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Abstract

Attending to the relationship between where individuals start (e.g., their initial status)

and how rapidly they progress (e.g., their rates of change) can help draw attention to
possible concerns regarding the distribution of student achievement within schools in

longitudinal studies of school effectiveness. Focusing on the relationship between initial
status and rates of change, we address questions concerning equity: Why is it that

student achievement is distributed in a more equitable fashion in some schools than in
other schools? To what extent might this be due to school characteristics, school policies,

or school practices? Do schools that start off with high mean achievement have a more
positive relationship or negative relationship? To address questions of this kind, we

present a latent variable regression modeling strategy that incorporates latent variable
regression into a three-level hierarchical modeling framework (LVR-HM3). To illustrate

key ideas and the distinctive features of the LVR-HM3, we fit a series of LVR-HM3s to
the data from the Longitudinal Study of American Youth (LSAY) using the Gibbs

sampler. We also present results from sensitivity analyses that involve employing t-
distributional assumptions in LVR-HM3s, and we examine the convergence of the Gibbs

sampler using different formulations and parameterization of the LVR-HM3. In a final
section, we discuss some implications and possibilities that arise in longitudinal multi-

site intervention studies using LVR-HM3s.

Introduction

This paper is motivated by the importance of examining the relationship
between where students start (i.e., initial status) and how rapidly they progress (i.e.,
rates of change) in longitudinal studies (Blomqvist, 1977; Muthen & Curran, 1997;
Rogosa & Willett, 1985; Seltzer, Choi, & Thum, 2001a, 2001b). In the area of
educational indicators, for example, the relationship between initial status and rates
of change might be considered an indicator of how equitably student achievement is
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distributed within schools (Seltzer, Choi, & Thum, 2001a). When the relationship is
positive, for example, for students with relatively low initial levels of achievement,
their growth in achievement tends to be slower than students with relatively high
initial status. As a result, initial gaps in achievement among students become
magnified over time, and student achievement is distributed in an inequitable
fashion. In contrast, in the case of a negative relationship, as initial status increases,
growth rates tend to decrease. Thus, initial gaps among students tend to diminish
over time. Furthermore, we know that relationships of these kinds are likely to vary
across schools. In some schools, students’ initial levels of math achievement might
be extremely consequential in terms of their rates of change (i.e., those students who
start high might progress rapidly, while those who start low might progress very
slowly). In other schools, however, students’ initial status might be far less
consequential in terms of their rates of change.

Along these lines, our attention is naturally drawn to questions of why these
relationships are different across schools: How do the differences in various kinds of
school characteristics relate to the differences in the within-school relationship
between initial status and rates of change? In other words, why is it that student
achievement is distributed in a more equitable fashion in some schools than in other
schools? To what extent might this be due to school characteristics, school policies,
or school practices? What are the school-level factors that are related to this
underlying distribution of student achievement? Do schools that start off with high
mean achievement have a more positive relationship or negative relationship?

Addressing the above questions implies the need to analyze data that have a
three-level hierarchical structure. The repeated measures over time (level-1 units)
are nested within students (level-2 units) who in turn are nested within different
classrooms or schools (level-3 units). Furthermore, such questions involve
combining two key modeling features: a) a latent variable regression in a within-
school (level-2) model in which student rates of change are regressed on initial
status, and b) treating the latent variable regression coefficients as varying across
schools in a between-school (level-3) model.

In this paper, we propose a latent variable modeling strategy that integrates
latent variable regressions in a 3-level hierarchical modeling framework (LVR-
HM3). Through analyses of the data from a sub-sample of the Longitudinal Study of
American Youth (LSAY; Miller, Kimmel, Hoffer, & Nelson, 2000), we wish to show
how LVR-HM3s provide a way of illuminating important differences across schools
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in the relationship between initial status and rates of progress, and how it can enrich
the kinds of questions concerning equity that we are able to examine in studies of
school effectiveness.

This paper consists of the following sections. First, we outline our approach in
the following section. We then present a brief overview of other strategies for
combining hierarchical modeling techniques with latent variable modeling
strategies. In the illustrative example section, we fit a series of LVR-HM3s to the
LSAY data and illustrate its use. Next, we conduct sensitivity analyses by employing
t distributional assumptions at levels 1, 2, and 3. We then compare the convergence
of the Gibbs sampler using different formulations and parameterizations of the LVR-
HM3. In the final section of this paper, we will discuss possible implications and
extensions of the LVR-HM3.

Latent Variable Regression in a Hierarchical Modeling Framework

Latent Variable Regression in a 2-Level Hierarchical Model (LVR-HM2)

For heuristic purpose, we now specify a simple 2-level hierarchical model (2-
level HM) for longitudinal analysis. We then incorporate a latent variable regression
(LVR) into this model. Building upon this latent variable regression 2-level
hierarchical model, we specify a latent variable regression 3-level hierarchical model
(LVR-HM3).

In growth curve analyses, the ni repeated observations nested within person i
are modeled as a function of time (Timeti) in a level-1 or within-individual model.
Modeling change as a linear function of time we have:

Yti = π0i + π1iTimeti + εti  εti ~ N (0, σ2),   (1)

where π0i represents the status of person i at Timeti = 0, and π1i is the growth rate for
person i. The εti a r e residuals assumed normally distributed with mean 0 and
variance σ2.

The hallmark of the HM is that individual growth parameters are treated as
varying across individuals. The variability is represented in a level-2 or between-
individual model, which often contains predictors capturing information regarding
students’ background characteristics, their educational experiences, and the like. For
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illustrative purposes, we pose a simple level-2 model that does not contain any
predictors:

π0i = β00 + r0i r0i ~ N (0, τ00)

π1i = β10 + r1i r1i ~ N (0, τ11), Cov (r0i , r1i ) = τ01 = τ10. (2)

In the above equation, β00 represents the mean initial status and β10 the mean

growth rate for the population of interest; the level-2 residuals (i.e., random effects)
r0i and r1i capture the deviation of initial status for person i from β00 , and the
deviation of the growth rate for person i from β10, respectively. We further assume
that the r0i and r1i  are normally distributed with mean 0, variance τ00 and τ11,
respectively, and with covariance τ01(Cov (r0i , r1i ) = τ01).

Specifying models to investigate how differences in initial status relate to
differences in rates of change in essence implies modeling individual growth rate
parameters (π1i) as a function of individual initial status parameters (π0i). In other

words, we need to treat initial status not only as a dependent variable in the level 2
model but also as a predictor variable for the rate of change at level 2 (see Equation
3).

π0i = β00 + r0i       r0i ~ N (0, τ00)

π1i = β10 + b(π0i - β00 ) + r1i    r1i ~ N (0, τ11)  Cov(r0i , r1i ) = 0. (3)

In the second equation, individual growth rates (π1i) are modeled as a function
of initial status (π0i). The key parameter of interest is b, which captures the expected

change in growth rate when initial status increases one unit. b is termed a latent
variable coefficient. In the above equation, β 10 represents the expected rates of

growth when initial status is equal to the grand mean. The variance for the rate of
change (τ11) represents the amount of variation in growth rates that remains after

taking into account initial status. Since we are conditioning on initial status in the
level-2 model for growth rates (π1i | π0i), we assume that Cov(r0i , r1i ) = 0.

Latent variable regression in a 3-level hierarchical model. We now extend the
above two-level model and specify a simple LVR-HM3 in which we do not include
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any student- and school-level observed predictors. At level 1 (see Equation 4), the
outcome of interest, Ytij, for person i, in school j, at time t, is modeled as a function of
Timetij. In a level-2 (within-school/between-individual) model, rate of change for
student i in school j (π1ij) is modeled as a function of a student’s initial status.

Ytij = π0ij + π1ijTimetij + εtij  εtij ~ N (0, σ2) (4)

π0ij = β00j + r0ij r0ij ~ N (0, τπ0j)

π1ij = β10j + Bwj (π0ij - β00j ) + r1ij r1ij ~ N (0, τπ1j). (5)

In this model, the latent variable regression coefficient, Bwj, captures the
relationship between initial status and rate of change for students in school j. In
other words, compared to the latent variable regression coefficient, b, in Equation 3,
each of J schools (j=1, . . . , J) has a different latent variable regression coefficient.
Thus, we refer to the within-school latent variable regression coefficients, Bwj, as
within-school initial status/rate of change slopes (Seltzer, Choi & Thum, 2001a).
Furthermore, the level-2 random effects for school j (i.e., r0ij, and r0ij) are assumed
independently and normally distributed with mean 0 and variances τπ0j and τπ1j,

respectively. Importantly note that we allow the variances of r0ij and r0ij to differ
across schools. Additionally, we can also include student characteristics both in the
above two equations.

At level 3, level-2 parameters (i.e., school mean initial status (β00j), the expected
rate of change for school j (β10j), and the within-school initial status/rate of change

slope for school j (Bw j) are viewed as varying across schools. That is, level-2
parameters are treated as outcomes in a level-3 (between-school) model.
Interestingly, we can pose a model in the second equation below where school mean
rate of change (β10j ) is modeled as a function of school mean initial status (β00j ). In

addition, the within-school initial status/rate of change slope (Bwj) can be also
modeled as a function of school mean initial status.

