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Mathematical Problem-Sclving Processes and Performance:

Translation among Symbolic Representations

Researchers in mathematics and mathematics education and
cognitive psychologists have long recognized that a very
important, 1f not essential, component of successful problem-
solving is the ability to translate between different symbolic
representations of information (e.g., Clement, Lochhead, & Monk,
1980; Hooper, 1981; Janvier, 1987; Kaput, 1987; Lesh, Post, &
Behr, 1987; Lesh, Landau, & Hamilton, 1983; Nesher, 1982;
Shavelson, 1981; Shavelson & Salomon, 1985; Silver, 1985).
Problem-solving often invelves translating from the symbolic
representation of the problem as given (typically words and
numbers) to another symbolic form that more readily leads to a
sclution (e.g., diagram, graph, picture, algebra, words, or some
combination of these). Yet, as has been demonstrated in some
well-known studies, students at all ages have difficulty
translating from cne representation to another (e.g., Clement et
al, 1980; Galvin & Bel, 1977; Nesher, 1979; Paige & Simon,
1966} .

Although researchers and theorists recognize the importance
of being able to translate among symbolic representations, we
have only a limited understanding about the exact nature of
students' abilities and difficulties in making translations.

Furthermore, we know little about the extent to which their



patterns of performance are linked to the symbolic

representations and kinds of translation used in instruction.

The main issue addressed here is that students have rarely
been asked to soclve problems on the same topic that
systematically vary the symbolic representation of both the
problem as given and the response that is required. Only a
systematically varied set of problems can reveal the skills
students have in dealing with different kinds of translation.
That 1s, a comprehensive set of problems is needed to know
whether it is possible to generalize students' skills in
translation from one problem type to another. Furthermore,
students' ability to translate across symbolic forms cannot be
separated from the effects of instruction. If students can
perform translations that are routinely practiced during
instruction but have difficulty performing translations that are
not covered in instruction, differences in performance would be
attributable to instruction, not to inherent difficulties in
certain kinds of translation. Systematically investigating the
relationship between the kinds of translation used in
instruction and students' problem-solving processes and
performance is an important first step in clarifying the role of
instruction.

The study reported in this paper was designed to address
the issues just described. It collected information about
students' performance on problems varying in symbolic form and
the kinds of symbolic representations and translation used in
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instruction. Particular attention was paid to the symbolic form
of the response reguired as well as that of the problem given,
In a previous study (Shavelson, Webb, Shemesh, & Yang, 1987),
the symbolic form of the response required influenced students’
problem-solving processes and performance more than did the form
of the problem given. In particular, students applied the same
numerical or algebraic algorithm whenever the response required
was numerical, regardless of the form of the problem as given,
but the response required (numerical or verbal description)
markedly influenced how students solved the problem. The present
study, then, used a greater variety of symbolic forms of the
response required (graph, picture, number, algebra, words}.

Method

Sample. The sample consisted of 29 students enrolled in an
Algebra II class in an eight-week summer instructional program
for minority students. All students were Black or Hispanic and
most were about to enter grade 11.

Materials. For two topic areas, solving simultaneous
equations in two unknowns and distance-rate-time relationships,
sets of problems were developed that varied the symbolic form of
the problem as given (words in a story problem, graph, diagram,
algebra) and of the response required (words, graph, diagram,
algebra). All other aspects of the problems (e.g., context,
numbers used, complexity of the equations) were controlled to
make the problems as parallel as possible except for symbolic
form. Approximately half of the problems were open-ended; the
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remaining problems were in multiple choice form to shorten the
time necessary to solve them. Even for problems in multiple
choice form, however, students were encouraged to explain their
reasons for selecting their responses.

Data on teacher instructional methods came from the printed
materials the teacher used, students' notes during the classes,
and interviews of the teacher. This information was analyzed to
determine the variety of symbolic forms used in instruction and
kinds of translation explicitly discussed.

Results

The analyses presented here focus on problems that concern
the same topic but vary either the symbolic form of the problem
as given, the symbolic form of the response required, or both.
The two topics are solving two equations with two unknowns and
issues related to distance-rate-time.

Solving Two Equations With Two Unknowns

Four problems on the individual test concerning solving two
equations with two unknowns varied both the symbolic form of the
problem as given (word problem vs. algebraic equations) and the
symbolic form of the response required (numerical vs. verbal).
Problem 1 was a traditional word problem requiring a numerical
response; problem 2 presented two equations for students to
solve; problem 3 presented a word problem and asked students to
explain, without solving the problem, why two particular
erroneous solutions were incorrect; and problem 4 presented two
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algebraic equations and asked students to select the word
problem that was best described by the equations (see Figures 1
to 4).

