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METRIC-FREE MEASURES OF TEST  
SCORE TRENDS AND GAPS 

WITH POLICY-RELEVANT EXAMPLES 

Andrew D. Ho and Edward H. Haertel 
CRESST/Stanford University 

Problems of scale typically arise when comparing test score trends, gaps, and 
gap trends across different tests. To overcome some of these difficulties, we can 
express the difference between the observed test performance of two groups with 
graphs or statistics that are metric-free (i.e., invariant under positive monotonic 
transformations of the test score scale). In a series of studies broken into three parts, 
we develop a framework for the application of metric-free methods to routine policy 
questions. The first part introduces metric-free methodology and demonstrates the 
advantages of these methods when test score scales do not have defensible interval 
properties. The second part uses metric-free methods to compare gaps in Hispanic-
White achievement in California across four testing programs over a 7-year period. 
The third part uses metric-free methods to compare trends for “high-stakes” State 
Reading test scores to State score trends on the National Assessment of Educational 
Progress from 2002 to 2003. As a whole, this series of studies represents an argument 
for the usefulness of metric-free methods for quantifying trends and gaps and the 
superiority of metric-free methods for comparing trends and gaps across tests with 
different score scales.  

Part I: A Metric-Free Framework 

As federal educational policies are implemented by states, two questions are 
being placed as cornerstones of educational decision-making: a) How are test scores 
changing over time? and b) How are differences between the test scores of certain 
groups changing over time? To use straightforward terminology, we distinguish 
here among “change” (Question 1), and “gaps,” and “changes in gaps” (Question 2). 
In smaller, policy-research circles, a third, higher order question arises: Are answers 
to the first two questions the same for different tests? Studies that address this third 
question (Klein, Hamilton, McCaffrey & Stecher, 1998; Koretz & Barron, 1998; Linn, 
Graue, & Sanders, 1990; and many more) have received increased attention as the 
demand for external validation of high-stakes test score gains has increased.  
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These questions might be addressed in terms of averages. We can discuss the 
policy-relevant averages with a running example. Call X a Grade 4 Reading Test 
score from California’s Standardized Testing and Reporting (STAR) system, and call 
Y a California Grade 4 Reading Test score on the National Assessment of 
Educational Progress (NAEP)1. Subscripts a and b correspond to scores from 
individuals from an advantaged and a disadvantaged group respectively, and 
subscripts 1 and 2 correspond to the 2002 and 2003 administrations of the tests 
respectively.  

Score differences are not comparable for tests using different score scales. Effect 
sizes may be used that “standardize” these differences by expressing them in 
standard deviation units. When the standard deviations are different for the two 
groups, we can pool the standard deviations to obtain an estimate of the standard 
deviation of the common population from which both groups are presumed to be 
sampled. Let σ be a pooled standard deviation where the first subscript(s) designate 
the test, and the subscripts in parentheses designate the standard deviations to be 
pooled. The design is Grade 4-only and thus cross-sectional with successive cohorts 
at the same grade level; it is not intended to allow for conclusions about the learning 
of individual students or groups of students over time. 

Change (The change in the average STAR test score for all students from 2002 
to 2003.): 

12 XXX −=∆           (1) 

Gaps (The difference between advantaged and disadvantaged groups’ average 
STAR test scores in 2002.): 

111 baX XXG −=           (2) 

Changes in Gaps (The change in the gap between the groups on the STAR test 
from 2002 to 2003.): 

( ) ( )112212 babaXXX XXXXGGG −−−=−=∆       (3) 

Trend Discrepancy (The discrepancy between changes in test scores on the 
STAR test and NAEP.): 

)12()12( XY

XY
σσ
∆

−
∆          (4) 

                                                 
1 NAEP uses a matrix sampling scheme that does not allow meaningful interpretations of individual scores. 
Instead, “plausible values” are drawn from an empirically defined distribution of examinee proficiency. To be 
precise, “individual” NAEP scores Y should be thought of as these “plausible values.” 
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Gap Trend Discrepancy (The discrepancy between the changes in gaps on the 
STAR test and NAEP.): 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

)(1

1

)(2

2

)(1

1

)(2

2

abX

X

abX

X

abY

Y

abY

Y GGGG
σσσσ

      (5) 

All of the calculations presented above are dependent on the measurement 
scale, a fact that has largely been ignored by consumers of these statistics. Spencer 
(1983) presents an illustrative worst-case scenario of the consequences of ignoring 
scale when comparing averages which is based on an observation by Lehmann 
(1955). Spencer presents two groups of five test scores ({10, 10, 20, 45, 50} and {10, 20, 
30, 30, 40}) with average test scores of 27 and 26 respectively. He then gives an 
example of a positive monotonic transformation, 20_log10(X), that not only changes 
the magnitude of the gap but reverses its direction; the new averages are 26.6 and 27.4 
respectively.  

Such a transformation would seem inappropriate if we were to believe in the 
interval properties of the original score scale, but the argument for interval 
properties of scales in educational measurement is often untenable. Two 
justifications for interval properties, Rasch scaling and scaling that produces a 
normal distribution, do not withstand rigorous scrutiny (Lord, 1975, 1980; Yen, 1986; 
Zwick, 1992). Rasch scaling results in a score scale that has interval properties with 
respect to the logits of the probabilities of a correct response to an item. However, as 
Zwick argues, this interval property is internal to the scale itself and thus does not 
have implications for the trait that the scale attempts to measure. Further, as Lord 
shows, the data cannot tell us which of any number of monotone increasing 
transformations is preferable. Rasch scaling is mathematically convenient but is not 
in itself a theory that confers interval properties on its resulting scale. Additionally, 
it has little connection to most teachers’ or policy makers’ intuitions.  

The rationale for scaling to create a normal score distribution holds that most 
traits are probably more-or-less normally distributed, so normally distributed scores 
should have a more-or-less linear relation to the underlying trait. Also, normal score 
distributions are convenient for traditional statistical analyses. Educators and policy 
makers might prefer a scale with interval properties defined by some external 
criterion. The grade-equivalent scale, for example, is often interpreted as if equal 
units represented expected progress over equal intervals of time. In accountability 
systems, a sort of equal-interval property may be based on the importance attached 
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to reaching successive achievement levels defined through a judgmental process. 
Table 1 presents an example, taken from Kentucky’s Commonwealth Accountability 
Testing System (CATS) (Kentucky Department of Education, 2004, p. 23). The 60-
point span for the Apprentice category is larger than the 40-point spans for the 
Novice and Proficient categories; this reflects an emphasis on helping all children 
reach proficiency.  

Table 1 

Kentucky’s CATS Test Score Scale with  
Equal-Interval Properties Defined Through  
a Judgmental Process 

Performance Level Weight 

Novice Nonperformance 0 

Novice Medium 13 

Novice High 26 

Apprentice Low 40 

Apprentice Medium 60 

Apprentice High 80 

Proficient 100 

Distinguished 140 

 

1.1 Conceptual Framework 

We have argued that average-based statistics are susceptible to problems of 
scale. In particular, comparing two groups’ score distributions on the same test by 
taking the difference of their means yields a statistic that is plastic and may even 
change sign under certain positive monotone transformations. While similar 
statements could be made for all of the equations 1–5, equations 1–3, which we call 
“simple” average-based statistics, nonetheless reflect commonsense understandings 
of gaps and changes in gaps. Once we look beyond simple average-based statistics, 
however, the way that we conceptualize changes, gaps, and changes-in-gaps 
becomes more consequential. For example, two ways of conceptualizing the change-
in-gap statistic are equivalent in a simple, average-based framework. The first way, 
following equation 3, is to ask, how does the gap between two groups change over 
time? This implies summarizing pairs of distributions at the same time point to get 
“gap” statistics, and then seeing how that gap statistic changes. The second is to ask, 
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how does the first group’s change over time compare to that of the second group? 
This implies summarizing pairs of distributions of the same group to get “change” 
statistics, and then seeing how those change statistics compare.  

       (6) 

In other words, in this case, the change in gap is equivalent to the difference in 
changes. In contrast, for both the metric-free statistics that we will introduce and the 
effect size-based statistics that we use as a metric-dependent comparison, the change 
in gap is not necessarily equivalent to the difference in changes. As an illustration, in 
an effect size-based framework, the differences between averages must be divided 
by pooled standard deviations. In the case of the change-in-gap statistic, there are 
three ways to pool standard deviations that are only equivalent in the unlikely event 
that the standard deviations of the four groups are equal. The first pools pairs of 
standard deviations at the same time point, just as the second line of equation 6 
obtains “gap” statistics. The second pools pairs of standard deviations from the 
same group, analogous to how the third line of equation 6 obtains “change” 
statistics. The third takes the change-in-gap statistic from equation 6 and divides by 
the pooled standard deviation of all four distributions.  

There are theoretical, conceptual, and practical issues to consider in making 
this choice. Theoretically, pooling should be done when the standard deviations are 
all estimates of the same parameter. If we believe that the standard deviations of the 
test scores of different groups are equal and are not expected to change over time, 
we can pool all four standard deviations. If there is evidence that different groups’ 
population standard deviations differ, then the standard deviations of different 
groups should not be pooled. Inasmuch as an ostensible purpose of high-stakes 
testing policies is to reduce score variance over time while increasing the mean, the 
standard deviations of different groups should perhaps be pooled at individual item 
points. This corresponds to the first line of equation 6, a change-in-gap formulation.  

On balance, we have concluded that standard deviations for different groups at 
a given point in time are reasonably similar. We also believe that a change-in-gap is 
more intuitively appealing than the difference-in-changes. Thus, it is this 
conceptualization that we adhere to throughout the first two parts of this paper. The 
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metric-free summary statistics we will present will reflect a gap between two groups 
at the same time point, and we will show how this gap changes over time. In the 
metric-free framework, it will be clear that this is not always equivalent to 
operationalizing our metric-free statistics as change and taking the difference in 
changes. Practically, the change-in-gap formulation also allows for visuals that track 
the gap across more than two time points; this is more awkward in a difference-in-
changes formulation.  