β00j = γ000 + u00j u00j ~ N (0, τβ00)

β10j = γ100 + Bb(β00j - γ000) + u10j u10j ~ N (0, τβ10)

Bwj = Bw0 + Bw1(β00j - γ000) + uBwj uBwj ~ N (0, τBw) (6)
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In the first equation, γ000 represents grand mean initial status. In the second

equation, a latent variable regression coefficient, Bb, captures the between-school
relationship between mean initial status and mean rates of change. Thus, in contrast
to the within-school initial status/rate of change slope(Bwj), we term this latent
variable regression coefficient the between-school mean initial status/mean rate of
change slope. In the last equation, Bw0 is the expected within-school initial
status/rate of change slope when school mean initial status is equal to the grand
mean. Bw1 is also a latent variable regression coefficient which captures the effect of
school mean initial status on the within-school initial status/rate of change slope.

In the above level-3 model, three random effects, u00j, u10j and uBwj are assumed
normally distributed with mean 0 and variances, τβ0 0 , τβ10, τ Bw , respectively.
Regarding covariance components in the above model, we assume that Cov (β00j , β10j)
= 0 and Cov (β00j , Bwj) = 0, because both β10j and Bwj are conditioned on β00j in the
second and third equations above. However, the covariance between β10j and Bwj is
defined to be τβ10,Bw (Cov (β10j , Bwj) = τβ10,Bw).

Using the above level-3 model as a baseline model, measures of various school-
level characteristics can be entered as predictors in the above equations. By doing
this, in studies on school effectiveness, we can identify factors that appear to
eventuate in high mean rates of progress, and in relatively weak relationships, or
even negative relationships, between initial status and rates of change.

From an estimation standpoint, we employ a fully Bayesian approach using
Markov Chain Monte Carlo (MCMC) method (e.g., the Gibbs sampler) (see, e.g.,
Carlin & Louis, 1996; Gelfand & Smith, 1990; Gelman, Carlin, Stern, & Rubin, 1995;
Gilks, Richardson, & Spiegelhalter, 1996; Tanner, 1996). That is, we use the Gibbs
sampler to simulate the marginal posterior distributions of parameters of interest
(e.g., Bw1, Bb). The resulting posteriors provide the bases of point estimates and
intervals. Thus, while LVR-HM3s are extremely complex from an estimation
standpoint, it is the use of MCMC that makes fitting models of this kind very
feasible. Furthermore, to study the sensitivity of inferences to outlying time-series
data points, outlying individuals, and outlying schools, we can readily use MCMC
to fit LVR-HM3s under t distributional assumptions at each level. To implement this
approach, we use the software program WinBUGS (Spiegelhalter, Thomas, & Best,
2000), which provides a fairly easy means of implementing the Gibbs sampler in a
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wide range of modeling settings. Note that BUGS is a near-acronym for Bayesian

analysis using Gibbs sampling.

Review of Various Extensions of Hierarchical Modeling and Structural Equation

Modeling for Analyzing Multilevel Longitudinal Data

Growth modeling techniques have been widely used in many disciplines for
studying individual change. One tradition generally found in psychometrics is
referred to as latent curve analysis or latent variable Structural Equation Modeling
(SEM; Muthen & Curran, 1997). Ever since Meredith and Tisak (1984, 1990)
demonstrated how covariance structure analysis could be applied to longitudinal
data, many extensions of this work can now be found in the latent variable literature
(Chou, Bentler & Pentz, 1998; McArdle & Epstein, 1987; Muthen, 1991; Muthen &
Curran). This tradition has focused on variance-covariance structure analysis using
latent variables, and regressions among latent variables constitute a key feature of
this approach. Thus, viewing initial status and rates of change as latent variables,
and specifying a variance-covariance matrix for these latent variables, we can
readily model rates of change as a function of initial status within the SEM
framework. However, this approach, as currently implemented in a number of
software programs, is problematic when data are not time-structured. (See,
however, Muthen, Kaplan, & Hollis, 1987; Muthen & Muthen, 2002.)

A second tradition is referred to as random coefficient modeling (Gibbons,
Hedeker, Waternaux, & Davis, 1988; Laird & Ware, 1982; Liang & Zeger, 1986),
Hierarchical Linear Modeling (HLM; Bryk & Raudenbush, 1992), and multilevel
modeling (Goldstein, 1987, 1995; Longford, 1993). This approach is more flexible in
terms of data structures in that each individual is allowed to have a different
number of observations and different spacings between observations (see, e.g., Bryk
& Raudenbush, 1987; Muthen & Curran, 1997; Raudenbush, 1998; Willett & Sayer,
1994). A key feature of this approach is that individual initial status and rates of
change are treated as varying across individuals (i.e., random coefficients; for
comparisons of these two traditions, see Muthen & Curran and Willett & Sayer).

Recently, several pioneering researchers have developed strategies for
incorporating latent variable regressions in hierarchical modeling settings (Chou et
al., 2000; Muthen, 1997; Raudenbush & Sampson, 1999). First, Raudenbush and
Sampson’s approach can be easily applied to settings where we wish to regress rates
of change on initial status, and it can be implemented in the latest release of the
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HLM software program (Raudenbush, Bryk, Cheong, & Congdon, 2000). In this
strategy, the regression coefficients for latent predictors (e.g., initial status) are
estimated by a two-stage procedure. At the first stage, we estimate fixed effects and
a variance-covariance matrix by fitting a more standard model (i.e., one that does
not contain latent variable regressions). At the second stage, we use the elements of
the estimated variance-covariance matrix to obtain estimates of latent variable
regression coefficients; we then use these LVR estimates and the fixed effects
estimates from the standard model to obtain various fixed effects estimates in the
latent variable regression model (e.g., estimates of direct effects; see Raudenbush
and Bryk [2001, Chapter 11] for an example). Thus, for example, to estimate b in
Equation 3, first we fit the 2-level model to the data defined by Equations 1 and 2.
Then, as a second stage in this process, we estimate b by dividing the estimate of τ01

by the estimate of τ00 : b
∧

= ∧

∧

00

01

τ

τ  .

Even though Raudenbush and Sampson’s (1999) strategy enables us to specify
latent variable regressions in the hierarchical modeling framework, it has the
following limitations. In the current implementation of the HLM program, when we
apply this strategy to three-level hierarchical data sets, we are able to regress school
mean rate of change on school mean initial status at level 3. However, we are not
able to regress students’ rates of change on their initial status at level 2. This kind of
limitation precludes the possibility of modeling differences in the within-school
relationship between initial status and rate of change as a function of various school
or site characteristics.

A second approach can be founded in the work of Muthen (1994) who presents
multilevel structural equation models (see also Muthen, 1997; Muthen & Satorra,
1995). In this approach, the sample data are decomposed into a pooled within-group
matrix and a scaled between-group covariance matrix. Based on these matrices, the
structural relations among within- and between-group variables can be estimated
simultaneously using a multiple-group modeling technique.

His approach provides us with very useful and important latent variable
regression modeling techniques for analyzing multilevel data. From an estimation
standpoint, however, it is very computationally cumbersome and challenging when
data are unbalanced (i.e., when cluster sizes [nj] substantially vary across clusters).
In such cases, full information maximum likelihood (FIML) estimation implies
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specifying a separate between-group model for each distinct group size so that large
numbers of distinct group sizes make FIML extremely complex. As an alternative to
FIML, Muthen proposes using a single between-group sampling covariance matrix
based on a simpler ML-based estimate (MUML; Muthen, 1994). This approximation
of the between-group sampling covariance reduces the computational complexity a
great deal and provides fairly acceptable and accurate results for unbalanced nested
data with large numbers of both level-1 and level-2 units (McDonald, 1994;
Muthen,1994; Hox, 1993). However, a large simulation study conducted by Hox and
Mass (2000) shows that small numbers of level-2 units and low intraclass
correlations yield underestimates of residual variances, and standard errors for
parameters in the between-group model that are too small.

We now consider limitations of the multilevel SEM approach from a modeling
standpoint. Essentially, Muthen’s approach summarizes unbalanced nested data
structures by means of within- and between-group variance-covariance matrices,
and his approach may be viewed as a random intercept model (Muthen, 2002). Thus,
within this kind of modeling framework, it is not possible to include random slopes
(Raudenbush, 2001; however, see Muthen & Muthen (2002) regarding the possibility
of incorporating random slopes in 2-level latent variable models). In three-level
hierarchical modeling settings where the numbers of level-2 and level-3 units are
fairly large, the multilevel SEM approach allows us to estimate the average within-
school relationship between initial status and rates of change and the between-
school relationship between mean initial status and mean rate of change using the
pooled within-school covariance matrix and the between-school covariance matrix,
respectively. However, as in the case of Raudenbush and Sampson’s approach, we
cannot treat latent variable regression coefficients as varying across schools.

Finally, Chou et al. (2000) present a two-stage approach to multilevel SEM for
multilevel data. Their two-stage approach is somewhat analogous to Burstein’s
(1980) “slopes-as-outcomes” approach to analyzing hierarchically structured data.
At the first stage, they pose a very general mean and /or covariance structure model
at the first level for each nesting unit. The estimated parameters for each of the
nesting units provide a new data matrix for the second stage model. They note that
these estimates provide a model-based summary of the level-1 data: estimates of the
model-based mean for each nesting unit and the structural relations among level-1
variables. For three-level hierarchical data, for example, in the first stage of the
procedure, we fit the LVR-HM2 depicted in Equations 1 and 3 to each school’s data.
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As a result, we obtain three sets of parameter estimates: estimates of the mean initial
status (β00j), the expected rate of change (β10j), and the latent variable regression

coefficient (Bwj) for each school. In the second stage of the procedure, using these
estimated parameters as a data set, we fit the level-3 model as presented in Equation
6.

