolled
in remedial instruction dominated by arithmetic operations with integers and
common and decimal fractions when others were enrolled in elementary algebra
classes. The set of test items broadly spanned topics typically covered by the end of
elementary algebra instruction. Against this backdrop, the model examined here
featured parameters estimating the influence of student background and
opportunities to learn content pertinent to each specific test item on a single latent
mathematics ability trait and the effects of the mathematics ability trait and the
item-specific OTL on the difficulties of test items.

Under these modeling conditions, item-specific OTL had limited impact on
the latent variable representing mathematics ability once student background
variables (which included pure mathematics performance) were controlled.
However, for selected test items, there were strong direct effects of latent
mathematics ability. In other words, the general, presumably more stable
achievement trait, was insufficient to account for performance on these items.
According to standard IRT analysis methods, elther the IRT results would be biased
by the inclusion of items or would have been eliminated to avoid violation of IRT
assumptions. Neither prospect is attractive.

Clearly, the present analysis provides a more detailed way to examine the
influence of instruction on responses to test items, a matter of considerable interest
in developing achievement tests and interpreting test results. In the present case,
certain test items representing early stages of learning about selected mathematical
topics were particularly sensitive to specific Instruction. Individual differences
represented within the single latent mathematics ability did not adequately account
for performance differences on these items.



What next steps to take in response to the identification of instructionally
sensitive items is unclear. An obvious possibility here is to consider employing a
multidimensional latent achievement model to represent the domain of test items.
Incorporating specific latent factors representing instructionally important
curriculum segments within the psychometric model! Is both theoretically and
practically desirable. Presumably, differential instructional exposure should then
influence the specific factors. Under such conditions any residual direct effects of
OTL on item performance represent teaching to the specifics of the test, a typically
undesirable instructional strategy. We are currently exploring the possibility of
applying models with multidimensional latent achievement traits with the SIMS data
base.

Given psychometric methodology that can better tie test item performance
to both ability and instruction, the proper measurement and measurement modeling
of instruction is highlighted. The above analyses utilized a class level, and rather
crude, OTL variable reported by the teacher. It is recognized that the mixture of
student level responses and class level OTL information creates multilevel, or
hierarchical observations, a problem which we were forced to ignore in our analyses.
With few classes in an OTL category, measurement error in the teacher-reported
OTL may have strong biasing effects. The class level information may also be
incorrect for a given student. Student level OTL is available, but may contain even
more mreasurement error. Further substantive research needs to find ways to
properly combine information of several kinds in order to provide more relfable and
informative instructional student background.
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