This focus on “gaps” as opposed to “changes” may seem off-target with respect 
to the provisions of the No Child Left Behind (NCLB) Act of 2001. Under NCLB, 
states must establish Annual Measurable Objectives (AMOs) that take the form of a 
minimum required percent proficient. These AMOs begin with “starting points” 
derived according to a formula in the law, and AMOs must rise to 100% by 2014, 
although they may be held constant for up to 3 years at a time. Adequate Yearly 
Progress (AYP) requires that for each of reading and mathematics, the percent 
proficient for the school as a whole and for each numerically significant subgroup 
must exceed the AMO. Closing the gap is not an explicit target of the law, but 
meeting AYP in 2014 necessarily means that any gap between numerically 
significant subgroups will be 0 as measured by percent proficient. While changes in 
gaps may not be a central policy focus as a matter of law, they are central to the 
rhetoric of educational improvement and, indeed, central to the stated purpose of 
NCLB itself:  

The purpose of this title is to ensure that all children have a fair, equal, and significant 
opportunity to obtain a high-quality education This purpose can be accomplished by 
closing the achievement gap between high- and low-performing children, especially the 
achievement gaps between minority and nonminority students, and between 
disadvantaged children and their more advantaged peers. (Public Law #107-110, 2002, 
Title I, Sec. 1001(3)) 

We maintain that change-in-gap statistics are essential to questions about the 
distribution of educational opportunities and, in particular, to the differential impact 
of high-stakes testing policies on different groups of students. However, the metric-
free framework and statistics we present are just as applicable to “changes” as they 
are to “gaps” and “changes in gaps,” and extensions of this framework to metric-
free measures of progress for groups of students are straightforward (see Part III). 

1.2 Metric-Free Graphs and Statistics 

1.2.1 Metric‐Free Graphs for Comparing Two Distributions 



7 

The cornerstone of our metric-free framework is the Probability-Probability 
(PP) plot (Gnanadesikan, 1977). We first define a Cumulative Distribution Function 
(CDF), F(x), which takes a score x and returns a proportion p representing the 
percentage of students with a test score less than or equal to x. We can then define a 
PP plot for distributions a and b that returns a proportion pb = Fb [Fa-1(pa)] for all pa. 
Note that a PP plot treats the two groups in a symmetric fashion; if pb = Fb [Fa-1(pa)] 
then pa = Fa [Fb-1(pb)]. Figures 1 and 2 demonstrate PP Plot construction for normal 
distributions a and b with unit standard deviations and means −0.5244 and +0.5244 
respectively. The PP plot in Figure 2 highlights the point (0.3, 0.7), and Figure 1 
demonstrates how this point is derived from the two CDFs. Fa-1(0.3) = 0; in other 
words, 0 is the score that 30% of group a is at or below. Fb [Fa-1(0.3)] = 0.7; in other 
words, 70% of group b is at or below the 30th percentile of group a. The PP plot can 
be interpreted as showing the proportions of group b examinees at or below given 
percentiles of group a.  

Two Normal CDFs
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Figure 1. Two Normal CDFs. 

Fa
-1(0.3) = 0

Fb [Fa
-1(0.3)] = 0.7
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Visually, each point on the PP plot can be understood as a point plotted from 
the two intersections of a vertical “slice” through the two CDFs. No matter how the 
scale is stretched or transformed horizontally, the intersections of the CDFs with this 
vertical slice will keep the same values. In this way, PP Plots are metric-free; they are 
invariant to any positive monotonic transformation of scale. We can also see that PP 
plots contain a representation of the gap between two distributions. The pb = pa 

diagonal on a PP plot represents two identical CDFs, and PP plots that bulge out 
from the diagonal represent distributions that are offset. The larger the bulge, the 
greater the gap between the two distributions. PP Plots have been previously 
proposed for the purposes of metric-free distributional comparisons by Haertel, 
Thrash, and Wiley (1978) and by Spencer (1983). 

An intuitive visualization of the gap on a PP plot is the orthogonal distance 
from the curve to the diagonal line. We can use this intuition to define a more 
visually appealing metric-free plot. For any point (pa, pb) on the PP plot, draw a line 

with slope -1 to the line pb = pa. The length of this line is simply 
2
pp ab − . A logical 

reference point for this value is the x-value (or y-value, they are the same) where this 

line meets the diagonal, that is, 
2

pp ab + . Ridding ourselves of the 2  scaling factor, 

we can define a plot that transforms the (pa, pb) pairs of the PP plot to (
2

ab pp + , 

pb−pa). This plot, which we call a Proportion Difference (PD) plot, is shown in Figure 
3. 
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PP Plot
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Figure 2. A Probability‐Probability (PP) Plot. 

A dark line has been drawn to show that the (0.3, 0.7) point from Figure 2 has now 
become the point (0.5, 0.4). We believe that the PD plot is both visually and 
substantively more useful than the plot that is generated through the process of 
“untilting” (Tukey, 1977) which involves subtracting out the diagonal line. If the PP 
plot in Figure 2 were subjected to untilting, the resulting plot would be skewed.  

The PD plot can also be understood as the result of a 45-degree clockwise 
rotation of the PP plot, followed by a scaling of the x-axis down by 2  and a scaling 
of the y-axis up by 2 . Beyond its visual appeal and its convenient relationship to 
the PP plot, the PD plot also affords substantive interpretations. To see this, we 

observe that the x-values of the PD plot were defined as 
2

ab pp + , the “vertical” 

average of the two CDFs at a given score. Over all scores, we can define a reference 
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PD Plot
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Figure 3. A Proportion Difference (PD) Plot. 

distribution r as the vertical average of the two CDFs at each score, as shown in 
Figure 4. The PD plot can be interpreted as the difference between the proportions of 
group a and group b examinees that are at or below given percentiles of the 
reference distribution. For example, Figures 3 and 4 show that the difference 
between the proportions of group a and group b examinees at or below the median 
of the reference distribution is 0.4. We use the PD plot instead of the PP plot to 
represent gaps and changes in gaps over time. 

1.2.2 Stochastic Ordering 

The PP plot in Figure 2 did not cross the pb = pa diagonal, and, equivalently, the 
PD plot in Figure 3 did not cross the x axis. These properties only hold when the two 
CDFs that define the PP plot are stochastically ordered (Spencer, 1983). Formally,  
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The Reference Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-4 -3 -2 -1 0 1 2 3 4

score

pr
op

or
tio

n 
at

 o
r 

be
lo

w

group a
group b
reference (r)

 
Figure 4. The Reference Distribution. 

distribution a is stochastically greater than distribution b when Fb(x) ≥ Fa(x) for all 
scores x. Thus, two distributions are stochastically ordered if and only if their CDFs 
never cross. Because PP curves that cross the pb = pa diagonal are, by definition, 
indicative of CDFs that cross each other, PP Plots (and PD plots) show at a glance 
whether distributions are stochastically ordered. 

The importance of stochastic ordering is that it acts as a benchmark for the 
pliability of average-based gap statistics. Average-based rankings of distributions 
are only invariant to positive monotonic transformations of scale when the 
distributions are stochastically ordered. In practice, transformation-induced gap 
reversal is unlikely for most politically significant subgroups on large-scale 
assessments, even when their distributions are not stochastically ordered. CDFs for 
advantaged versus disadvantaged groups obtained from NAEP are unlikely to cross 
at all (i.e., they are likely to be stochastically ordered). If they do cross, it is at a high 
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or low enough percentile that only an implausibly extreme transformation could 
reverse the ordering of their averages. 

For our purposes, PP plots will always have the advantaged group on the x 
axis, and PD plots will always report the difference pb−pa. Because of this and the 
fact that most of the distributions we deal with are stochastically ordered, both PP 
plots and PD plots will usually be concave down. It may be worthwhile to note that 
perfectly normal distributions with different means are stochastically ordered if and 
only if they have equal standard deviations. 

1.2.3 Second-Order Stochastic Ordering 

We have noted that if Fb(x) ≥ Fa(x) for all scores x, then a is stochastically greater 
than b, and 0≥− ba XX  under any positive monotone transformation. This notion 
of stochastic ordering can be generalized from ranking two distributions to ranking 
the gaps between pairs of distributions. Formally, the gap between the pair of 
distributions a2 and b2 is stochastically greater than the gap between the pair of 
distributions a1 and b1 if and only if Fb2(x) – Fa2(x) ≥  Fb1(x) – Fa1(x) for all scores x. To 
distinguish the ordering of gaps between pairs of distributions from the ordering of 
distributions, we will call the former second-order stochastic ordering, and we will refer 
to gaps as being stochastically ordered. If the gap at time 2 is stochastically greater 
than the gap at time 1, then ( ) ( ) 01122 ≥−−− baba XXXX  under any positive 
monotone transformation. 

While the CDFs obtained from large-scale testing programs of advantaged and 
disadvantaged groups are usually stochastically ordered, the gaps between these 
groups at different time points are much more likely to be stochastically unordered. 
By definition, this makes many change-in-gap statistics susceptible to a 
transformation-induced reversal of sign. This fact has not been well-documented in 
the literature. It may be interesting to note here that two offset normal distributions 
with identical standard deviations that both shift in a positive direction will rarely 
exhibit second-order stochastic ordering. The only exception to this rule occurs 
when the lower group at time 1 achieves a time 2 mean that is higher than the other 
group’s mean at time 2. In context, this requires the average score of a 
disadvantaged group to start lower but end higher than the averages of the 
advantaged groups at both times 1 and 2, something that almost never happens in 
the context of large-scale testing. 
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Unfortunately, PP and PD plots do not allow convenient, at-a-glance checks for 
second-order stochastic ordering. PP plots representing the gaps between groups at 
times 1 and 2 can be superimposed on each other, but the intuitive check for second-
order stochastic ordering would be whether or not these two lines cross. Because 
each PP plot removes all information about the score scale, the two PP curves cannot 
“communicate” with each other about common score points to reference. In fact, one 
advantage to superimposing PP curves is that one PP curve may be derived from a 
pair of CDFs on one score scale, while the other PP curve derives from a pair of 
CDFs from a completely different scale. As a corollary, however, the intersections of 
two PP curves cannot tell us about second-order stochastic ordering of gaps. 