As they point out, their less sophisticated two-stage estimation procedure may
be problematic in certain situations. They argue that their two-stage estimation
strategy performs efficiently for situations where the number of observations at the
second (e.g., the number of students within a school) and the highest levels (e.g., the
number of schools) are sufficiently large to rely on standard large-sample theory.
The results based on fitting the level-3 model, however, do not take into account
estimation error in the estimates of the level-2 parameters (i.e., β00j, β10j, Bwj). In

particular, due to estimation error in school mean initial status, which is used as a
predictor for school mean rate and for the within-school initial status/rate of change
slope, estimates of the latent variable regression coefficients in Equation 6 may tend
to be attenuated. This may be especially problematic when level-2 sample sizes are
small or moderate.

An Illustrative Example Using Data From LSAY

To help illustrate various key points and ideas of the LVR-HM, we fit a series
of LVR-HM3 to analyze the time-series data for students in 45 schools in the
Longitudinal Study of American Youth (LSAY; Miller et al., 2000). In this paper we
focus on mathematics achievement scores collected at the start of Grades 7, 8, 9, and
10 in 45 different schools. The total number of students in the sample is 2,628 and
the average number of students per school is 58. The sample included
approximately 31 teachers per school.

This section presents a series of LVR-HM3s. In the first model (Model 1), we
specify a latent variable regression in the within-school (level-2) model. As a result,
we can estimate within-school initial status/rate of change slopes for each of the 45
schools. In the between-school (level-3) model, correlation coefficients are estimated
among school mean initial status, school mean rate of change, and the within-school
initial status/rate of change slopes.

In Model 2, instead of estimating correlation coefficients at level-3, we include
latent variable regressions at level-3: school mean rate of change is regressed on
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school mean initial status, and the within-school initial status/rate of change slope is
also regressed on school mean initial status.

Finally, viewing Model 2 as a baseline model, in Model 3 we include student-
level predictors for initial status and rates of change in the level-2 model. In
addition, school-level characteristics are included as predictors for outcomes in the
level-3 model.

Unconditional LVR-HM3 (Model 1)

We first begin by specifying a simple LVR-HM3 (Model 1) in which no student-
level predictors or school-level predictors are included in the model. However, we
include initial status as a predictor for rates of change in the within-school (level-2)
model. The following within-student (level-1) model is posed for the time-series
data for each of the students in each of the 45 schools.

Ytij = π0ij + π1ij (Gradetij − 7) + εtij εtij ~ N (0, σ2)    (7)

In the above level-1 (within-student) model, a student’s math scores from grade
7 through grade 10 (Ytij ) are modeled as a function of a time variable (Gradetij).
Gradetij represents the grade for student i in school j at measurement occasion t, and
it takes on a value 7 for grade 7, 8 for grade 8, 9 for grade 9 and 10 for grade 10. Since
we centered Gradetjj around a value of 7, π0 ij represents the expected math

achievement score for student i in school j at the start of grade 7 (i.e., initial status for
student i in school j). π1ij represents the expected rate of change for student i in school

j.

Next, we pose a between-student or within-school (level-2) model with a
latent variable regression as follows:

π0ij = β00j + r0ij r0ij ~ N (0, τπ0j)

π1ij = β10j + Bwj(π0ij − β00j) + r1ij r1ij ~ N (0, τπ1j) (8)
Cov (r0ij, r1ij ) = 0

A key parameter of interest in this model is Bwj, which is a latent variable
regression coefficient. Bw j is a slope parameter relating initial status and rates of
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change for students in school j. By virtue of centering π0ij around school mean initial
status (i.e., β00j), β10j represents expected rate of change for school j when student

initial status is equal to the school mean initial status.

Since we include initial status as a predictor for rates of change in the within-
school model, τπ1j represents the residual variance in rates of change after we take
into account differences in initial status. Furthermore, including π0ij as a predictor for
π1ij, we now assume that the covariance between the residuals, r0ij and r1ij, is equal to

0.

We treat β00j, β10j , and Bwj as outcomes in a level-3 (between-school) model:

β00j = γ000 + u00j u00j ~ N (0, τβ00)

β10j = γ100 + u10j u10j ~ N (0, τβ10)

Bwj = Bw0 + uBwj uBwj ~ N (0, τBw) (9)

Cov (u00j, u10j ) = τβ00,β10 , Cov (u00j, uBwj ) = τβ00,Bw , Cov (u10j, uBwj ) = τβ10,Bw

Thus, a key parameter of interest in the above level-3 model is Bw0, which
represents the overall mean of the within-school initial status/rate of change slope
(i.e., Bwj). In addition, uBwj captures each school’s deviation from the overall mean
within-school initial status/rate of change slope. The variability of uBwj is captured
by τBw, and uBwj is assumed normally distributed with mean 0 and variance τBw.

We also need to pay attention to covariances among the three level-3 random
effects. First, the between-school relationship between school mean initial status and
school mean rate of change is represented by the covariance, i.e., Cov (u00j, u10j ) =
τβ00,β10 . Second, the covariance between u00j and uBwj, (i.e., Cov (u00j, uBw j ) = τ β00,Bw)

provides us with the information about how the within-school initial status/rate of
change slopes are associated with the school mean initial status: For example, do
within-school initial status/rate of change slopes (Bwj) increase or decrease as school
mean initial status (β00j) increases? Furthermore, Cov(u10j, uBwj) = τ β10,Bw captures the

relationship between school mean growth rates and within-school initial status/rate
of change slopes.

For each of the models presented in this paper, we specified normal priors with
extremely low precision for the fixed effects, which are functionally equivalent to
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uniform priors. For example, for γ000 in the above model, we specified a normal prior

with mean 0 and precision 1.0E-5. Thus the data will dominate the prior in drawing
inferences concerning the fixed effects. For the variance components at levels 1, 2
and 3, we employed gently data-determined inverse gamma priors and inverse
Wishart priors based on a strategy outlined in Seltzer, Novak, Choi, and Lim (2002)
(see Endnote 1).

Upon convergence, the Gibbs sampler essentially provides us with draws from
the joint posterior distribution of all unknowns in a given model. The empirical
distribution of the deviates generated for a parameter of interest over a large
number of iterations provides us with an accurate approximation of the marginal
posterior distribution of that parameter. A marginal posterior distribution provides
us with a summary of the plausibility of different values for a parameter of interest
given the data.

For assessing convergence and mixing, we examined trace plots and
autocorrelation function (ACF) plots. Note that for each model we ran two or more
chains using different starting values with a burn-in period of 2,000 and then each
chain was run for an additional 30,000 iterations. We compared results based on the
two chains and found them to be extremely similar. Using a Pentium IV 2.5 GHz
machine, approximately 10 minutes of CPU time were required to complete 30,000
iterations of our algorithms. To help ensure results with high degrees of accuracy,
we employed a burn-in period of 2,000 iterations, and used the output from 60,000
subsequent iterations of the Gibbs sampler to simulate marginal posteriors of
interest.

In Table 1, we present the mean (labeled estimate), median, standard deviation,
and 95% interval of the marginal posterior distribution of each parameter in Model
1. The .025 and .975 quantiles of a marginal posterior distribution for a parameter of
interest provides the basis of constructing a 95% interval for that parameter. In
addition, we calculated the proportion of the posterior distribution greater than 0 for
various parameters.

The average within-school initial status/rate of change slope (Bw0) is equal to
0.113 and its 95% interval includes only positive values. This estimate can be
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Table 1

Model 1: 3-level unconditional LVR Model − Estimating Within-School Initial Status/Rate of
Change Slope (Bwj)

Estimate SE 95% Interval Median Prop. >0

Fixed effect:

Mean Init. Status(γ000) 49.72 0.63 (48.48, 50.96) 49.72 1.000

Mean Rate of Change(γ100) 3.85 0.14 (3.57, 4.12) 3.85 1.000

Mean Init. Status/Rate of Change
Slope(Bw0)

0.113 0.012 (0.089, 0.136) 0.113 1.000

Variance Components:

Level-1 Error(σ2) 17.16 0.37 (16.44, 17.90) 17.16

Level-3 Variance

Sch. Initial Status(τβ11) 16.63 3.952 (10.48, 25.86) 16.080

Sch. Rate of Change(τβ22) 0.736 0.198 ( 0.430, 1.201) 0.708

Init. Status/Rate of Change Slope (τBW) 0.003 0.001 ( 0.002, 0.006) 0.003

Correlations:

Sch. Init. Status, Sch. Rate of Change
(Corrβ00j,β10j)

0.33 0.15 (0.00, 0.61) 0.34 .9760

Sch. Init. Status, Init/Rate of Change
Slope(Corrβ00j, Bwj)

-0.39 0.19 (-0.71, 0.01) -0.41 .0288

Sch. Rate, Init/Rate of Change
Slope(Corrβ10j, Bwj)

-0.56 0.16 (-0.81, -0.20) -0.58 .0025

interpreted as follows: on average, a one-unit increases in initial status is expected to
eventuate in an increase of 0.113 points in rate of change. This applies to students
with low initial status. As result, on average, the differences in math achievement at
grade 7 are magnified as grade increases.

Furthermore, these within-school initial status/rate of change slopes (Bwj) vary
considerably across the 45 schools. The 95% intervals of the Bwj parameters for the
schools in our sample are displayed in Figure 1. Specifically, the top, middle line,
and bottom of each bar are equal to, respectively, the .975 quantile, the mean, and
.025 quantile of the marginal posterior distribution of the initial status/rate of
change slope for a given school. Schools 9, 19, 33, 44 have relatively high Bwj values.
The corresponding estimates (posterior mean) for these schools are, respectively,
0.19, 0.18, 0.17, and 0.16, and the correlation coefficients capturing the relationship
between initial status and rate of change are above 0.95 for all four of these schools.
In contrast, schools 14, 18, 22, and 28 tend to have low Bwj values. The 95% intervals
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Figure 1. Within-school initial status/rate of change slopes (bwj) for the 45 schools (Model 1).