Students' responses to these problems were scored in two
ways: presence of conceptual and procedural errors. Examples of
conceptual errors included setting up the equations incorrectly
(problem 1), trying to substitute one equation into itself
(problem 2), insisting that erroneous solutions to a word
problem were correct (problem 3), and selecting a word problem
that did not correspond o the equations (probklem 4). Procedural
errors consisted of arithmetic mistakes, such as incorrectly
multiplying an eguation by a constant (particularly negative
constants). Initially, students' responses were scored
according to the severity and frequency of errors. However,
because the results were nearly identical to those scoring only
the presence vs. absence of a conceptual or procedural error,
the latter scoring is presented here for parsimony. A score of
1 indicates no error; a score of 0 indicates an error.

Individual performance. Table 1 presents the means and
standard deviations for conceptual understanding sceores for the
four problems. The data were analyzed using a two-way repeated
measures analysis of variance (symbolic form of problem as given
vs, symbolic form of response required). As the results in
Table 1 suggest, there was no main effect for either the
symbolic form of the problem as given (F(l, 17) = 0.49, n.s.) or

the symbolic form of the response required (F(1l, 17) = 0.49,



n.s.). The interaction between the two factors, however, was
significant (F(1, 17) = 11.33, p < .005). Student performance
was highest when the symbolic form of the problem as given
corresponded to that of the response required (word problem -->
words; algebraic —--> numerical). Student performance was
significantly worse when the symbolic form of the problem as
given did not correspond as closely to the symbolic form of the
response required (word problem --> numerical; algebraic -->
word problem). These results suggest that translation from one
symbolic form to another (from problem as given to response
required) added a degree of difficulty that was not found in the
other problems.

To examine whether individual performance was consistent
across problems, pairwise correlations were computed. None of
the correlations were statistically significant. This result
shows that individual students varied in their ability to
translate across symbolic forms. For example, even though mean
performance was similar for items 1 and 4, individuals who did
well on item 1 {(word problem --> numerical response) were not
necessarily the same as those who did well on item 4 (algebraic
equations --> word problem). The same interpretation applies to
items 2 (algebraic eguations --> numerical response) and 3 (word
prcblem —-->words) . Ability to perform one kind of translation
does not predict students' ability to perform another kind of

translation.



Data about performance on procedural aspects of the
problems (arithmetic skills) are presented in Table 1, (Item 4
did not measure procedural skills and so is not included here.)
A one-way repeated analysis of variance showed no significant
differences between mean procedural scores (F(2,34) = 0.43, p <
.66) . Students' tendencies to make arithmetic errors did not
depend on the kind of translation between symbolic forms
required by the problem. Furthermore, at least on one pair of
problems (1 and 2}, the correlation for procedural performance
was statistically significant (r = .61, p < .005). This
suggests that, for these two problems, an individual student's
procedural performance was consistent. In all, the results show
more consistency of performance across problems for procedural
skills than for conceptual understanding. If one is interested
in measuring procedural skills, the type of problem given
students to soclve is less critical than it 1is for measuring
conceptual understanding.

To measure students' consistency of conceptual
understanding and procedural skills, correlations were computed
between conceptual and procedural performance for each item.
Only for one item (2) was the correlation statistically
significant (r = .38, p < .05), suggesting that students'
conceptual understanding and procedural skills are largely

uncorrelated.



Relationship between student performance and instruction.
The interpretation given of the findings in Table 1 is that
translation between different symbolic forms makes problems more
difficult for students than translation between symbolic forms
that closely correspond. An alternative explanation is that the
performance shown in Table 1 might be a reflection of
instructional experience, rather than due to inherent
difficulties with translation per se, with the higher
performance corresponding to kinds of translation between
symbolic forms that were covered and practiced extensively in
the class and the lower performance corresponding to kinds of
translation that were not covered or practiced in the class. To
test such an interpretation, information about students'
instructional experiences was collected from various sources:
course syllabi, handouts, gquizzes, tests, homework assignments,
reading materials, students' notes taken throughout the course,
and interviews with the instructor. Analysis of the materials
indicated that instructional experience did not account for the
results reported in Table 1. Students had considerable practice
with all types of problems with the exception of problem 3
(explaining why erroneous solutions to a word problem were
incorrect). Yet performance on problem 3 was near the best among
the four problems. Students had the most practice solving word
problems (translating between verbal presentation and numerical
response) and generating word problems that corresponded to

pairs of equations (translating between algebraic equations and



verbal descriptions), and yet showed the worst performance on
problems of these types.
Distance-Rate-Time Relationships