Second-order stochastic ordering is best checked by looking at the gaps 
between pairs of CDFs on the original score scale. The top half of Figure 5 adds two 
CDFs to Figure 1 that represent the two groups at a second time point. Group b has 
shifted from N(−0.5244, 1) to N(−.4, 1.1) and group a has shifted from N(0.5244, 1) to 
N(0.7, 1.1). Because the standard deviations of the two groups are the same at time 1 
and also at time 2, the CDFs of the two groups are stochastically ordered at time 1 
and at time 2. However, the bottom half of Figure 5 shows that the curves 
representing the vertical difference between the groups cross at particular locations 
on the score scale; this demonstrates that the two gaps do not exhibit second-order 
stochastic ordering. The simple, average-based change-in-gap statistic is (0.7 − 
(−0.4)) − (.5244 − (−0.5244)) = 0.0516, but because the gaps are not stochastically 
ordered, there exists a positive monotone transformation of scale where the change-
in-gap statistic is negative. 
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Two Groups at Two Time Points
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Figure 5. Second‐Order Stochastic Ordering. 
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1.2.4 Internally- vs. Externally-Referenced Metric-Free Gap Statistics 

A pervasive alternative to average-based gap statistics is Proportion Above 
Cut-Point (PAC)-based gap statistics. Cut-points are located on a score scale through 
one of a number of standard-setting procedures; these cut-points are often labeled in 
a manner similar to NAEP’s “Basic,” “Proficient,” and “Advanced.” A simple 
measure of a gap, then, is the difference between the proportions of students in two 
groups who are above the Proficient cutpoint. Formally, this gap can be expressed 
by [1 − Fa(x)] − [1 − Fb(x)] or, equivalently, Fb(x) − Fa(x) where x is the Proficient cut-
point on the score scale. The equivalent PAC-based change-in-gap statistic is simply 

[Fb2(x) – Fa2(x)] – [Fb1(x) – Fa1(x)]. We recognize that this corresponds directly to the 
presentation in Figure 5. 

In an important and relevant paper, Holland (2002) demonstrated that PAC-
based change-in-gap statistics and median-based statistics (or other percentile-based 
statistics) can report two seemingly contradictory conclusions about the direction of 
the change in gaps. In light of our presentation in Figure 5 (analogous to Holland’s 
Figure 7), this is not surprising. Holland describes PAC-based statistics as “vertical” 
gap measures and percentile-based gap measures as “horizontal” gap measures 
because of how the gaps are visualized on plots of CDFs. We can see from the 
bottom half of Figure 5 that the change-in-gap statistic can be dramatically different 
depending on where the vertical Proficiency cut-point might be. In contrast, because 
the standard deviations are the same within time points, the horizontal change-in-
gap measure is the same as the simple, average-based change-in-gap statistic, 0.0516 
over all percentiles. Based on a similar presentation, Holland comes down strongly 
on the side of using “horizontal,” percentile-based statistics. 

PAC-based statistics are what we call “externally-referenced” metric-free 
statistics. The statistic is metric-free because a change of scale cannot influence the 
vertical distances between the CDFs, but it is externally-referenced because the cut-
point is placed for substantive reasons and is the same for all four (or any number 
of) distributions to be considered. Holland’s case and our brief example in Figure 5 
are clear evidence that externally-referenced metric-free measures can be 
misleading. The distinction between our objections is that Holland sees the problem 
as one where a different externally-referenced cut-point may result in a sign-change, 
whereas we see that concern as a symptom of the larger issue of second-order 
stochastic ordering. That is, a positive monotone transformation of scale could 



16 

potentially reverse the sign of all traditional change-in-gap statistics, whether they 
are average-based or percentile-based2.  

In the following section, we present a series of metric-free gap statistics that are 
“internally referenced,” (i.e., the statistics are determined entirely by features of the 
two CDFs for which a gap is to be measured). These statistics can be derived directly 
from PP and PD plots that compare pairs of distributions at each time point. We 
believe these statistics to be superior to both the externally-referenced, PAC-based 
gap measures Holland finds dubious and percentile- and mean-based measures 
when there is an essential arbitrariness of scale. 

1.3 Metric-Free Summary Statistics 

1.3.1 Appropriate Use of Summary Statistics 

We propose three metric-free summary gap statistics with caution. Both 
Holland and Spencer recommend graphical displays for comparing distributions, 
and we strongly agree. Nonetheless, a scalar summary statistic may also be useful, if 
only to supplement these types of data displays. In cases where distributions are not 
stochastically ordered, a metric-free gap statistic may be just as fallible as an 
average-based calculation in implying that there is a consistent gap between the two 
CDFs when in fact the CDFs may cross. However, in some senses these metric-free 
statistics are more up-front; arbitrary scale information has been removed, and a 
clear explanation of what the statistic represents, especially when supplemented 
with PP or PD plots, may help to discourage unwarranted conclusions. 

1.3.2 The V Statistic 

The PP Plot is visually similar to the Lorenz Curve, which is commonly used as 
a graphical representation of income inequality in economics, and Receiver Operator 
Characteristic (ROC) Curves, which are now used most often in biomedical fields. 
The Lorenz curve plots the cumulative percent of income on the cumulative percent 
of households. Thus, if (0.8, 0.6) is a point on the curve, the bottom 80% of 
                                                 
2 For completeness, a test for percentile‐based notions of second‐order stochastic ordering can also be 
considered. That is, under what conditions is the change‐in‐gap statistic, as measured by any 
percentile, positive no matter what the transformation of scale? Any percentile‐based gap at time 2 is 
stochastically greater than any percentile‐based gap at time 1 if and only if EITHER Fa1‐1(p) – Fb1‐1(p) ≤  
0 < Fa2‐1(p) – Fb2‐1(p) OR Fa1‐1(p) ≤  Fa2‐1(p) AND Fb2‐1(p) ≤  Fb1‐1(p) for any proportion p.  Visually, the first 
condition implies that the horizontal gap at time 2 is positive whereas the horizontal gap at time 1 is 
negative or zero, and the second condition implies that the two CDFs at time 1 are bounded on both 
sides by the two CDFs at time 2 (if the first condition does not hold). 
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households have 60% of the total income. The Lorenz Curve must be convex to the 
x-axis, because the bottom x% of households cannot have greater than x% of the 
income or, by definition, they would not be the bottom x%. A commonly derived 
summary statistic from the Lorenz Curve is the Gini Coefficient. The Gini 
Coefficient is a statistic between 0 and 1, where 0 represents perfect equality and 1 
represents perfect inequality. It can be calculated as the area between the diagonal 
and the curve divided by the area between the diagonal and the graph edge (0.5 by 
definition). 

We borrow the calculation but not the interpretation of this statistic from its 
context in economics, as it is clear that the Lorenz curve is conceptually quite distinct 
from the PP plots we are presenting. We will tentatively call our analog of the Gini 
Coefficient the V coefficient (for deViation from the diagonal). We note that PP 
curves will cross the diagonal when the distributions are not stochastically ordered, 
allowing for positive and negative areas. Therefore, a V Coefficient of zero may not 
imply completely overlapping distributions, but that the area on one side of the 
diagonal may simply cancel out the area on the other side. Further, since PD plots 
are simply PP plots rotated, then scaled up and down by 2 , the area under the PD 
plot is equivalent to the area between the PP plot and the diagonal. Thus, V can also 
be calculated as the area under the PD curve divided by 0.5.  

ROC curves are a graphical representation of the tradeoff between false 
positives and false negatives for a given test, for example, using the level of a protein 
in a one’s blood to predict whether or not one has a particular disease. ROC curves 
usually plot 1−False Negative Rate against the False Positive Rate. For ROC curves, 
the Area Under the Curve (AUC) is often used as a summary statistic to 
approximate the usefulness of a test with respect to minimizing false positives and 

false negatives. This area corresponds to 
2

1+V . The AUC statistic can also be 

interpreted as the probability that a randomly chosen diseased patient’s level is 
greater than a randomly chosen healthy patient’s level, assuming that greater levels 
are indicative of disease. This translates to a particularly useful interpretation of the 

transformed V statistic: 
2

1+V  corresponds to the probability that a randomly chosen 

advantaged student has a higher score than a randomly chosen disadvantaged 
student. 
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Visualizing Summary Statistics from CDFs
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Figure 6. Visualizing Metric‐Free Summary Statistics I. 

The V Statistic is intuitive in the sense that it defines 0 as equality and 1 as 
inequality, and it is robust in the sense that it takes every point on the curve into 
account. It may be cumbersome to calculate in practice due to the need for 
interpolation between what may be sparse data points. The V Statistic can be 
visualized in Figures 7 and 8, though the area shown needs to be divided by 0.5 (or 
multiplied by 2) to scale V appropriately. 

1.3.3 The PD50 Statistic 

The PD50 Statistic can be defined simply as the height of the PD plot at a 
reference proportion of 0.5. PD50 is meant to stand for Proportion Difference at a 
reference proportion of 50%. We have defined the proportions of the reference 

distribution in a previous section as the average of the two CDFs, pr = 
2

ab pp +
 at a 

given score. Thus, the PD50 Statistic is equivalent to the vertical gap between the two 
CDFs at the median of this reference distribution. In a PP plot, the PD50 Statistic can  

pa50 

PD50 
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Visualizing Summary Statistics from a PP Plot
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Figure 7. Visualizing Metric‐Free Summary Statistics II. 

be visualized as the orthogonal distance from the point (0.5, 0.5) to the curve, though 
this distance needs to be scaled up by 2 . Figures 6, 7, and 8 all show different 
visualizations of the PD50 Statistic. 
 

pa50 

PD50* 
*scale distance 

up by 2  

V* 
*divide area 

by 0.5 
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Visualizing Summary Statistics from a PD Plot
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Figure 8. Visualizing Metric‐Free Summary Statistics III. 

1.3.4 The pa50 Statistic 

The pa50 Statistic is simply the proportion of disadvantaged students at or below 
the median score of the advantaged students. It is the height of the PP plot at pa = 
50%, which gives it its name. The pa50 Statistic can also be visualized on the PD plot, 
albeit obliquely; it can be found by taking the distance from (0.5, 0) at a 63.435 

degree (arctan 2) angle to the curve, and if this distance is b, then pa50 = 
5.0

5
2

+
b

. 
This strange transformation simply accounts for the rotation of the PP plot and the 

subsequent 2  scaling factors that result in the PD plot. The pa50 Statistic is an 

V* 
*divide area 

by 0.5 

PD50 
pa50* 
*see paper for 

transformation 

63.44° 
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intuitively appealing candidate for a summary statistic due to its ease of 
interpretation. Figures 6, 7, and 8 all show different visualizations of the pa50 Statistic. 