* The horizontal line represents the overall average of the within-school initial status/rate of change slopes.

** The top, middle line, and the bottom of each bar corresponds, respectively, to the .975 quantile, mean, and
the .025 quantile of the marginal posterior distribution of the initial status/rate of change slope for a given
school.

for these schools contain a value of 0, which indicates that initial status and rates of
change within these schools are unrelated. In addition, correlation coefficients for
these schools do not exceed a value of 0.06.

In addition to Figure 1, we can use our estimates of the grand mean of the Bwj’s
(Bw0) and our estimate of the variance in the Bwj’s across schools (τBw). As noted
above, our estimate of Bw0 is .113, and as can be seen in Table 1, our estimate of τBw

is .003. A school whose initial status/rates of change slope is two standard
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deviations above the grand mean is equal to: .113 + 2 003.  = .223. A school whose

initial status/rates of change slope is two standard deviations below the grand mean
is equal to: .113 - 2 003.  = .012. In the first school, where the initial status/rate of

change slope is equal to .223, student’s initial status is very consequential in terms of
his or her rate of change in the sense that a 10-point initial difference is expected to
widen to 16.69 points at grade 10 (i.e., the expected difference at the first year is
equal to 2.33 (.223 * 10 = 2.23), and the expected difference after 3 years is equal to
6.69 (2.23 * 3 = 6.69). In contrast, in the second school, a student’s initial level of math
achievement is not consequential in terms of how fast he or she progresses. For
example, in that school, students 10 points apart in math scores at grade 7 are
expected to be only 10.36 points apart at the end of grade 10, since the expected
difference at the first-year period is .12 (10 * .012 =.12). And after 3 years, the
expected difference is equal to .36 (.12 *3 = .36). As such, we can conclude that there
is appreciable variability in Bwj across schools.

Taking things one step further, how are the within-school initial status/rate
of change slopes related to school mean initial status? For example, does the
relationship between initial status and rate of change tend to be weak or strong in
schools with high mean initial status values? And how strongly are they associated
with each other? The posterior mean of the correlation between the within-school
slopes and school mean initial status (CorrBwj,β00j | y) computed in WinBUGS based

on the equation 
)var()var(

),cov(

00

00

jj

jj

Bw

Bw

β
β

 is equal to -0.38 (see Table 1). The 95% interval of

this correlation is -.71 to .01 and approximately 2.9% of the mass of the posterior
distribution for CorrBwj,β00j lies above 0. This sizable negative coefficient implies that

the initial gaps at grade 7 among students tend to widen appreciably more in low
mean initial status schools than in high mean initial status schools.

In addition, we estimated the correlation coefficient between school mean
initial status and school mean growth rates. The resulting positive correlation
coefficient (Corrβ00j, β10j = 0.33, p(Corrβ00j, β10j > 0 | y ) = .976) suggests that school mean

growth trajectories for schools with low mean initial status are flatter than those for
schools with high mean initial status.

Are the within-school relationships more positive in schools where students on
average grow at a faster rate than in schools where their students progress on
average at a slower rate? The correlation coefficient reveals that there is a highly
significant negative correlation (Corrβ10j,Bwj = -0.56; p(Corrβ10j, Bwj > 0 | y ) = .025). This
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coefficient implies that schools in which students on average progress rapidly from
grade 7 to grade 10 have weaker within-school relationships.

Next, how important is initial status as a predictor for rate of change? In other
words, we consider how much the variance in rate of change in the within-school
model is reduced after initial status is included as a predictor. Figure 2 displays the
amount of reduction in rate of change variance after initial status is included as a
predictor in the level-2 model. In each bar plot, the white portion of the bar indicates
the variance accounted for by initial status, while the dark portion of the bar
represents the remaining variance.

We can see that there are marked differences across schools in terms of the
percentage of reduction in the variance of growth rates. For example, schools 14, 18,
22, 25, 28, and 31 have 0% reduction even after initial status is included in the
equation for rates of change. However, in schools 9, 11, 19, 33, and 34, initial status
has exceptionally high power in accounting for the differences in rates of change. In
these schools, 85.3%, 94.1%, 86.1%, 92.9%, and 86.0%, respectively, of variability is
attributed to initial status. Thus, the considerably large variability in the percentage
of reduction in the rate of change variance demonstrates that the relationships
between initial status and rates of change vary to a large extent across schools.

Model 2 (Latent Variable Regressions in Within-School

and Between-School Models)

In the following model (Model 2), we specify latent variable regressions in the
between-school (level-3) model. By doing this, we can estimate latent variable
regression coefficients instead of estimating correlation coefficients as in Model 1.
While the correlation coefficient provides only information on the strength of
association, regression coefficient provides information on the expected amount of
increase or decrease in an outcome of interest in a model when a predictor variable
increases by one unit, holding constant the other variables in the model. The within-
individual (level-1) and within-school (level-2) models are the same as in Model 1
(see Equations 7 and 8). In the following between-school (level-3) model, school
mean rate of change parameters are modeled as a function of school mean initial
status parameters. Furthermore, the within-school initial status/rate of change
slopes are modeled as a function of school mean initial status parameters as well.
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* The white part of each bar represents amount of variance accounted for by initial status. The shaded part of
each bar represents amount of residual variance that is not accounted for by initial status.

 

Figure 2. Percentage of reduction in growth rate variance after
               initial status is included as a predictor 
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We pose the following between-school model:

β00j = γ000 + u00j u00j ~ N (0, τβ00)

β10j = γ100 + Bb*(β00j − γ000) + u10j u10j ~ N (0, τβ10)

Bwj = Bw0 + Bw1*(β00j − γ000) + uBwj uBwj ~ N (0, τBw) (10)

Cov (u00j, u10j ) = 0 , Cov (u00j, uBwj ) = 0, Cov (u10j, uBwj ) = τβ10,Bw ,

where Bb is a latent variable regression coefficient that relates school mean initial
status to school mean rate of change. We term this coefficient the between-school
mean initial status/mean rate of change slope (Bb), in contrast to the within-school
initial status/rate of change slope (Bwj). This coefficient represents the expected
increase or decrease in school mean rate of change when school mean initial status
increases by one unit. Likewise, Bw1 is also a latent variable regression coefficient
capturing the relationship between within-school initial status/rate of change slopes
and school mean initial status. This latent variable regression coefficient is termed
the school mean initial status/within-school relationship slope. In addition, it is
interpreted as the expected amount of increase or decrease in the within-school
initial status/rate of change slopes when school mean initial status increases by one
unit.

Turning to the fixed effects and variance-covariance components, γ000 retains the

same meaning as in Model 1 (i.e., grand mean initial status). By virtue of centering
school mean initial status around the grand mean initial status, γ100 represents the
expected rate of change when school mean initial status (β00j) is equal to the grand
mean (γ000). The random effect, u10j, represents the residual for school j, after taking

into account school mean initial status, and this random effect is assumed normally
distributed with mean 0 and variance τβ10. In addition, because of the centering of

school mean initial status around the grand mean, Bw0 represents the within-school
initial status/rate of change slope for schools where school mean initial status is
equal to the grand mean. The residual of Bwj (i.e., uBwj,) in the third equation above is
assumed normally distributed with mean 0 and variance τBw.

The covariance between u00j and u10j is set equal to 0, since school mean rate of
change is modeled as a function of school mean initial status. For the same reason,
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Cov(u00j, uBwj) is also assumed to be 0. However, the covariance between school mean
rate and the within-school initial status/rate of change slopes is τβ10,Bw.

The results for Model 2 are presented in Table 2. The posterior mean for the
between-school mean initial status/school mean rate of change slope (Bb) is equal to
0.076, and its 95 % interval ranges from -0.001 to 0.151. Though the 95 % interval
includes a value of 0, the proportion of posterior distribution below 0 is only
approximately 2.7%. The results suggest that schools with high mean initial status
tend to have steeper growth trajectories than schools with low mean initial status.
Based on these results, we expect an increase in school mean rate of change of about
.076 points when school mean initial status increase one unit.

Table 2

Model 2: 3-Level unconditional LVR HM: Estimating Within-School Initial Status/Rate
of Change Slopes (Bwj) and Between-School Mean Initial Status/School Mean Rate of
Change Slope (Bb)

Estimate SE 95% Interval Median Prop.>0

Fixed effects:

Model for School Mean Initial
Status (β00j):

Mean Init. Status (γ000) 49.72 0.63 (48.48, 50.96) 49.72 1.0000

Model for School Mean Rate of
Change (β10j):

Mean Rate of Change (γ100) 3.86 0.15 (3.57, 4.14) 3.86 1.0000

School Mean Init. Status (Bb) 0.076 0.039 (-0.001, 0.151) 0.076 .9734

Model for Init. Status/Rate of
Change Slope (Bwj):

Mean Init. Status/Rate of
Change Slope (Bw0)

0.089 0.012 (0.067, 0.112) 0.089 1.0000

School Mean Init. Status (Bw1) -.005 0.003 (-0.011, 0.001) -0.005 .0601

Variance Components:

Level-1 Error(σ2) 16.36 0.36 (15.67, 17.07) 16.36

Level-3 Variance:

Initial Status(τβ00) 16.22 3.782 (10.310,
25.010)

15.710

Rate of Change(τβ10) 0.656 0.189 (0.364, 1.100) 0.630 .0314

Init./Rate of Change Slope (τBW) 0.002 0.001 (0.001, 0.004) 0.002

Cov. (Sch. Rate of Change,
Init./Rate of Change Slope)

-.016 0.010 (-0.037, 0.001) -0.015

Correlations:

Sch. Rate of Change , Init/Rate of
Change Slopes (Corrβ10j, Bwj)

-0.56 0.16 (-0.81, -0.20) -0.58 . 0029
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We often have a negative estimate of the latent variable coefficient (Bw1)
relating differences in school mean initial status to the within-school initial
status/rate of change slopes. The resulting posterior mean (Bw1) is -0.005 and
approximately 6% of mass of the posterior distribution is above the value of 0 (p(Bw1

> 0 | y ) = .060). This result shows that as school mean initial status increases one
unit, the within-school initial status/rate of change slope decreases approximately
0.005. Thus, it is very likely that there is a weaker relationship between initial status
and rates of change in higher mean initial status schools than in lower mean initial
status schools.