Two kinds of problems concerning distance-rate-time
relationships appeared on the test: problems assessing whether
students knew and could apply the formula D=RT (distance = rate
x time) as well as substitute the correct values into the
formula, and problems assessing their understanding of relative
speed from graphs of time vs. speed. Each problem type is
considered in turn.

Application of D=RT formula. Three problems on the test
measured students' ability to apply the formula D=RT (see
Figures 5 to 7). Problem 5 posed a simple word problem for
students to solve. Problem 6 presented a graph of time vs. speed
and problem 7 posed a similar problem as a word problem; both
problems asked students to select the correct numerical
expression for the distance traveled. Problems 6 and 7 were
designed to be as comparable as possible to test the effects of
the symbelic form of the information given (graph vs. verbal
description). As was the case for the problems involving solving
two equations with two unknowns, scoring for severity of errors
and scoring merely for the occurrence of errors produced nearly
the same results, so the results of the latter scoring method
are presented here for parsimony. The problems were scored in
two ways: (1) a score of 1 was given if students gave or

selected the correct relationship among variables (D=RT) and a
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score of 0 was given for giving or selecting the wrong
relationship (D=T/R), and (2) a score of 1 was given if students
selected the correct times and speeds and a score of 0 was given
otherwise.

Student performance on the three D=RT problems is given in
Table 2. A one-way repeated measures analysis of variance of the
scores for applications of the D=RT formula was significant
(F(2,34) = 6.18, p < .006). Further analyses showed that the
difference between items 6 and 7 was not significant. This
result suggests that the symbolic form of the problem as given
(graph vs. word problem) had little effect on mean performance,
possibly because the response required (numerical expression)
was the same in both cases. Interestingly, however, the
correlation between problems was not significant (r = .06),
showing that students who could correctly select the D=RT
relationship for one problem could not necessarily do so on the
other prcblem.

The superior performance of students con problem 5 suggests
that students' ability to apply the D=RT relationship on a
simple one-step problem does not imply that students will be
able to apply the relationship in a multiple-step problem.

Students' performance on these three problems on their
ability to select the correct numbers for rate and time is also
given in Table 2. A one-way repeated measures analysis of
variance was not significant (F{2, 34) = 2.53, p < .10).

Furthermore, the correlation between problems & and 7 was
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significant (r = .54, p < .01). {(Correlations with problem 5
could not be calculated due to lack of variance for that
problem.) These results suggest that students' ability to
select the correct numbers for rate and time were consistent
across these problems and did not depend on the symbolic form of
the problem as given nor on whether the problem was one-step or
multi-step.

Understanding speed from graphs. Figures 8 to 11 give the
four problems that assessed students' understanding of speed
from graphs of time vs. speed. The direction of translation in
the four problems were the following: graph to words in problem
8, picture to graph in problem 9, words to graph in problem 10,
and graph to picture in problem 11. Performance on these
problems {(on a 0 vs. 1 scale as for the previous items) appears
in Table 2. A cne-way repeated measures analysis of variance
was significant (F (3, 57) = 9.75, p < .001). Post hoc
comparisons revealed that problem 8 was significantly easier
than the other problems, and that problems 9 and 11 were
significantly different.

In comparing the performance of students across these
problems, it is reasonable to suspect that problem 8 was easier
than the rest due to the following: (1) it invelved car
traveling on roads rather than biking wuphill and downhiil, and
(2) it involved only two nonzero speeds. Nonetheless, we still
believe that student performance would have been good had those

other features been introduced. If so¢, then translating from a
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graph into words was the easiest task for students. (0f course,
this problem should be revised in future studies to make it more
comparable to the others.} Similarly, problem 11 may have been
more difficult than the others due to the lack cf & "stop",
rather than because of the particular direction of translation
(graph to picture). Even with these qualifications, the
difference in performance suggests that some directions of
translation are easier than others.