1.3.5 Respective Normality 

All scale information is lost in the move from two CDFs to a PP or PD plot, but, 
as we have argued, the arguments for interval scales in educational measurement 
are usually untenable. It follows that we can pick an arbitrary distribution for one of 
the groups, and, using a PP or PD plot, uniquely map out what the other 
distribution must be. By picking a common distribution for all distributions b, we 
can look at the a distributions on this common metric. If we choose a standard 
normal distribution as the common distribution, we can calculate all the statistics 
from the a distributions that we like. The means of the a distributions could, for 
example, be interpreted as pseudo-effect sizes. In this way, as we “put back” scale 
information into metric-free plots, we allow ourselves flexibility of interpretation. 

If we reduce PP and PD plots to any of the three summary statistics presented 
above and set a standard normal b distribution, we do not have enough information 
to define an a distribution. For example, if we know that the V Statistic is zero and 
pick a standard normal distribution as the disadvantaged distribution, we still have 
an infinite number of possible advantaged distributions that can make the areas on 
both sides of the PP plot diagonal cancel to zero. As a matter of convenience, we can 
force distribution b to be standard normal and force distribution a to be normal with 
unit variance. Under these assumptions, which we call “respective normality,” each 
of the three summary statistics uniquely defines a mean for distribution a which can 
be interpreted in familiar terms as standard deviation units. We will designate these 
means, which we will interpret as “standardized” metric-free summary statistics, by 
adding a  ́ (prime) superscript to the names of the statistics from which they were 
derived. 

We label each of these transformed summary statistics as follows: 

⎟
⎠
⎞

⎜
⎝
⎛ +

Φ∗=′ −

2
12 1 VV           (7) 
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⎠
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⎜
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The case of the V  ́ Statistic is particularly interesting. If the two distributions a 
and b are normally distributed, the following equation holds: 

)(ab

ba XX
V

σ
−

=′           (10) 

Here, 
2

22

)(
ba

ab
σσ

σ
+

= , the unweighted pooled standard deviation. In other 

words, if the two distributions are perfectly normally distributed, the V  ́ statistic 
will be equal to an effect size calculation. This finding has the potential to be 
misconstrued as circular, as if we have gone from scale-dependent statistics to 
metric-free statistics and ended up where we started. To the contrary, if the interval 
properties of a scale are suspect, the effect size calculation can be easily manipulated 
under positive monotone transformations, whereas the V  ́ statistic will remain 
constant. Equation 10 shows that if a PP plot happens to have been derived from 
two perfectly normal distributions (that could just as well be non-normal given an 
arbitrary re-scaling), the V  ́ statistic will be equal to an effect size calculation on the 
original distributions. Thus, equation 10 should merely be read as an assertion of a 
convenient property of the V  ́ statistic: that it can be interpreted, in more ways than 
the PD50 ́ and the pa50 ́ statistics which reflect only one point on the PP or PD curve, 
as a metric-free effect size. We acknowledge that even this may be misleading, but 
until untransformed metric-free gap statistics become familiar in their own right, the 
“standardized” versions provide a useful bridge to more familiar and established 
interpretations.  

1.4 Metric-Free Summary Statistics in Practice 

1.4.1 Comparing Metric-Free and Average-Based Statistics 

Comparing metric-free statistics to average-based statistics with scatterplots 
and correlations is in some sense comparing apples to oranges. We neither expect 
nor desire a perfect correlation. We have tried to make a case for treating the interval 
properties of score scales in educational testing with skepticism. If the score scale is 
suspect, this is a reason to prefer metric-free measures regardless of whether or not 
they happen to align with average-based gap measures. Further, as the previous 
section argued, alignment of average-based statistics with metric-free statistics is in 
no way a defense of the score scale. On the other hand, if there is a rationale laid out 
for the score scale beyond matters of statistical convenience, average-based statistics 
may provide more useful substantive information than metric-free statistics.  
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The following correlations and scatterplots show metric-free statistics in action 
and demonstrate that the choice of framework does, in fact, make a difference in 
practice. 

1.4.2 Data Sources 

Publicly available NAEP data were downloaded with the NAEP Data Tool 
(National Center for Educational Statistics, 2004). We used data from two grades, 
Grades 4 and 8, and from six administrations, the 1996, 2000, and 2003 
administrations of the State Mathematics Assessment and the 1998, 2002, and 2003 
administrations of the State Reading Assessment. At the State level, Black student 
scores are the most commonly reported scores of all racial or ethnic minorities, so we 
chose to look at the gaps between White and Black students’ score distributions. At 
each administration, 102 possible gaps could be calculated (for the 50 states and the 
nation, at Grades 4 and 8). However, some states did not report Black scores due to 
insufficient numbers, and other states did not participate. Of 612 possible gap 
statistics (102 x 6 administrations), there was enough information to calculate 430 
gaps. 

1.4.3 Calculation of Gap and Change-in-Gap Statistics 

Average-based gap statistics include a simple difference of means (Equation 2) 
and an effect size calculated by dividing the difference of means by the unweighted 
pooled standard deviation (cf. Equation 10). Means and standard deviations were 
obtained directly using the NAEP Data Tool. Average-based change-in-gap statistics 
were obtained by simply subtracting time 1 average-based gap statistics from time 2 
average-based gap statistics. Thus, a positive change-in-gap statistic indicates an 
increase in the gap from time 1 to time 2. 

Calculation of metric-free gap statistics required numerical methods for 
interpolation and integration. There are 8 score-proportion data points that can be 
obtained from the NAEP Data Tool for each distribution. Three are given by the 
reported proportions above or below the three performance cut-points (Basic, 
Proficient, and Advanced), and five are given by the five scores corresponding to the 
10th, 25th, 50th, 75th, and 90th percentiles. We developed a cubic Bezier-based 
interpolation function with control points that result in the same curve as the 
smoothed curve algorithm implemented by graphs in Microsoft Excel. We used this 
function to obtain Proportion-Proportion pairs for given score points and drew a PP 
Plot. Extending the plot to the points (0,0) and (1,1), we could use the interpolation 
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function to calculate the pa50, the PD50 and the V statistics. Using the transformations 
shown in a previous section, we obtained the normalized PD50 ́, pa50 ,́ and V  ́ 
statistics. Metric-free change-in-gap statistics were calculated by subtracting each 
time 1 metric-free gap statistic from its corresponding time 2 metric-free gap 
statistic. This was done for every possible time 1 and time 2 pair within Reading and 
Mathematics, e.g. for Reading, we calculated change-in-gap statistics using 1998 to 
2002, 2002, to 2003, and 1998 to 2003 as time 1 and time 2. This resulted in 374 
possible change-in-gap calculations. 

1.4.4 Comparing Average-Based and Metric-Free Gap Statistics 

Table 2 shows pairwise correlations for all five gap statistics. The simple 
average-based gap statistic shows relatively low correlation with all metric-free 
statistics and, notably, also with effect size-based gap measures. Effect size statistics 
show high correlation with metric-free gap statistics, particularly with the V  ́ 
statistic. This lends further support for the strong conceptual ties between the V  ́ 
statistic and effect sizes in practice. Of the three metric-free statistics, the pa50 ́ statistic 
seems least like the others. This may be due to the fact that it samples a non-central 
location on the PD plot. As the PD point that is sampled deviates from the middle of 
the plot, it becomes less likely that the distance from (0.5, 0) to this point 
corresponds to the area beneath the PD curve (see Figure 8). The pa50 statistic 
measures the distance to the PD curve from (0.5, 0) at an angle of approximately 63 
degrees. As an extreme example, an angle of 0 degrees will always meet the PD plot 
at the point (1, 0) and always give an untransformed distance of 0.5 regardless of the 
actual area under the PD curve. 

Table 2 

Correlations Between Average-Based and Metric-Free Gap Statistics on NAEP 

N=430 Mean Difference Effect Size pa50’ PD50’ 

Effect Size 0.8703    

pa50’ 0.8403 0.9719   

PD50’ 0.8756 0.9857 0.9743  

V’ 0.8742 0.9946 0.9824 0.9930 
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1.4.5 Comparing Average-Based and Metric-Free Change-In-Gap Statistics 

As we have noted, advantaged and disadvantaged distributions are almost 
always stochastically ordered in the context of large-scale educational testing. In the 
previous section, the advantaged group was always stochastically greater than the 
disadvantaged group, and there was no possible positive monotone transformation 
that could reverse the ordering of the distributions. In contrast, as we have shown, 
gaps are often stochastically unordered. As Figure 9 shows, 19.25%, or 72 of the 374 
data points, those falling in the second and fourth quadrants, have a change-in-V  ́ 
statistic that has the opposite sign from the simple, average-based change-in-gap 
statistic. This is a sufficient but not a necessary condition for a lack of second-order 
stochastic ordering. In fact, the percentage of stochastically unordered gap pairs is 
much larger than this result indicates. While some of these unordered gap pairs may 
only exhibit sign-flipping under implausibly extreme transformations, the 72 
change-in-gap statistics where there is this most basic disagreement should be 
flagged as inconclusive about the direction of the change in gap. As a matter of fact, 
in a very real sense there is no change in gap to discuss. These are perfect examples 
of cases where summary statistics, whether average-based or metric-free, are 
misleading without supplementary graphical displays. 

Figure 10 shows a much tighter relationship between changes in effect sizes 
and changes in V  ́ statistics. This is not surprising given the close relationship 
between the two statistics shown in Table 2. While the sign miss rate is lower than 
that shown in Figure 9, none of the 72 cases flagged earlier is redeemed by the 
findings in Figure 10. Sign discrepancy in Figure 9 is sufficient cause to prompt a 
closer investigation of the distributions in question, especially if policy decisions or 
widespread impressions are to be based on these statistics. 
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Change-in-V' and change-in-difference-of-averages correspondence for all possible 
NAEP change-in-gap statistics, Reading and Math, Grades 4 and 8, 1996-2003
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Figure 9. Change in Difference‐of‐Means versus Change‐in‐V  ́. 
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Change-in-V' and change-in-effect-size correspondence for all possible 
NAEP change-in-gap statistics, Reading and Math, Grades 4 and 8, 1996-2003
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Figure 10. Change in Difference‐of‐Means versus Change‐in‐V. 