We now consider the meaning of these results from a practical standpoint and
what they might disclose about the process of student growth and the distribution of
students’ achievement within schools. As an illustration, Figure 3 displays the
expected growth trajectories for three different schools: a school where mean initial
status is two standard deviations (8 points) above the grand mean, a school where
mean initial status is equal to the grand mean, and a school where mean initial
status is two standard deviations (8 points) below the grand mean. Each school has
three expected growth trajectories for students whose initial status is equal to 15
points above the school mean (circle lines), at the school mean (box lines), and 15
points below the school mean (triangle lines). Thus, in all three schools, initial gaps
among the students are equal to 30 points as presented in the figure. Note that all of
the expected growth trajectories presented in Figure 3 are based on the fitted Model
2.

In this Figure 3, we can clearly see two growth patterns in terms of overall growth
rate and the underlying distribution of achievement. First, with respect to overall
growth rates, as school mean initial status increases, the overall school rate of
change gets faster. The school starting off at 8 points above the grand mean has the
fastest average rate, the school at the grand mean has the second fastest rate, and the
school 8 points below the grand mean has the slowest rate among the three schools.
These mean trajectories, which are labeled with boxes, show that students in these
three schools start off on average with values of 57.2, 49.7, and 41.72, and they end
up with values of 71.1, 61.2, and 51.5, respectively. Thus, the expected gains are
approximately 13.4, 11.6, and 9.8 points, respectively.
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Figure 3. Expected growth trajectories for three different schools based on the results from Model 3.
Circle line: expected rate for students 15 points above the school mean initial status value. Box line:
expected rate for students with initial status values equal to the school mean. Triangle line: expected
rate for students 15 points below the school mean initial status value.

* The numbers attached to each line denote the differences between expected scores at grade 10 and
initial status values. In other words, these are gain scores based on the fitted model.

** The boldfaced number denotes the expected difference at grade 10 between a student who starts 15
points above the school mean initial status value and a student who starts 15 points below the school
mean initial status value.

Second, we now examine how much initial gaps among students within each of
the three schools increase by grade 10. Given that the within-school initial
status/rate of change slopes for these three schools are all positive, we can expect
that initial gaps at grade 7 get wider over time. However, in the school whose mean
initial status is 8 points above the grand mean, the initial gap (i.e., 30 points)
becomes 34.4 points by grade 10; the gap increases by only 4.4 points. This indicates
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that students in this school tend to progress at fairly similar rates regardless of initial
status. Comparing this school to the school starting off 8 points below the grand
mean, we can see that the initial gap (30 points) gets magnified to 41.6 points by
grade 10. This large difference at grade 10 is due to the fact that a student who starts
off low initially grows at a slow rate, gaining only 4.0 points by grade 10, while a
student who starts off high grows at a considerably faster rate, gaining 15.6 points
by grade 10.

Third, Figure 3 clearly illustrates how consequential school membership can be
with respect to a student’s initial status and his or her subsequent rate of progress.
Among the students who start off 15 points above their school’s mean initial status
value (see the lines labeled with circles), the gains from grade 7 to grade 10 are
almost identical (15.6 points) in each of the three schools. In contrast, students who
start off with 15 points below their school’s mean initial status value (triangle lines)
progress very differently from each other. The student in the first panel gains 11.2
points, while the student in the third panel gains only 4.0 points.

In summary, two important things that come to light regarding school mean growth
rates and the distribution of student achievement within schools are: a) students in schools
with high mean initial status tend to grow faster on average than students in schools
with low mean initial status, and b) students in schools in which mean initial status
is high not only progress at faster rates, but growth is also more equitable as well. In
other words, the expected gaps at grade 10 among students in these schools do not
get magnified as much as the expected gaps among students in schools with low
mean initial status values.

Model 3 (Latent Variable Regressions in Within-School and Between-School

Models Including Student Characteristics and School Characteristics)

We now pose a Model 3 in which we include student-level predictors and
school-level predictors in the model. Specifically, we specify a within-school (level-
2) model in which two student-background characteristics are included as predictors
both for initial status and rates of change. And we specify a between-school model
to explore how differences in particular school-level factors are related to where
students in a school start on average (i.e., school mean initial status), how fast
students progress on average (i.e., school mean rates of change), and how student
growth is distributed within schools (i.e., within-school initial status/rate of change
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slopes). For Model 3, we have the same within-individual (level-1) model as in
Models 1 and 2. The within-school model is as follows:

π0ij = β00j + β01j(SEDEXij − SEDEX..) + β02j(BPBLM − BPBLM..) + r0ij

r0ij ~ N (0, τπ0j)

π1ij = β10j + Bwj(π0ij − β00j) + β11j(SEDEXij − SEDEX..)

+ β12j(BPBLM − BPBLM..) + r1ij r1ij ~ N (0, τπ1j) (11)

Cov (r0ij, r1ij ) = 0.

In the above model, two student-level variables are included (see Endnote 2 for
more details regarding these variables). First, the variable student educational
expectations (SEDEX) at grade 7 reflects the highest level of education a student
believes that he or she will attain. There are six possible responses for SEDEX: 1 for a
high school degree, 2 for vocational training, 3 for 2-year college, 4 for 4-year college,
5 for a master’s degree and 6 for a doctorate or professional degree. Second, the
variable student behavioral problems (BPBLM) take on a value 1 if a student
reported behavioral problems at grade 7 (e.g., if a student had been suspended, had
been arrested by the police, or had considered dropping out), and 0 otherwise.
Among the 2,628 sampled students, 436 students (16.6%) indicated behavioral
problems.

The main reason to include these student characteristics in the model is to
adjust for differences among schools in these key student characteristics before
examining the relationship between school mean initial status (β00j) and school mean
rate of change (β10j). Analogous to ANCOVA, if behavioral problems are negatively

related to initial status, and the proportion of students with behavioral problems in
school j is above the grand mean (BPBLM), the expected initial status value for
school j would be adjusted upwards. By virtue of centering each predictor around its
grand mean, β00j represents the adjusted mean initial status for school j. β01j is a fixed

effect coefficient that relates a student’s educational expectations to his or her initial
status, holding the other level-2 predictor constant. And β02j is a fixed effect

coefficient capturing the difference in initial status in school j between students
reporting behavioral problems and those who do not, holding the other level-2
predictor constant. Likewise, β11j and β12j are fixed effects coefficients capturing the
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effects of student educational expectations and student behavioral problems on rates
of change, respectively, holding constant a student’s initial status. Note that these
four student-level fixed effects are treated as not varying across schools at level 3.

The between-school (level-3) model is specified as follows.

β00j = γ000 + γ001 (MHOMERSj—MHOMERS.) + u00j u00j ~ N(0,τβ00)

β01j = γ010

β02j = γ020

β10j = γ100 + Bb*(β00j—γ000) + γ101(MHOMERSj—MHOMERS.) +

   γ102 (MTEACAREj—MTEACARE.) + u10j u10j ~ N (0, τβ10)

β11j = γ110

β12j = γ120

Bwj = Bw0 + Bw1(β00j—γ000) + Bw2(MHOMERSj—MHOMERS.) +

   Bw3(MCOLLEAGEj—MCOLLEAGE.) +

   Bw4(MCOMHWj—MCOMHW.) +

   Bw5(MPERSUCCj—MPERSUCC.) + uBwj uBwj ~ N (0, τBw) (12)

Cov (u00j, u10j ) = 0 , Cov (u00j, uBwj ) = 0, Cov (u10j, uBwj) = τβ10,Bw

First, school mean initial status is modeled as a function of only one predictor
variable (i.e., school mean home resources [MHOMERS]). This variable is created by
aggregating student home resources, which is the sum of students responses to the
following questions: whether a student has his or her own place to do homework,
owns a computer, has his or her own room, and has more than 50 books in his or her
home. Thus, the range of this variable is from 0 to 4.

Second, school mean rate of change is regressed on school mean initial status,
school mean home resources, and school mean teacher care (MTEACARE). The
teacher care variable is based on teachers’ responses to the following questions: “I
sometimes feel it is a waste of time to try to do my best as a teacher” and “The
teachers in this school push the students pretty hard in their academic subject.” Each
question is measured on a 5-point Likert scale ranging from 1 (Strongly Disagree) to 6
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(Strongly Agree). Note that the teacher care variable was measured based on the
responses of the science and math teachers in the sampled schools to a questionnaire
administered in spring 1988, when students in the sample were in grade 7. The
number of teachers who completed this questionnaire is 349, and the number of
teachers per school ranges from 3 to 15. The average number of teachers per school
in the sample is approximately 7.5 and the median is 7. The sample mean of this
teacher care variable is equal to 4.41, and its standard deviation is equal to .55.