211 of the correlations among problems 9, 10, and 11 were
statistically significant (ranging from .42 to .65, p < .03 to
p < .002). The correlations with problem 8 were not significant
due to the lack of variability in performance on this problem
(all students except one got it right.) These results suggest
that the order of difficulty cof the kinds of translation was
consistent across students.

Relationship between performance and instruction. Analysis
of the course materials and interviewing the instructeor revealed
that students had practice with all of these types of problems.
In fact, for translating between graphs and other
representations, students worked on problems that were
considerably more complex than those used in the current study.
So, differences in performance on these problems were probkably

not due to differential exposure to them in the course.

Discussion
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This study has several implications for research and
practice in mathematics educaticon and testing. First, presenting
students with only conventional symbolic representations of
problems (typically, numerical, algebraic, or story problems
requiring numerical answers) 1is likely to give a limited picture
of students' mathematical problem-solving abilities. Students
can memorize algorithms for clearly identified problem types
presented in conventional ways (see, for example, Mayer, 1981)
and yvet be unable to solve problems inveolving the same concepts

but presented in different symbolic forms.

Second, it is possible to understand students' difficulties
in translating among symbolic representations by systematically
varying the symbolic form of problem and response required.
Such a test or measure can have important diagnostic value in
the classroom. The data presented here suggest that the
symbolic form of the response required plays a critical role in
determining performance, yet this feature of problems is rarely
recognized as an important source of variation in performance.

A third, related, point is that using alternative symbolic
forms of the response required may be a good way to measure
students' conceptual understanding of mathematics. Problems
requiring numerical responses typically involve procedural
skills as well as conceptual understanding. It is often
difficult to disentangle the two, particularly on tests with

multiple-choice response formats. Asking students to think
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through a problem requiring a different (non-numerical)
representation may yield less ambiguous information about what
students do and do not understand.

Fourth, the kinds of translation between symbolic forms
covered during instruction did not seem to play a major role in
this study. Students had practice with virtually all of the
kinds of translation in the problems presented on the test, yet
their performance differed markedly across different problems.
It is possible that differences in performance across problems
would have been accentuated still further if the instructor had
covered fewer kinds of translation. To examine the role of
instruction systematically, future studies should compare
performance for instruction varying in kinds of translation
covered.

A final word should be said about the limitations of this
study and the implications for the design of future studies.
The instructional program examined in this study was a special
one——a summer course for promising minority students in
mathematics. The students who participated in the course had
been identified by previous teachers as having potential for
learning mathematics and science. Furthermore, the instructors
in the summer program are specially selected and have deep
commitments to teaching and to mathematics and science. As was
stated above, the features of this program may have influenced
the results. Future studies should examine a range of students

populations and instructional settings, with larger samples, to
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determine the impact of these variables on students' ability to
solve mathematical problems presented in different symbolic

forms and reguiring responses in different symbolic forms.
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Table 1

Performance con Problems Involving Two Equaticons and Two Unknowns

Symbolic Form of Response Required

Numerical Words
Symbolic Form of

Problem as Given
M SD M SDh

CONCEPTUAL UNDERSTANDING
Words 0.56 0.51 0.75 0.44

Algebraic Equations 0.86 0.36 0.52 0.51

ARITHMETIC SKILLS

Words 0.83 0.38 0.75 0.44

Algebraic Equations 0.71 0.46 N.A. N.A.

Note: Words —--> Numerical = Problem 1 (Figure 1)
Algebraic Equations —-> Numerical = Problem 2 (Figure 2}
Words —--> Words = Problem 3 (Figure 3)

Algebraic Equations --> Words = Problem 4 (Figure 4)
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Table 2

Performance on Problems Involving Distance-Rate-Time Relationships

Problem M 5D

APPLICATICON OF D=RT FORMULA

5 (One-step word problem) 1.00 0.00
6 (Graph --> Numerical (multi-step)) 0.71 0.46
7 (Words =--> Numerical {(multi-step)) 0.56 0.51

NUMERICAL SUBSTITUTICN INTC D=RT FORMULA

5 (One-step word problem) 1.00 0.00
6 (Graph --> Numerical (multi-step)) 0.81 0.40
7 (Words =-> Numerical (multi-step)) 0.94 0.24

TIME VS. SPEED RELATIONSHIP FROM GRAPH

8 (Graph --> Words) G.95 0.22
9 (Picture --> Graph) 0.62 .50
10 {(Words --> Graph) 0.50 0.51
11 (Graph -->» Picture) 0.38 0.50
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