1.5 Conclusions 

This section tries to make three main points. First, average-based statistics that 
measure changes, gaps, and changes in gaps in test scores are made far too 
important by current educational policies to be dependent on the vagaries of a test 
score scale. Second, changes, gaps, and changes in gaps in test scores can be 
visualized and estimated within a metric-free framework in a robust and intuitive 
fashion. And third and finally, change-in-gap statistics are often susceptible to 
transformation-induced reversals of sign; summary statistics can mask this if 
graphical displays are not used as supplements in a careful analysis. While metric-
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free gap statistics are useful in their own right, we believe that the most exciting 
applications of this metric-free framework involve the study of gap trends and, in 
particular, across-test comparisons of gap trends. In the growing literature 
comparing trends on high-stakes tests to trends on concurrent “audit” tests, these 
methods could be particularly useful by allowing group comparisons across the 
non-equivalent score scales. Results from these kinds of studies have great 
implications for the effects of high-stakes testing policies as they may influence 
educational opportunities over time. In Part II, we provide an example of this kind 
of analysis by using this metric-free framework to look at gap trends on four 
different tests over a 7-year period in California.  
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Part II: Hispanic-White Gap Trends on California Tests, 1998-2004 

In Part I, we argued that average-based statistics, for example, the difference 
between the mean test score of two groups or the change in this “gap” over time, are 
susceptible to problems of scale. We presented a metric-free framework for 
evaluating gaps between test score distributions that includes both graphical and 
scalar-valued representations of gaps. Here, we demonstrate the use of metric-free 
methods in the context of representative policy questions for the state of California: 
How do Hispanic-White gaps on the National Assessment of Educational Progress 
(NAEP) for California compare to gaps on the tests administered under California’s 
Standardized Testing and Reporting (STAR) system, and how do the gaps on these 
tests change over time? The data show that gaps have different magnitudes and 
trajectories for different testing programs. These results are consistent with the 
hypothesis that these tests are measuring non-identical constructs, that gains in 
student achievement are asymmetric with respect to these constructs, and that 
educational opportunities are being differentially allocated to these two groups of 
students. 

2.1 Goodhart’s Law 

As Education’s measurement-driven reform movement continues in its current 
form, the No Child Left Behind (NCLB) Act of 2001, researchers from different fields 
are offering cautionary anecdotes about the tendency of “accountability” policies to 
fail to work as intended. In particular, Goodhart’s Law, a maxim posed originally in 
the context of monetary policy as follows, “any observed statistical regularity will 
tend to collapse once pressure is placed upon it for control purposes” (Goodhart, 
1975), has reached a wider audience in the Organizations and Business Management 
literature via generalizations like Hoskin’s (1996), “every measure which becomes a 
target becomes a bad measure” (p. 265). As illustrations, consider what might 

happen if a teacher knew that her skill would be estimated solely by the grades of 
her students, if a surgeon knew that her merit would be estimated solely by her 
patients’ survival rate, or if an accountant knew that her efficiency would solely be 
estimated by the number of tax returns she completed. In each case, the proposed 
measures may initially estimate true proficiencies, but as they become targets the 
actors will likely develop mechanisms for artificially inflating the measures that 
damage the measures’ predictive relationships with the parameter of interest and, 
incidentally, that act to the detriment of the quality of services provided. 
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Accountability arises from trusting measures and distrusting people (Porter, 
1996). NCLB places firm faith in test scores as measures of desired learning 
outcomes while locating responsibility for low test scores with incompetent or 
unmotivated educational practitioners. Goodhart’s law suggests that test scores will 
become inflated measures, but there is little pressure to hold the measurement itself 
accountable. After all, accountability derives from a lack of trust, and the measure is 
trusted. One way to assess whether Goodhart’s Law is operating in the case of 
NCLB policies (i.e., whether gains in test scores are being “artificially inflated,” is to 
look at other tests that are not perceived as targets). If score trends for these “audit 
tests” disagree with score trends for high-stakes tests, this may suggest that 
Goodhart’s Law is operating. In particular, we expect high-stakes test scores to rise 
while audit test scores show smaller gains, no gains, or a negative gain. 

Of course, such a result is difficult to interpret. Under NCLB, high-stakes tests 
are designed to measure “academic content standards” that are set forth by each 
state, whereas an audit test may not have such guidelines. The evidence is just as 
consistent with Goodhart’s Law as it is with a hypothesis that student proficiency is 
increasing in exactly the content areas which the state has determined are important 
(including those that happen not to be measured by the audit test) and not others 
(including other areas that may be measured by the audit test). It is also worth 
noting that a negative result, where trends are identical on high-stakes and audit 
tests, is reassuring but just as inconclusive. Strong advocates of Goodhart’s Law 
could argue that the audit test was really just a clone of the high-stakes test, and that 
an ideal measure of desired learning outcomes would show discrepant trends. 
Discrepancies are best resolved by addressing the elements that each test intends to 
measure, how well each test measures these elements, and how valued these 
elements are by educational stakeholders. 

Researchers have compared high-stakes and audit test trends previously. 
Koretz, McCaffrey and Hamilton (2001) introduced the terms “focal,” (i.e., high-
stakes, and “audit” tests in a framework for validating test score gains). A number of 
studies have used the National Assessment of Educational Progress (NAEP) as an 
audit test. As examples, Klein et al. (1998) investigated the Texas Assessment of 
Academic Skills (TAAS) between 1994 and 1998, Koretz and Barron (1998) 
investigated the Kentucky Instructional Results Information System (KIRIS), and 
Linn et al. (1990) reviewed a number of widely-used norm-referenced tests. None of 
these three studies found that gains on these tests generalized to NAEP gains. Jacob 
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(2002) compared Chicago public school students’ gains on the Iowa Tests of Basic 
Skills (ITBS), a test with high stakes for students and schools, and the Illinois Goals 
Assessment Program (IGAP), an old high-stakes test that then had low or no stakes 
attached. Low achieving schools were found to have larger gains on the ITBS than 
on the IGAP after the stakes shifted to the ITBS. 

Jacob’s finding is consistent with a hypothesis set forth by McNeil (2000), who 
suggests that schools serving underprivileged populations will typically respond 
more strongly to accountability pressures. If, for underprivileged students, these 
large gains in high-stakes test scores do not generalize to gains on audit tests or are 
even associated with declines on these tests, skepticism may be cast on the framing 
of NCLB policies as a mechanism to improve education for the less privileged. By 
incorporating the principles of McNeil and Goodhart into a framework that 
considers score gaps between privileged and underprivileged populations, we 
would expect to see gaps decrease over time on high-stakes tests while decreasing 
less, staying the same, or increasing on audit tests. 

Goodhart’s Law does not necessarily make predictions about the relative 
magnitude of gaps on high-stakes versus audit tests; it only suggests that gap trends 
are likely to disagree. NCLB policies place the greatest pressures on low performing 
schools, where the percents of proficient students are below Annual Measurable 
Objectives (AMOs) set by the state. A disproportionate number of these schools have 
low scores on various measures of school and student socioeconomic status. If test 
preparation is presumed to be zero-sum, that is, if teachers dedicating time to 
improving performance on one test does not generalize to improving performance 
on another, and if test preparation was undertaken by those teachers and schools 
under the greatest accountability pressures, we would expect larger gaps on audit 
tests. On the other hand, if teaching to a high-stakes test requires specialized 
teaching that privileged schools can better offer whereas the audit test is more a 
measure of learning that goes on naturally in all classrooms, we would expect gaps 
on the high-stakes test to be larger. These assumptions may be compatible 
depending on whether a high-stakes testing program is just beginning or if it has 
been in effect for some time. Gaps on high-stakes tests may be larger at the 
beginning of a high-stakes testing program, but the relative magnitude of gaps may 
reverse as teachers in underprivileged schools refocus demands on high stakes tests 
at the expense of the untested topics within the domain. 
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2.2 An Overview of California Tests and Accountability Policies, 1998–2004 

California passed the Public Schools Accountability Act (PSAA) in 1999. The 
cornerstone of the PSAA is the Academic Performance Index (API), a composite that 
measures the academic performance and the academic improvement of schools. The 
“API Base” is calculated each year for every public school; this number is used to 
rank schools in an absolute fashion and also with respect to schools with 
demographics predictive of similar achievement. The “API Growth” is calculated in 
the same manner as the previous year’s API Base, and is used to track a school’s 
improvement from one year to the next. For elementary and middle schools, the API 
also serves as an “additional indicator” for determining Adequate Yearly Progress 
(AYP), as required by NCLB. API Growth targets are set for each school and for each 
numerically significant subgroup within a school. 

This section focuses only on test scores from Grades 4 and 8, as these are the 
two grades for which NAEP test scores have been reported for states, including 
California. The API has been calculated for elementary and middle schools using 
test scores (Grades 2–8) from three different batteries of tests: two norm-referenced 
test (NRT) batteries and a criterion-referenced test (CRT) battery. The two NRTs are 
the Stanford Achievement Test, version 9 (SAT-9) and the California Achievement 
Tests, 6th Edition (CAT/6), and the CRTs are the California Standards Tests (CSTs). 
The SAT-9 was administered in the academic year ending in 1998, but this was 
before the API was created. Table 3 shows how the contribution of these tests to the 
API changed between 1999 and 2004. Scores are reported for the SAT-9 between 
1998 and 2002 (see Rogosa [2003] for related SAT-9 and API analyses), and the 
CAT/6 replaced the SAT-9 for 2003 and 2004. The first CST was introduced into the 
API in 2001 for English Language Arts (ELA). By design, it has become the most 
significant contributor to the API. Reading, Math, and ELA weights may not add up 
to 100% for any given year due to other tests like Spelling and Language. In 2004, 
weights for content areas varied as a function of school composition. If there are no 
missing data for a school, if all students have taken all tests, and if there are equal 
numbers of students at each grade level, then the weights are those shown in the last 
row of Table 3 (California Department of Education, 2005). 