Finally, within-school initial status/rate of change slopes are modeled as a
function of school mean home resources, the school mean percentage of students
completing homework on time (MCOMHW), the school mean percentage of
students who their teachers expect to graduate from college (MCOLLEAGE), and
school mean teachers’ self-evaluation of their success in educating students
(MPERSUCC). MCOMHW, MCOLLEAGE, and MPERSUCC are measured based on
teachers’ answers to questions on a class-specific questionnaire that was
administered to the math and science teachers who had one or more of the LSAY
students in their classes. In particular, MCOLLEAGE reflects teacher expectations of
the students in their classes and not of particular LSAY students. The sample mean
of this variable is equal to 78.7, and its standard deviation is equal to 10.82. Teachers’
self-evaluations of their success are based on their responses to the following
question: “To what extent do you feel successful in providing the kind of education
you would like to provide for the students in your class?” The measurement scale
for this variable ranges from 1 Not very successful to 4 Very successful. The sample
mean and its standard deviation are equal to 2.89 and .43, respectively.

We present the results for this model in Table 3. The grand mean for initial
status is close to 50 points. School mean home resources (γ001) shows a significant
positive effect on school mean initial status. The estimate for γ001 is equal to 7.14 and

its 95% interval contains only positive values ranging from 4.20 to 10.07. Thus we
expect approximately a 7-point increase in school mean initial status given a one
unit increase in school mean home resources.

We now consider results for school mean rates of change. The expected growth
rate is approximately 3.9. This means that we can expect on average 3.9 points
improvement in math achievement at each grade. School mean home resources (γ101)

is positively related to school mean rate of change, even after holding school mean
initial status and the teacher care variable constant. The estimate for school mean
home resources (γ101) is equal to 1.182, and p(γ101 > 0 | y) = .9883, which indicates that
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Table 3

Model 3: 3-Level LVR HM (Latent Variable Regressions in Within-School and Between-School
Models Including Student Characteristics and School Characteristics)

Estimate SE 95% Interval Median Prop. >0

Fixed effects:

Model for School Mean Initial
Status (β00j):

Mean Init. Status (γ000) 49.76 0.44 (48.90, 50.63) 49.76 1.0000

Home Resources (γ001) 7.14 1.50 (4.20, 10.07) 7.14 1.0000

Model for School Mean Rate of
Change (β10j):

Mean Rate of Change (γ100) 3.861 0.113 (3.638, 4.084) 3.861 1.0000

School Mean Init. Status(Bb) -.009 0.049 (-0.106, 0.088) -0.009 .3972

Home Resources (γ101) 1.182 0.516 (0.173, 2.202) 1.180 .9883

Teacher’s Care (γ102) 0.679 0.202 (0.282, 1.075) 0.679 .9994

Model for Within-School Init.
Status/Rate of Change Slope (Bwj):

Mean of Init. Status/Rate of
Change Slope (Bw0)

0.076 0.010 (0.056, 0.097) 0.076 1.0000

School Mean Init. Status (Bw1) 0.002 0.004 (-0.007, 0.010) 0.001 .6348
Home Resources (Bw2) -.032 0.050 (-0.131, 0.067) -0.032 .2643

% Grad. College (Bw3) -.001 0.001 (-0.002, 0.000) -0.001 .0623
% Complt. Homework (Bw4) -.002 0.001 (-0.005,-0.000) -0.002 .0239

Percpt of Succ. (Bw5) 0.055 0.028 (-0.001, 0.108) 0.055 .9726
Effects of Student-Level
Characteristics on Init. Status (π0ij):

SEDEX (γ010) 1.892 0.123 (1.649, 2.134) 1.892 1.0000

BPBLM (0/1) (γ020) -3.55 0.465 (-4.450,-2.635) -3.546 .0000

Effects of Student-Level
Characteristics on Rate of Change
(π1ij):

SEDEX (γ110) 0.202 0.053 (0.097, 0.305) 0.202 .9999

BPBLM (0/1) (γ120) -.256 0.196 (-0.641, 0.128) -0.256 .0954

Variance Components:

Level-1 Error(σ2) 16.49 0.36 (15.80, 17.21) 16.48

Level-3 Variance:

Initial Status(τβ00) 7.325 1.863 (4.443,11.710) 7.072

Rate of Change(τβ10) 0.359 0.119 (0.181, 0.643) 0.341

Init./Rate of Change Slopes (τBW) 0.001 0.000 (0.000, 0.002) 0.001

Cov. (Sch. Rate of Change,
Init./Rate of Change Slopes)

-.004 0.005 (-0.016, 0.005) -0.004

Correlations:
Sch. Rate of Change, Init/Rate of
Change Slopes (Corrβ10j, Bwj)

-.258 0.301 (-0.745, 0.383) -0.289 .2060
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when school mean resources increases one unit we expect a 1.182 increase in school
mean rate of change, holding constant the teacher care variable and school mean
initial status as well. The teacher care variable also shows a significant positive effect
on school mean rate of change, after holding constant school mean home resources
and school mean initial status. The estimate (γ102 = .679) and the corresponding 95%

interval (.282, 1.075) suggest that students who attend schools in which teachers try
to do their best as a teacher and push their students fairly hard in their academic
subjects grow at faster rates on average. Note that school mean initial status (Bb) is
not significantly related to school mean rate of change, holding constant school
mean home resources and the teacher care variable.

Regarding within-school initial status/rate of change slopes (Bwj), two
predictors have significant negative estimates, while one variable has a positive
estimate. Holding constant the other variables in the model, the school mean
percentage of students completing homework on time has a significant negative
effect on Bwj. The coefficient (Bw4) takes on a value of -.002, which suggests that a
10% increase in the percentage of students completing homework on time is
associated with a .02 decrease in Bwj. Note that the corresponding 95% interval
includes only negative values and p(Bw4 > 0 | y) is equal to .0239. Based on this
result, schools in which the percentages of students completing their homework on
time are high tend to have more equitable growth patterns in the sense that those
schools have smaller Bwj values. Thus for students in such schools, differences in
math achievement among students at grade 7 are not magnified over time as much
as in schools in which the percentages of students completing homework are low.
The percentage of students who teachers expect will graduate from college with a
baccalaureate, which is a proxy measure of teacher expectations of students, is also
negatively related to Bwj, holding constant all the variables in the model. However,
the interval for the estimate contains 0 and more than 5% of the posterior
distribution is greater than 0 (95% interval = (-.002, .000), p(Bw3 > 0) = .062).

In contrast, teachers’ perceptions of how successful they are in educating
students has a significant positive effect on Bwj, holding constant school mean initial
status, MCOLLEAGE, and MCOMHW in the model. The estimate (Bw5) is equal to
.055, and the proportion of posterior distribution greater than 0 is .9726 (its 95%
interval = [-0.001, 0.108]). The positive coefficient indicates the more teachers in
schools feel themselves to be successful in providing the kind of education they
would like to provide, the larger the expected value of Bwj.
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One possibility or speculation is that the kind of education many of the
teachers would like to provide is the kind of instruction that is challenging and that
requires students to draw on a variety of skills and to use their creativity. One can
imagine that in classes where this kind of instruction is occurring, there may be a
tendency for those students with relatively high initial status to benefit a great deal.
However, in classes where the emphasis is on making sure that the students are by
and large prepared for district-wide exams—classrooms in which teachers may not
be providing the kind of challenging and stimulating instruction they might like to
provide—it seems that this might work to weaken somewhat the relationship
between initial status and rate of change. Note that MCOMHW, MCOLLEAGE and
MPERSUCC  are positively correlated. Thus high values on MCOMHW and
MCOLLEAGE appear to have the effect of reducing the magnitude of the initial
status/rate of change slope in a school, whereas MPERSUCC would appear to work
in the direction of increasing it somewhat.

We now consider the amount of variance accounted for by school-level
predictors. The remaining variance in school mean initial status (τβ11) is equal to

7.325, which indicates that 56.2% of variance in school mean initial status is
accounted for by using only school mean home resources as a predictor.
Furthermore, 44.5% of the variance in school mean rate of change is explained by
using school mean initial status, school mean home resources, and the school mean
teacher care variable as predictors. Finally, the half of the variance of the within-
school initial status and rate of change slopes is accounted for by the five predictors
in the model.

Sensitivity Analyses

Note that different sets of predictors are employed in the three equations in
the level-3 model in Equation 12. Drawing from Raudenbush and Bryk (2001, p.
271), in such situations, it is possible that misspecifications in one of the three
equations can impact the estimates of the fixed effects in another (Raudenbush &
Bryk). To help investigate this issue, we re-fit Model 3 with all level-3 covariance
terms set to a value of 0. All of the resulting estimates and intervals were nearly
identical to those reported in Table 3.

In hierarchical modeling settings, normality assumptions are commonly
employed at each level. In fitting models under normality assumptions, parameter
estimates are potentially sensitive to outlying cases. Specifically, in the LVR-HM3,
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an unusually high or low time series observation for an individual given the overall
trend of that person’s data (i.e., level-1 outliers) can impact the estimation of initial
status and rate of change for that person. A potential problem connected with level-1
outliers is that level-1 outliers can impact summaries of the data for a given cluster,
which in turn, can impact the estimation of the coefficients of level-2 predictors
(Rachman-Moore & Wolfe, 1984; Seltzer & Choi, 2002). For example, individuals
with unusually high observations at the first time point but unusually slow rates of
change, or individuals with unusually low observations at the first time point but
unusually rapid rates of change (i.e., level-2 outliers), could strongly influence the
estimation of within-school initial status/rate of change slopes. Similarly, level-3
outliers—schools with unusually high or low mean initial status values, or
unusually slow or rapid mean rates of change—especially in small sample settings,
can impact the estimation of level-3 latent variable regression coefficients (e.g., the
between-school mean initial status/mean rate of change slope (Bb) and the school
mean initial status/within-school relationship slope (Bw1) and the coefficients of
observed level-3 predictors.