Table 3 also shows the years and subjects where California NAEP scores are 
reported. We consider NAEP as an audit test because there are no official stakes 
associated with NAEP test results in the state of California. In the remainder of Part 
II, we look at gap trends in the state of California for these four different tests, three 
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Table 3 

An Overview of California Testing, 1998‐2004 

Acad. Year 
Ending  NRT  CRT  NAEP  API? 

API NRT/CRT 
Weight 

NRT 
Read. 

NRT 
Math 

CRT 
ELA 

CRT 
Math 

1998  SAT9    Reading  No           
1999  SAT9      Yes  100% / 0%  30%  40%     
2000  SAT9    Math  Yes  100% / 0%  30%  40%     
2001  SAT9  CST    Yes  64% / 36%  12%  40%  36%   
2002  SAT9  CST  Reading  Yes  20% / 80%  6%  8%  48%  32% 
2003  CAT6  CST  Reading & Math  Yes  20% / 80%  6%  8%  48%  32% 
2004  CAT6  CST    Yes  14% / 86%  4.29%  5.71%  34.29%  22.86% 

high-stakes tests and one audit test. We report gaps in Grade 4-only and Grade 8-
only in a cross-sectional, successive-cohort fashion. Any “improvement” that we 
speak of refers not to the learning of individual groups of students, but instead, for 
example, to the improvement of this year’s fourth-grade cohort with respect to last 
year’s fourth-grade cohort. 

2.3 Methods and Data Sources 

Comparing gaps and gap trends across testing programs poses the problem of 
comparing scores on different score scales. Test scores cannot be compared unless 
their scales can be transformed to a similar metric or unless the statistic to be 
compared is scale-independent. Scales can be “standardized” through effect size 
calculations (i.e., dividing the difference between two average scores by the pooled 
standard deviation, but these calculations are still dependent on the argument for 
the interval properties of the score scale). In Part I, we presented a series of gap 
statistics that are free of all scale information. We use these statistics here to track the 
difference between Hispanic and White test score distributions. The Hispanic and 
White classifications may be considered as rough proxies for socioeconomically 
disadvantaged and advantaged groups, respectively. Socioeconomic indicators like 
participation in free/reduced price lunch programs or Title I programs were 
extremely volatile in the early years of the PSAA, while racial indicators remained 
relatively stable. The metric-free gap statistic we choose to use is the V  ́ statistic. The 
V  ́ statistic can be calculated from the Probability-Probability (PP) Curve 
(Gnanadesikan, 1977). Define a cumulative distribution function (CDF) for the 
Hispanic and White test score distributions, Fh(x) and Fw(x) respectively. These CDFs 
return a proportion ph or pw representing the percentage of students from each group 
with a test score less than or equal to score x. The PP Plot can be defined as ph = Fh 
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(F−1 w (pw)), where the plot returns ph as the proportion of Hispanic students at or 
below the pwth percentile of the White test score distribution. 

The V statistic, a statistic bounded by −1 and 1, is the area A between the PP 
curve and the diagonal as the proportion of the area between the diagonal and the 
unit square (which is 0.5 by definition). Thus, , and V=2A. 
V  ́ is a transformation which allows the statistic to be interpreted as a kind of metric-
free effect size, though the statistic is still scale-independent. The V  ́ statistic can be 
interpreted as if scale information is “put back” into the metric-free statistic under 
the assumption that the two distributions are normally distributed with unit 
standard deviations. The V  ́ statistic can thus be thought of as the gap between the 
two groups in standard deviation units. This transformation is achieved via 
equation 7. 

The required NAEP data were downloaded online from the NAEP Data Tool 
(National Center for Educational Statistics, 2004), and all California Test Data were 
extracted from publicly available data sets that were either found online or obtained 
by contacting the California Department of Education. All publicly available 
California test data reported proportions above or below three cutpoints for each 
distribution that allowed for three PP points. By adding the theoretical points (0,0) 
and (1,1) and using a cubic Bezier-based interpolation function, we could 
approximate a continuous PP curve. The interpolation function also allowed us to 
numerically approximate the area under the PP curve. Simulation studies suggest 
that three PP points is the minimum number of points necessary for the 
interpolation function to obtain a reasonable approximation of the PP curve. The 
NAEP data offered eight points for each CDF; methods for estimating PP plots from 
NAEP data have been detailed in the Part I. 

2.4 Results and Discussion 

The results for fourth-grade Reading are shown in Figure 11. Hispanic-White 
test score gaps increase on NAEP between 1998 and 2003, although there is a slight 
drop from 1998 to 2002, followed by a sharp increase in the gap from 2002 to 2003. 
Gaps decrease substantially on the high-stakes NRT and CRT. The solid NRT line 
requires clarification, as there is a switch from the SAT-9 in 2002 to the CAT/6 in  
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California Hispanic-White Gap Trends, Grade 4 Reading
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Figure 11. California Gap Trends, Grade 4 Reading. 

2003. As this is a graph of score gaps, we might expect that a change in a testing 
program would result in an increase in the score gaps as underprivileged schools 
have to reallocate their limited resources to a different kind of testing practice. 
Instead, the decrease in the gap from 2002 to 2003 is the largest NRT gap decrease in 
the 7-year period. Note that changes in the norming sample from one NRT to 
another cannot account for any change in gaps, as the V  ́ statistic is independent of 
scale. 

The large decrease in the gap is consistent with the hypothesis that the 4th 
grade teachers and elementary schools serving predominantly Hispanic populations 
made a unique amount of improvement between 2002 and 2003 in teaching high-
stakes proficiencies measured by both tests (relative to schools and teachers serving 
White students). In other words, under this hypothesis, if the SAT-9 had been 
administered in 2003 instead of the CAT/6, the results would have been the same. 
This hypothesis is also consistent with a decrease in the gap on the CST over the 
same time period, a decrease that is even larger than the NRT gap change. These 
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large decreases in gaps stand in sharp contrast to the increase in the Hispanic-White 
gap on NAEP between 2002 and 2003. The gap change discrepancy indicates that 
decreases in gaps on high-stakes tests do not tell the entire story of changing 
educational opportunities for disadvantaged students with respect to their more 
advantaged peers. 

Figure 12 shows the same gap trends for fourth grade Math. NAEP data are 
more sparse due to unfortunate alignment of NAEP State Mathematics testing dates 
over this time period. The results again show gap trend discrepancies, as NAEP 
Hispanic-White gaps increase between 2000 and 2003 while decreasing for both 
high-stakes test trend lines. A notable difference between Figure 11 and Figure 12 is 
that audit test gaps are larger than high-stakes gaps in Figure 12 while they are 
smaller (until 2003) in Figure 11. This may be more attributable to the vast 
differences between fourth-grade Math and Reading gaps on high-stakes tests. 
NAEP gaps are between 0.9 and 1 for both fourth-grade Math and Reading, while 
high-stakes Math gaps are about 0.2 “standard deviation units” smaller than high-
stakes Reading gaps. This may indicate that Hispanic students are less well  

California Hispanic-White Gap Trends, Grade 4 Math
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Figure 12. California Gap Trends, Grade 4 Math. 
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prepared for high-stakes Reading tests than they are for high-stakes Math tests. 
Notably, Hispanic students improve dramatically on these tasks with respect to 
White students, but without any similar changes in Reading proficiency as assessed 

Figure 13 shows Hispanic-White gap trends for 8th Grade Reading. Gap trends 
for both high-stakes tests and audit tests are consistent here, and gaps on NAEP 
actually decrease more between 1998 and 2002 than they do on the SAT-9. Likewise, 
Figure 14 shows that there is gap trend consistency for Eighth Grade Math. NRT 
scores from 2000 to 2003 do decrease more than NAEP scores over the time period, 
but the discrepancy may not as politically worrisome as it would be if the sign of the 
trend were reversed. As was true for the Fourth Grade data, Eighth Grade gaps were 
larger than high-stakes gaps for NAEP Math and smaller than high-stakes gaps for 
NAEP Reading. This again suggests that Hispanic students are less well prepared 
for high-stakes Reading tests than high-stakes Math tests with respect to their White 
counterparts. In addition, Figure 14 shows a large discrepancy between the 
magnitude of gaps on the NRT and the CST, though the trends are consistent. A 
closer look at the actual test items of these tests may provide a defensible 
explanation of these discrepancies. 

California Hispanic-White Gap Trends, Grade 8 Reading
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Figure 13. California Gap Trends, Grade 8 Reading. 
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California Hispanic-White Gap Trends, Grade 8 Math
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Figure 14. California Gap Trends, Grade 8 Math. 

To conclude, gap trend discrepancies in line with Goodhart’s Law and 
McNeil’s accountability-response hypothesis were found in Grade 4 Math and 
Reading data, where Hispanic-White gaps decreased on high-stakes tests but 
increased on the audit test. Grade 8 Math provided marginal evidence for the 
hypothesis, as gaps decreased for high-stakes tests, and decreased, but to a lesser 
degree, on NAEP. Grade 8 Reading data did not provide any evidence for the 
hypothesis, as gap trends were similar between 1998 and 2003. With respect to 
absolute gap magnitudes, high-stakes Reading gaps were much larger than high-
stakes Math gaps and NAEP gaps overall, but they showed marked improvement 
within the time window. These results provide evidence that gap trends for high-
stakes test scores may be dangerously misleading if used as the sole indicator of the 
success of NCLB policies in increasing equity of outcomes. The data from Grade 4 
should be of particular concern, as they show a pattern consistent with the 
hypothesis that high-stakes testing policies are leading to a particular kind of 
learning for disadvantaged students that is not generalizing to other measures of 
achievement. 
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2.5 Limitations and Next Steps 

While we believe that this study raises valuable questions that policy makers 
should hear, it also leaves a great deal of room for improvement. To begin, the state 
data resolution is not entirely ideal for estimating PP plots and integrals associated 
with these plots. NAEP data, where eight CDF points per distribution are available, 
should be sufficient, but more detailed California data would be helpful in allowing 
a more exact estimation of V 0 statistics. Along these lines, the cubic Bezier 
interpolation method provides an estimate whose error has not been assessed. We 
are currently considering a bootstrap method of estimating the error associated with 
this procedure and investigating alternative methods like kernel smoothing. 

School-level data would also make for a more theoretically grounded study. 
McNeil’s hypothesis was, after all, posed at the level of individual schools’ 
responses to accountability pressures. A hierarchical (mixed-effects) model that 
takes the full structure of the data into account would be more theoretically 
grounded and should provide better estimates of gaps and trends. This kind of 
analysis would be challenging to perform using NAEP as an audit test, however, 
because NAEP data at the school level are not publicly available. Even if nonpublic 
data were obtained, different samples of schools would be available for different 
years. 

Perhaps the most logical step to take next is to open up the black boxes that 
these tests represent. If gaps for the Grade 8 Math CST are smaller than the gaps on 
the Grade 8 Math CAT/6, it makes sense to take a look at the test items from a 
psychological perspective to develop hypotheses about the different skills that tests 
require. These analyses may be well-served by multidimensional item response 
models and cognitively diagnostic models that take hypothesized skills required by 
test items into account (Ho and DiBello, 2004). Part III continues with a baseline 
study of trend discrepancies, where metric-free statistics are used to quantify trends 
instead of gaps. 
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Part III: Score Trend Discrepancies Between High-Stakes State Tests and the 
National Assessment of Educational Progress 

In Parts I and II, we argued that average-based statistics, for example, a change 
in an average test score over time, are susceptible to problems of scale. We 
developed a metric-free framework for evaluating test score gaps and discussed the 
usefulness of this framework for comparing gaps and gap trends across tests with 
different score scales. Here, we show the utility of this metric-free framework as we 
overview test score trends in 25 states for which Reading Test data are available for 
both a “high-stakes” testing program and the National Assessment of Educational 
Progress (NAEP) in 2002 and 2003. Comparisons of metric-free measures of test 
score trends show that test score gains are significantly higher for State “high-
stakes” Reading scores than they are for corresponding state NAEP Reading scores. 
These results raise serious concerns about the extent to which large-scale gains in 
test scores can be generalized to changes in statewide performance on broad 
domains such as “Reading.” Disaggregation of score trends by Free and Reduced 
Price Lunch (FRPL) status suggests that low-income students have larger score trend 
discrepancies than high-income students. Metric-free statistics were calculated with 
limited amounts of publicly available data; more detailed studies are warranted. 

3.1 An Elemental Framework 

Both proponents and critics of high-stakes testing policies have a vested 
interest in comparing score trends on high-stakes tests to trends on similar large-
scale assessments. If a high-stakes “focal” test and a low-stakes “audit” test show 
similar trends for similar domains (e.g., Reading), this is a reassurance that trends in 
the Reading performance measured by the focal test can be generalized to trends in 
the Reading performance measured by an audit test. Positive trends on both tests 
can be interpreted as convergent evidence that high-stakes testing policies are 
working to increase student achievement. If the trends are dissimilar (i.e., if there is 
a “score trend discrepancy,” the messages sent to educational stakeholders become 
ambiguous). A particular kind of score trend discrepancy, where focal test score 
trends are more positive than audit test score trends, is consistent with a hypothesis 
that high-stakes test score trends are artificially inflated. However, this notion of 
“artificiality” relies on an argument for the relative validity of the audit test. To put 
it another way, if the focal test were a better measure of desired learning outcomes 
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than the audit test, attempting to “validate” focal test gains with the audit test 
would be misguided. 

Koretz, McCaffrey and Hamilton (2001) provide a useful framework for 
considering how score trend discrepancies may or may not be evidence of 
“artificial” score inflation. They use the deliberately vague term elements of 
performance to refer to both what a test can be shown to measure and what a user 
may make inferences about from a test score. They define the effective test weight of 
an element as the sensitivity of a test score with respect to changes in performance 
on that element. However, tested elements and their weights may not always match 
test specifications, and elements with high effective test weights may be intentional 
or unintentional. Users have targets of inference that are composed of elements of 
performance, and they also have a model of gains that describes how a change in test 
scores should be consistent with changes in performance on these elements. Koretz 
et al. acknowledge that these targets and models are often tacit and poorly formed. 
Just as tested elements have test weights, elements that are part of a user’s target of 
inference have inference weights, where a large inference weight for a user on a 
particular element refers to that user ascribing a high value to that particular 
element within the domain. 

It is useful to consider the oft-cited “teaching to the test” hypothesis in this 
framework. This hypothesis holds that when high stakes are attached to a test, 
actions taken to improve scores on that test render it less accurate as an indicator of 
underlying achievement. Some such actions include a) an increased focus on 
teaching those content elements thought likely to be tested, at the expense of other 
elements in the domain the test is intended to represent, b) a focus on demonstrating 
achievement in just the manner called for on the test, and c) teaching of ancillary 
“test wiseness” skills, like time management or intelligent guessing, aimed at 
improving test scores without affecting underlying knowledge. These actions 
correspond loosely to the terms reallocation, alignment, and coaching from Koretz et 
al. Though “teaching to the test” almost always has a negative connotation, differing 
targets of inference may allow users to view stakes-inspired test preparation 
positively or negatively. If the audit test samples a different set of content elements 
from those on the high-stakes test, or if it frames questions in different ways or uses 
different item formats (i.e., differing non-substantive elements), then high-stakes score 
gains attributable to “teaching to the test” will not be fully reflected in audit test 
gains. 



42 

We can call this explanation of score trend discrepancies an “elemental 
discrepancy” hypothesis. That is, the focal and audit tests have different tested 
elements. In addition, it is possible in some cases that some students thought likely 
to earn low scores on a focal test may be excluded in one way or another from the 
group tested. If the audit test samples these students, or especially if sampling 
patterns are inconsistent across tests and from one year to the next, score trend 
discrepancies may result. We can call this explanation a “sampling discrepancy” 
hypothesis. Under this hypothesis, even if the two tests are designed to the same 
specifications, score trend discrepancies may result due to differing sampling 
schemes. Both sampling discrepancy and elemental discrepancy hypotheses may 
explain score trend discrepancies between the focal and audit tests overviewed in 
Part III3. 

3.2 Plausible and Implausible Elemental and Sampling Discrepancy Hypotheses 

This section’s focal tests are large-scale state Reading tests that are part of state 
school accountability policies. They are all high-stakes because of the sanctions for 
schools and districts that fail to meet requirements for Adequate Yearly Progress 
(AYP) mandated under the federal No Child Left Behind (NCLB) Act of 2001. The 
audit test is the National Assessment of Educational Progress (NAEP) in Reading. 
Due to the varying names of state testing programs and Reading tests within these 
programs, we will call all focal tests “State” with the capital; these are contrasted 
with NAEP. NAEP Reading results are available for most states in 2002 and 2003; 
this is the time period we will investigate. 

NCLB policies discourage two practices that may have led to “sampling 
discrepancies” in the past. First, in order to receive Title I funding, districts must 
agree to participate in NAEP if they are drawn as part of a state sample. Thus, bias 
due to nonresponse at the school level is greatly reduced. Previously, in spite of the 
use of replacement schools, weighting adjustments, and minimum required 
participation levels for reportable results, a score trend discrepancy may have arisen 
from a number of schools opting out of NAEP at one time point or another. NAEP 
has a school substitution procedure in place to minimize nonresponse bias, and 
school participation should be 100% from 2003 on. 

                                                 
3 A third discrepancy hypothesis involves differing changes in student motivation over time. This list 
of discrepancy hypotheses is not intended to be exhaustive. 
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A second practice discouraged by NCLB policies is the exclusion of low-
performing students from score summaries. An increase in the exclusion rates for 
low-performing students would lead to an artificial inflation in test scores, and 
differing trends in exclusion rates between NAEP and State tests may account for 
score trend discrepancies. NCLB mandates a 95% participation rate for students in 
all schools and for each numerically significant subgroup within a school. 
Depending on the length of time it took for NCLB policies to phase in after being 
signed into law in early 2002, exclusion rates for low-performing students may have 
been high in 2002 and then decreased under NCLB policies in 2003. If this were the 
case, we would expect State test scores to show deflated trends. 

Finally, it is important to remember that the trends we are reporting are cross-
sectional. The fourth graders whose performance we are measuring in 2002 are not 
the same fourth graders whose performance we are measuring in 2003. If there are 
demographic shifts in the population or changes in out-of-school factors, test scores 
may be influenced as a result. Most of these changes are unlikely to explain score 
trend discrepancies, but there are certainly plausible scenarios. A large change in the 
proportion of English Learners may differentially impact NAEP and State Reading 
test scores in accordance with the different Reading skills each test measures. 
Alternatively, an out-of-school program may be initiated which privileges the 
learning of skills disproportionately measured by one test. These changes would 
only lead to a score trend discrepancy if the tested elements were nonidentical. Thus, 
these particular “elemental discrepancy” hypotheses are potential alternatives to the 
“teaching to the test” elemental discrepancy hypothesis. 

3.3 Socioeconomic Resources and Score Trend Discrepancies 

The “teaching to the test” hypothesis assumes that there are significant 
incentives to teach a narrowly defined curriculum. These incentives are clearly not 
equal across all schools and classrooms. A school that has a high percentage of 
students scoring at “proficient” or above may have little reason to change current 
practices. Schools that have limited resources may have to devote all available 
resources to meeting the benchmarks set by NCLB policies. We might expect 
students in these schools and classrooms to show the most evidence of “learning to 
the test,” and thus show the greatest score trend discrepancies between that test and 
an audit test. 
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In upcoming sections, we use participation in the National School Lunch 
Program as a rough proxy for student socioeconomic status. We disaggregate score 
trend discrepancies for students who are eligible and ineligible for these programs 
to investigate the hypothesis that accountability policies may have a 
disproportionate impact on students and teachers in low-resource schools. 

3.4 Metric-Free Methods 

Score trends are usually expressed in one of two ways. The first is to take the 
difference between the mean scaled score (MSS) at time 2 and the MSS at time 1. The 
second is to take the percent of examinees above some cut point (percent above cut, 
or PAC) on a score scale and take the difference between the PAC at time 2 and the 
PAC at time 1. The second expression has come into widespread use due to NCLB, 
because Annual Measurable Objectives (AMOs) defining Adequate Yearly Progress 
(AYP) are stated in terms of a required percent “proficient” or above. Positive values 
for either of these expressions are interpreted as showing increases in student 
achievement. 