Thus we examine how the results based on Model 3 may change when we re-
fit Model 3 under t distributional assumptions at levels 1, 2, and 3 with the degrees
of freedom parameters of the t distributions set to a value of 4. Fitting HMs under t
distributional assumptions can be readily carried out in WinBUGS (see Seltzer &
Choi, 2002). Re-fitting HMs under heavy tailed distributional assumptions has the
effect of downweighting possible outliers (Seltzer, 1993; Seltzer et al., 2002; Seltzer &
Choi).

The results show that all the point estimates and intervals based on normality
assumptions are extremely close to the corresponding estimates and intervals based
on t distributional assumptions. The largest change occurs for the effect of student
behavioral problems on rate of change (γ120). The point estimate changes from -.256

to -.324. However, the resulting interval based on t distributional assumptions still
contains a value of 0 (-.719, .075). In conclusion, the sensitivity analyses conducted
under t distributional assumptions do not lead to changes in conclusions based on
Model 3.
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Improving the Performance of the Gibbs Sampler: Comparing Among Different

Formulations and Parameterizations of the LVR-HM3

In implementing the Gibbs sampler in HM settings, we need to be alert to
situations in which mixing is poor, i.e., situations where successive values in the
chains generated for one or more parameters in the model are highly autocorrelated.
When mixing is extremely poor, it can be difficult to assess convergence of the Gibbs
sampler. Even if one is reasonably confident that the sampler has converged, it is
difficult to know whether all regions of the joint posterior have been adequately
traversed.

Poor mixing can stem from high correlations among particular parameters in
the joint posterior (see, e.g., Gilks et al. [1996, p. 91]). One strategy to reduce high
posterior correlations and improve mixing is to center the covariates in one’s model.
Thus in the case of our models, one option would be to center student initial status
around its school mean (i.e., π0ij − β00j) as in Equation 11, and to center school mean
initial status around the grand mean (i.e., β00j—γ000) as in Equation 12.

In addition, another important option is to explore differences in mixing when
we implement our models using a mixed model formulation versus a hierarchical
model formulation. In the mixed model formulation, we write the LVR-HM3 as a
single equation. In other words, Equations 7, 11, and 12 are collapsed into one level
by substituting the level-3 equation (Equation 12) into the level-2 equation (Equation
11), and in turn, substituting the resulting equation into the level-1 equation
(Equation 7). The parameters of the mixed model consist of the fixed effects (e.g., γ000,
γ100, Bb, Bw0, Bw1, etc.), random effects (e.g., r0ij, r1ij ; u00j, u10j, uBWj) and the variance

components in the LVR-HM3. In contrast, in the hierarchical formulation,
parameters in lower levels (e.g., π0ij, π1ij; β00j, β10j, Bwj) are viewed as arising from

distributions of parameters specified at higher levels. Note that all results that we
presented above are based on the hierarchical model formulation. Even though the
two formulations are mathematically equivalent, the joint posterior densities are
different. Notably, random effects appear in the joint posterior in the mixed model
formulation (e.g., r0ij, r1i j ; u00j, u10j, uBWj), while random intercepts and coefficients
(e.g., π0ij, π1 i j ; β00j, β10j, Bwj) appear in the joint posterior in the hierarchical

formulation. In addition, while the random effects are modeled as a function of
means of 0, parameters such as π0ij, π1ij, for example, are modeled as a function of

expected values based on equations in the next level of the hierarchy.
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In this paper, we are especially interested in how we can improve the
performance of the Gibbs sampler in estimating models that involve latent variable
regressions in three-level hierarchical models. We explored the following
implementations of the Gibbs sampler for Model 3.

1. Hierarchical formulation with no centering involved in the latent variable
regressions either at level 2 or level 3.

2. Hierarchical formulation with β00j centered around γ000 (level-3 centering;
uncentered at level-2).

3.  Hierarchical formulation with π0ij centered around β00j (level-2 centering;
uncentered at level-3).

4. Hierarchical formulation employing both level-2 and level-3 centering (i.e.,
π0ij centered around β00j ; β00j centered around γ000).

5. Mixed formulation algebraically equivalent to implementation 4.

The performance of the Gibbs sampler for each of the above implementations is
monitored by means of computing autocorrelations among the deviates in a chain.
Plots of a series of autocorrelations (i.e., autocorrelation functions (ACF) plots) are
important tools for describing the serial (or temporal) dependence structure. The
ACF at lag k (ρ(k)) is estimated by dividing the covariance between Xt and Xt+k by

the variance of Xt. Thus, the ACF at lag k is as follows: 
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== 1  (Smith, 2000). When there is little serial dependency, the ACF will

drop rapidly to values close to 0 as k increases.

Table 4 summarizes estimates of ACF at a series of different lag k values. As
can be seen, we categorize parameters in each implementation depending upon
whether their ACF values are smaller than .10 at a series of different lag values. Note
that the autocorrelation functions (ACF) in Table 4 are constructed based on 4,000
deviates for each parameter generated over iterations 2,001 to 6,000 of the Gibbs
sampler.
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Table 4

Comparison of Performance of Gibbs Sampler Among Different Formulations and
Parameterizations of the LVR-HM3: Parameters With Autocorrelation Function (AFC)
Values Below .10 at lag = k (ρ(k) < .10)

Hierarchical model formulation

No centering
UnCentered at

lev-2
UnCentered at

lev-3
Centered at
lev-2 and 3

Mixed model
formulation

ρ(k) < .10
k = 5

γ000, γ001, γ010, γ020,
σ2,τβ00

γ001, γ010, γ020,
σ2,τβ00

γ000, γ001,γ010, γ020,
γ102, σ2,τβ00

γ000, γ001, γ010,
γ020,τβ00, γ100,

γ102, σ2

ρ(k) < .10
k = 10

Bw5, γ102 γ000, Bw3, Bw4,
Bw5

Bw3, Bw4,
Bw5

τβ10 σ2

ρ(k) < .10
k = 50

γ110, γ120,τBw γ110, γ120, γ110, γ120 Bb,Bw0,Bw1,
Bw2,Bw3,Bw4,,,
γ101, γ110, γ120,

τBw,Bw5

γ020, γ110, γ120,
γ010,τβ00,τβ10,

τBw,Bw5

ρ(k) < .10
k = 100

Bw2,Bw3,Bw4,
γ101, τβ10

Bb,Bw0,Bw1,
Bw2,γ100,γ101,
γ102,τβ10, τBw

γ101, τβ10, τBw Bw0, γ100, Bw3,
Bw4, γ102

ρ(k) < .10
k = 150

Bw2 Bw1,Bw2

ρ(k) < .10
k = 200

ρ(k) < .10
k = 250
ρ(k) < .10
k = 300

Bb,Bw0,Bw1,
γ100

Bb,Bw0,Bw1,
γ100

Bb, γ000, γ001,
γ101

First, for implementation 1 (i.e., no centering either at levels 2 or 3) ACF values
for γ000, γ001, γ010, γ020, σ2, and τβ00 are smaller than .10 at lag = 5, while Bb, Bw0, Bw1,
and γ100 show very high ACF values even at lag = 300. The ACF values at lag = 300

for these four parameters are .54, .59, .62, and .56, respectively. We present the ACF
plot for γ000 in Figure 4, which is similar to the plots for γ001, γ010, γ020, σ2, and τβ00. As

can be seen, ACF values are decreasing very quickly and are close to 0 before lag = 5.
In contrast, Figure 5 shows the ACF plot for γ100. As can be seen, the ACF values

hardly decrease as the lags increase. The ACF plots for Bb, Bw0, and Bw1 are very
similar to Figure 5.

ACF values for all parameters in the model are smaller than .10 at lag = 100 for
the case of no centering at level 2 and centering at level 3 (implementation 2).
However, fixed effects in the level-3 equation for Bwj (i.e., Bw0, Bw1, Bw2, Bw3) and
fixed effects in the level-3 equation for school mean rates of change (i.e., γ100, γ101, γ102)
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Figure 4. ACF 1: An example of good mixing (low ACF values).

Figure 5. ACF 2: An example of bad mixing (high ACF values).

show relatively higher ACF values than the other parameters in the model. Third,
we can see very different ACF values for implementation three in which we employ
centering at level 2 but not at level 3. One group of parameters appears to have very
good mixing in the sense that the ACF values dip below a value of .10 by lag 50. In
contrast, the performance of the Gibbs sampler is very poor for the level-3 fixed
effects, Bb, Bw0, Bw1, and γ100.

Specifically, the ACF values at lag = 300 for those four parameters are .55, .59,
.62, and .56, respectively. Thus, it is very obvious that Bb, Bw0, Bw1, and γ100 have

very high autocorrelations. Fourth, the degree of autocorrelation tends to be far
smaller based on implementation 4. Specifically, autocorrelations for all parameters
in the model under implementation 4 dip below .1 before lag 50. Finally, we can see
high ACF values of the parameters (i.e., Bw1, Bw2, Bb, γ000, γ001, and γ101 in the mixed

model formulation with centering at levels 2 and 3).