Both of these expressions have technical drawbacks. Part I reviews studies and 
shows examples demonstrating that the rank order of mean scores may not be 
meaningful if the interval properties of the score scale are suspect. In technical 
terms, we can only say that one mean score will be greater than another under any 
positive monotone transformation of the score scale if the two distributions are 
“stochastically ordered.” If this condition does not hold, an increase in average 
student achievement may become a decrease in average student achievement under 
a plausible transformation of the test score scale. Holland (2002) shows us that 
interpretations of changes in PAC values (and a fortiori changes in gaps measured 
by PAC values) may likewise be dependent on an arbitrary consideration, in this 
case the choice of the “proficiency” cut score.  

These technical issues are compounded by a third issue when we become 
interested in comparing focal and audit test scores. MSS difference expressions 
become impossible to compare because focal and audit score scales are different. A 
common solution is to divide the MSS difference expressions by the pooled standard 
deviations at the two time points. This is a solution that does not address the 
pliability of either of the score scales in question. PAC values are even more difficult 
to compare because standard setting procedures may be inconsistent across tests. If 
PAC difference values are already dependent on the location of the cut score, 
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comparing difference values across tests with differing cut scores, possibly 
established by different methods, may be misleading. 

To overcome the problems associated with noncommensurable test score scales 
and arbitrarily established cut scores, Part I argues for a metric-free, graphical 
representation of test score trends. When a scalar value is required, the V  ́ statistic is 
recommended, which can be interpreted loosely as a “metric-free effect size” 
statistic. This statistic does not show whether distributions are stochastically ordered 
at a glance, but, in a sense, whether a mean value takes on a positive or negative 
value under arbitrary transformations becomes an auxiliary concern given that the V  
́ statistic can be shown to be positive or negative under all transformations. The 
remainder of this section compares test score trends on NAEP and State Reading 
tests from the time period 2002 to 2003. These trends will be expressed as V  ́ 
statistics. 

3.5 Data Availability 

Under NCLB policies, starting in 2003, all states must participate in biannual 
NAEP Reading and Mathematics assessments at the fourth- and eighth-grade levels 
as a condition for receipt of Title I funding. In addition, school districts that receive 
Title I funding must agree to participate in NAEP if asked to do so. As a result, 
NAEP Reading data are available for all states in 2003. In 2002, however, seven 
states did not participate in NAEP, and two more states had data available for fourth 
but not eighth graders. State test data were gathered by visiting state websites and 
downloading applicable data. State data may not have been available or useful for 
one or more of the following reasons. 

• The state does not publish appropriate data online from 2002, 2003, or both 
years. 

• The state does not test Reading in Grade 4 and/or Grade 8. 

• The state is using a different testing program in 2003 than it did in 2002. 

• The state does not test in the spring, thus its testing is not aligned with NAEP 
testing. 

States for which spring 2002 and 2003 data are available for both State and 
NAEP Reading tests are shown in Table 4. Data availability for students who 
participate in the National Free and Reduced Price Lunch (FRPL) program is also 
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State Grade 4 Grade 8 FRPL 4 FRPL 8 NFRPL 4 NFRPL 8
Arizona 3
California 1 1 1 1
Connecticut 4 4 4 4 4 4
Delaware 4 4 4
Georgia 2 2
Hawaii 3 3
Kansas 1 1 1
Kentucky 7 3 3
Louisiana 4 4
Maine 3 3
Massachusetts 3
Mississippi 2 2 2 2 2 2
Montana 3 3 3 3 3 3
North Carolina 3 3 1 1 1 1
Ohio 3
Oklahoma 3 1
Oregon 1
Pennsylvania 3 3
Rhode Island 4 4
South Carolina 3 3 3 3 3 3
Utah 3 3
Vermont 3 3 3 3 3 3
Virginia 2 2
Washington 3
Wyoming 3 3 2 2 1 1

COUNT
25 17 21 9 14 8 9  

Table 4. State PP Cutpoint Availability, 2002‐2003. 

indicated, along with data availability for students who are not in the program 
(NFRPL). The entries in the table show the number of data points available to 
estimate the metric-free trend statistic; this will be elaborated upon in the next 
section. If there is no entry, no data were available for one or more of the reasons 
listed above. 

The number of states that had appropriate data available for each category for 
both the state and NAEP tests is listed in the last row. Twenty-five states had at least 
one estimable metric-free trend comparison. In general, Grade 8 data were more 
readily available than Grade 4 data. For various reasons, possibly related to the 
history of grade-subject combinations in State NAEP, many states tested Reading 
but not Mathematics in Grade 8 and Mathematics but not Reading in Grade 4. 
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3.6 Results 

Statewide score trend discrepancies are shown in Figure 15 for Grades 4 and 8. 
State test trends are on the x-axis; NAEP trends are on the y-axis; and positive trends 
indicate an increase in student achievement. All trends shown are V  ́ statistics and 
can be interpreted as metric-free effect sizes. Identical trends should line up on the 
diagonal. Any point below the diagonal is an example of a state-grade combination 
where State test trends are more positive than NAEP trends. The 38 data points 
represent 25 states for which State and NAEP trends could be estimated. Thirteen of 
the states had estimable trends for both Grades 4 and 8, and 12 states had an 
estimable trend for only one of Grades 4 and 8. 

Twenty-five of the 38 data points, or approximately 2 out of 3 state-grade 
combinations, have State test trends that are more positive than NAEP test trends. A 
matched sample t-test shows that State tests trends are, on average, significantly 
more positive than their NAEP counterparts (t = 3.719, df = 37, p < .001). These 
averages are shown as an open circle in the fourth quadrant, representing an 
average State gain of .034 and an average NAEP decline of −.028. The four data 
points in quadrant 2 and the 15 data points in quadrant 4 have notable political 
significance because they lead to dramatically ambiguous policy conclusions, where 
it appears that Reading achievement is both improving and declining. The relatively 
large number of data points below the diagonal, and especially the number of data 
points in quadrant 4, are consistent with a “teaching to the test” hypothesis. 

Figure 16 shows statewide score trends disaggregated by eligibility for the 
National School Lunch Program. Fifteen states had at least one estimable 
disaggregated trend for both State and NAEP tests. Four trend discrepancies are 
possible for each state, one for each grade, and one each for eligible (FRPL) and 
ineligible (NFRPL) students. Forty trend discrepancies are plotted in Figure 16; 23 
for FRPL students and 17 for NFRPL students. An overall matched sample t-test 
shows that the average State trend is significantly higher than the average NAEP 
trend (t = 3.633, df = 39, p < .001). 

Twenty out of 23 (87%) FRPL state-grade combinations are below the diagonal, 
whereas only about half (9 of 17, 53%) of NFRPL state-grade combinations are below 
the diagonal. For NFRPL students, average NAEP trends are not as positive as State 
trends, but the difference is not significant (t = 1.325, df = 16, p ≈ .20). For FRPL 
students, average State trends are significantly more positive than NAEP trends 
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NAEP vs. State Test Trends, 2002-2003 Reading, Grades 4 and 8
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Figure 15. Score Trend Discrepancies, 2002‐2003 Reading. 

 (t = 3.935, df = 22, p < .001). As shown by the FRPL and NFRPL mean trend 
discrepancies on the graph, average FRPL trend discrepancies are greater than 
NFRPL trend discrepancies. However, using only the 17 state-grade combinations 
that have both FRPL and NFRPL estimates of trend discrepancy, we find that FRPL 
trend discrepancies are not significantly greater than NFRPL trend discrepancies (t = 
1.275, df = 16, p≈ .22). 
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NAEP vs. State Test Trends, 2002-2003 Reading, Grades 4 and 8, FRPL 
eligible and non-eligible
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Figure 16. Score Trend Discrepancies by FRPL Eligibility. 

3.7 Discussion 

Focusing on statistical significance by averaging over states and grades may 
understate the importance of each of the data points in Figures 15 and 16. Any data 
point off the diagonal is, in itself, a noteworthy score trend discrepancy with three 
caveats. The first caveat is that V  ́ statistics may be masking a lack of stochastic 
ordering, and that PP plots that represent the difference between the two 
distributions may in fact be crisscrossing the diagonal. If there is no stochastic 
ordering, then, for example, the number of students at or above Proficient may 
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increase while the number of students at or above Advanced may decrease. This is 
equivalent to stating that transformations exist that can flip the ranking of the means 
at time 1 and time 2. In these cases, it becomes more difficult to say precisely what 
we mean when we make the claim that trends in student performance are either 
positive or negative, and it would become more difficult to compare these 
ambiguous trends across tests. 

The second caveat is that NAEP estimates of percentiles and PAC measures 
have notable standard errors that lead to sampling variability in the NAEP V  ́ 
estimates. Finally, V  ́ statistics are estimated from limited amounts of publicly 
available data. A PP plot that represents the gap between two distributions may be 
estimated from as few as 2 Proportion-Proportion pairs, where each pair represents 
the proportions at or below a given cut point for both distributions. The number of 
PP pairs for each V  ́ estimate are the entries in Table 15. In cases where only one PP 
pair is available, an effect size statistic is estimated assuming that the two 
distributions are normal with unit variance. The accuracy of these estimation 
methods is still an area of ongoing research, but preliminary studies suggest that, if 
anything, trends in conditions of limited data are underestimated; thus, trend 
discrepancies with full data availability will in most cases be even greater. 

It should be of significant concern to policy makers and educational 
stakeholders that average State test gains are considerably greater than average 
NAEP gains. This concern should be magnified by the large numbers of state-grade 
combinations that show not only trend discrepancies but trend sign discrepancies. If 
these discrepancies can be attributed to systematic differences between the 
populations framed for State versus NAEP testing, then they should be carefully 
investigated. If gains or declines on test scores on either NAEP or State tests can 
merely be attributed to sampling fluctuations, then widespread interpretations of 
these trends as improvement or decline in educational achievement must be 
approached with greater caution. If these discrepancies can be attributed content 
discrepancies, the cognitive domain of these tests needs to be mapped, and trends 
on overlapping and nonoverlapping content areas need to be estimated. If 
overlapping content areas can show the same trends and nonoverlapping content 
areas can account for  score trend discrepancies, a more coherent picture of changes 
in educational achievement and school success may emerge. 
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