Based on these results, we can conclude that the hierarchical formulation with
centering at both levels 2 and 3 performs very well in terms of mixing, and that the
mixing is far superior to the other implementations. Moreover, centering at level 3 is
more crucial than centering at level 2 in terms of obtaining better mixing. We have
found this to be the case for other LVR-HM3s in our analyses of the LSAY data.
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Discussion

In this paper, we presented three-level hierarchical models that contain latent
variable regressions in levels 2 and 3. Specifically, student initial status was included
as a predictor of student growth at level 2. With this latent variable regression at
level 2, we have possibly three random variables (i.e., latent variables) as outcomes
at level 3: school mean initial status, school mean rates of change, and within-school
initial status/rate of change slopes. All three of these outcomes can be modeled as a
function of various school policy and practice variables. Furthermore, various useful
latent variable regressions are possible at level 3. In a between-school (level-3)
model, school mean rates of change can be modeled as a function of school mean
initial status. In addition, we can model within-school initial status/rate of change
slopes as a function of school mean initial status. We illustrated key ideas and
various distinctive features of the LVR-HM3 by fitting a series of LVR-HM3s to the
data from LSAY using MCMC methods.

LVR-HM3s help to broaden the kinds of questions we can address in
longitudinal studies of school effectiveness/school accountability, in areas of school
indicators, and in longitudinal multi-site intervention studies. As illustrated, in
longitudinal studies of school effectiveness, in addition to focusing on differences
among schools in their mean growth rates, we can examine how differences in the
strength and direction of the relationship between initial status and rates of change
relate to differences in various school characteristics, policies and practices. As such,
employing LVR-HM3 enables us to explore how equitably student achievement is
distributed within school and explain why the distribution of growth in
achievement might be more equitable in some schools than others. In addition, by
using school mean initial status as a covariate for school mean rates of change, we
can examine the unique effects of school-level variables on school mean rates of
change after controlling for school mean initial status.

Second, in studies on school indicators, interest may center on comparing
schools based on students’ achievement scores. However, schools are very different
from each other in various aspects that make it difficult to obtain fair comparisons
among schools. “Value-added” approaches try to estimate net gain or the amount of
growth that can be considered to be solely attributable to a school’s teachers,
curriculum, policies, and the like. To accomplish this, it is necessary to control or
adjust for various student intake factors—student SES, home resources, and other
family background factors—and overall school intake characteristics such as school
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mean SES, available school resources, facilities, and so on. However, it is highly
likely that student initial status is associated with rate of progress, and that school
mean initial status is associated with school mean rate of change. As illustrated in
this paper, the LVR-HM3 can be readily applied to settings in which we wish to
adjust for differences in initial status in within-school (level-2) or between-school
(level-3) models.

Third, applying LVR-HM3 to longitudinal multi-site intervention studies
provides us with important information about the kinds of individuals who might
tend to benefit from a treatment. In longitudinal studies of program effectiveness,
interest often centers on the difference in growth rates between students in
treatment sites and students in comparison sites. However, it is also important to
consider whether those students who are most in need of help are those who are
benefiting most. To address this question, we can focus on the relationship between
initial status and rates of change. In sites where the relationship is positive, this
suggests that students with milder difficulties are making more progress. In
contrast, a negative relationship suggests that those students with severe initial
difficulties are making more progress. Exploring this issue entails regressing rates of
change on initial status in each site (level 2). Then in a between-site (level 3) model,
we can examine whether site mean growth rates tend to be more rapid in treatment
sites after controlling for differences among sites in their mean initial status.
Furthermore, we can also explore whether initial status/rate of change coefficients
tend to be negative, for example, in treatment sites versus positive in comparison
sites. Conducting analyses of this kind requires estimating latent variable regression
coefficients at level 2 and regressing those coefficients on site-level variables (e.g.,
site mean initial status, level of implementation, and so on) at level 3.

A fully Bayesian approach involving the use of MCMC techniques enables us
to extend the LVR-HM3 in several useful directions. For example, the LVR-HM3 can
be readily extended to settings in which we wish to examine whether the size and
direction of expected differences in rates of change between various demographic
groups (e.g., gender, race, type of school, etc.) or between individuals in different
treatment groups, varies with initial status (Seltzer, Choi, & Thum, 2001a, 2001b).
That is, we can investigate interactions between initial status and various categorical
predictors on rates of change. In addition, it allows us to investigate further whether
the magnitude of these interaction effects varies across schools, and is related to
various school characteristics. The latent variable interaction model in the 3-level
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hierarchical modeling framework (LVI-HM3) can be specified for a study of gender
differences in math achievement as follows. For example, the rate of change for
student i in school j can be defined in the following way:

π1ij = β10j + β10jGenderij + b1j(π0ij − β00j) + b2j[Genderij × (π0ij − β00j)] + r1ij (12)

Coding gender to a value of 0 for boys and a value of 1 for girls, the latent
variable regression coefficient (b1j) associated with the initial status term represents
the initial status effect on rates of change for boys, while the other latent variable
regression coefficient (b2j) associated with the interaction term represents the
differences between boys and girls in the effect of initial status on rates of change. If
the interaction effect significantly differs from 0, then we can say that the
relationship between initial status and rates of change differs for boys and girls. For
example, among students with relatively low initial status, rates of change might be
considerably steeper for girls than for boys, while among students with relatively
high initial status, rates of change might be substantially more rapid for boys (see
this example, Seltzer, Choi, & Thum, 2001a).

Furthermore, we might be interested in investigating why this is so. To what
extent are these differences in initial status/rate of change slopes between boys and
girls due to differences in school polices and practices such as students’ course-
taking patterns, math course requirements and the like? Or to what extent are these
differences related to the differences in school characteristics such as school climate,
academic press, etc.? Attending to these kinds of questions involves specifying latent
variable interaction models in three-level hierarchical modeling settings. In other
words, the coefficients b1 and b2 are treated as outcome variables in a level-3 model
and in turn, regressed on school-level variables.

Note that the models and results we have presented are based on the tenability
of the assumption that growth in achievement is linear. If growth is curvilinear (e.g.,
quadratic), one concern is that estimates of initial status under a linear model may
differ substantially from estimates based on a quadratic model. Such assumption can
be checked via the inspection of plots of student- and school-level growth
trajectories, and through comparisons of the fit of linear and quadratic models. Our
analyses indicate that the linear growth assumption is tenable for all but a small set
of schools in the LSAY sample. For this small set of schools, however, estimates of
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student initial status based on both a linear model and a quadratic model for growth
were extremely similar.

We are currently working on extending the LVR-HM3s presented in this paper
to setting where measures of student achievement at only two points in time, along
with their standard errors, are available. In addition, we are working on extension to
settings in which a quadratic model for student growth is employed at level 1. This
would enable us to examine, for example, how differences in initial status among
students relate to differences in acceleration or deceleration in achievement.

Endnote

1. Specification of priors for the variance components requires care in situations
where little information is available a priori. For example, inverse gamma and
inverse Wishart priors with small degrees of freedom and scale parameters S and S,
respectively, are commonly specified for variance components in hierarchical
models. The modes of these priors will depend upon one’s choice of S or S. In
situations where little information concerning the variance components is available
a priori, an attempt to choose sensible values for S or S can be made. However, it
may be found retrospectively that the mode of the prior conflicts substantially with
the mode of the likelihood. This can, for example, result in intervals for fixed effects
of interest in HMs that are not well calibrated, particularly when the number of
clusters in a sample is small or moderate (e.g., see Browne & Draper [2002] and
Seltzer et al. [2002]). (The term calibration is used here in a frequentist sense. Thus,
for example, if a simulation study shows that actual levels of coverage of nominal
95% intervals are far from 95%, calibration is poor.)

Alternatively, based on analysis of the data at hand, S or S could be chosen
such that the modes of the prior and the likelihood are more or less in agreement.
When the data are used to specify S and S, and the degrees of freedom parameters
of the priors are set to small values, such priors would be termed gently data-
determined priors (e.g., see Browne, 1998; Browne & Draper (2002); Rasbash et al.,
1999, p. 201; Seltzer et al. (2002); Seltzer, Wong, & Bryk, 1996; see also Natarajan &
Kass, 2000).

In our work, we used a strategy for specifying gently data-determined priors
that is outlined in Seltzer et al. (2002). A simulation study presented in Seltzer et al.
focusing on the coverage properties of posterior intervals for fixed effects suggests
that such an approach is very promising with respect to producing intervals for
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fixed effects that are well calibrated. Note that in WinBUGS, models are
parameterized in terms of precisions rather than variances. The gently data-
determined priors for variances discussed in this endnote translate to gently data-
determined gamma and Wishart priors for scalar precisions and precision matrices,
respectively (see Seltzer & Choi, 2002).

2. These variables are selected as covariates for student initial status and rate of
change based on exploratory data analyses. First, students without behavioral
problems have higher mean scores at each grade by two thirds of the corresponding
pooled standard deviation than those with behavioral problems. Specifically, the
mean differences between the two groups from grades 7 to 10 are 6.2, 7.6, 8.7, and
9.9, respectively. The corresponding pooled standard deviations are 10.0, 10.1, 12.6,
and 13.6. Second, across all grades, the mean math scores become higher as students’
educational expectations (SEDEX) go up. For example, at grade 7, the mean math
achievement scores for each of the categories in the SEDEX variable are 43.4, 44.9,
46.9, 50.2, 52.5, and 55.0. The correlations between SEDEX and mean math
achievement scores at each grade are approximately .35 ~ .40. These results strongly
suggest that the differences in these two student characteristics should be related to
differences in initial status and rates of change.
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