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Abstract 

Prior research on collaborative learning identifies student behaviors that significantly 
predict student achievement, such as giving explanations of one’s thinking. Less often 
studied is how teachers’ instructional practices influence collaboration among students. 
This report investigates the extent to which teachers engage in practices that support 
students’ explanations of their thinking, and how these teacher practices influence the 
nature of explanations that students give when asked by the teacher to collaborate with 
each other. In this study, we videotaped and audiotaped teacher and student participation, 
and measured student achievement, in second- and third-grade mathematics classrooms 
working on algebraic concepts of equality and relational thinking. The teachers observed 
here, all of whom received specific instruction in eliciting the details of student thinking, 
varied significantly in the extent to which they asked students to elaborate on their 
suggestions. This variation corresponded strongly to variation across classrooms in the 
nature and extent of student explanations during collaborative conversations, and to 
differences in student achievement. 

Introduction 

Many current conceptions of learning, especially social-cognitive and social-
constructivist perspectives, highlight the central importance of student participation in social 
interaction. In Vygotsky’s (1978) view, for example, people learn of concepts and strategies 
during interaction with more knowledgeable others and then internalize them. Expressing and 
defending their beliefs and opinions and questioning others’ ideas helps learners to 
recognize, clarify, and repair inconsistencies in their own thinking (Ball, 1993; Cobb, 
Yackel, & Wood, 1992; Hatano, 1988; Lampert, 1989). Similarly, Leont’ev’s (1978) activity 
theory argues that participation in social practices significantly influences an individual’s 
psychological development, that changes in individual activity development serve as a 
catalyst for changes in the social activity, and that neither exists without the other (Minick, 
1989). 

                                                
1 We would like to thank Pat Shein, Julie Kern Schwerdtfeger, and John Iwanaga for their help in data coding.  
An earlier version of this report was presented at the 2007 annual meeting of the American Educational 
Research Association. 
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Not any kind of student participation is expected to be productive for learning, 
however. Both theoretical and empirical literature support the power of giving explanations 
compared to other kinds of participation such as giving answers. Researchers theorize that 
giving explanations to others promotes learning by encouraging the explainer to reorganize 
and clarify material, to recognize misconceptions, to fill in gaps in his or her own 
understanding, to internalize and acquire new strategies and knowledge, and to develop new 
perspectives and understanding (Bargh & Schul, 1980; King, 1992; Peterson, Janicki, & 
Swing, 1981; Rogoff, 1991; Saxe, Gearhart, Note, & Paduano, 1993; Valsiner, 1987). When 
explaining their problem-solving processes, students think about the salient features of the 
problem, which develops their problem-solving strategies as well as their metacognitive 
awareness of what they do and do not understand (Cooper, 1999). Even generating self-
explanations is expected to have similar benefits, such as helping internalize principles, 
construct specific inference rules for solving the problem, and repair imperfect mental 
models (Chi, 2000; Chi & Bassock, 1989; Chi, Bassock, Lewis, Reimann, & Glaser, 1989). 
Giving non-elaborated help such as answers, in contrast, may not involve these cognitive 
processes. 

Empirical findings from studies of collaboration among students support the 
hypothesized positive relationship between explaining and achievement (Brown & Palincsar, 
1989; L.S. Fuchs, D. Fuchs, Hamlett, Phillips, Karns, & Dutka, 1997; King, 1992; Nattiv, 
1994; Peterson et al., 1981; Saxe et al., 1993; Slavin, 1987; Webb, 1991; Yackel, Cobb, 
Wood, Wheatley, & Merkel, 1990). Similarly, giving answers without elaboration of one’s 
thinking has been found to be negatively related, or not related, to achievement (Webb & 
Palincsar, 1996). 

In recognition of the importance of providing students with opportunities to engage 
actively in interaction about the subject matter, school districts, state departments of 
education, national research organizations, and curriculum specialists recommend the use of 
peer-based learning (e.g., California State Department of Education, 1985, 1992, 2005; 
National Council of Teachers of Mathematics [NCTM], 1989; National Research Council, 
1989, 1995; Tinzmann, Jones, Fennimore, Bakker, Fine, & Pierce, 1990). The Professional 
Standards for Teaching Mathematics (NCTM, 1991), for example, explicitly highlights the 
importance of students working “collaboratively to make sense of mathematics” (p. 57). 

Although the potential benefits of student-directed collaboration have been widely 
studied, less often studied is the role of the teacher in fostering productive group 
collaboration. Most of the researched teacher practices concern structuring collaborative 
groups or tasks in certain ways, or providing certain kinds of instruction to students. Some 
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teacher practices found to influence student interaction in peer-directed groups include 
instructing students in explaining skills (Fuchs et al., 1997; Gillies & Ashman, 1996, 1998; 
Swing & Peterson, 1982) or in giving conceptual rather than algorithmic explanations (Fuchs 
et al., 1997), assigning students to summarizer or listener roles (Hythecker, Dansereau, & 
Rocklin, 1988; O’Donnell, 1999; Yager, D.W. Johnson, & R.T. Johnson, 1985), teaching 
students how to ask each other specific high-level questions about the material (often called 
reciprocal questioning, Fantuzzo, Riggio, Connelly, & Dimeff, 1989; King, 1989, 1990, 
1992, 1999); using specific metacognitive prompts to help students monitor each other’s 
comprehension (Mevarech & Kramarski, 1997), providing students specific prompts to 
encourage them to give elaborated explanations, explain material in their own words, and 
explain why they believe their answers are correct or incorrect (Coleman, 1998; Palincsar, 
Anderson, & David, 1993); and using reciprocal teaching to model and explain strategies 
(e.g., generating questions, making predictions) that students are expected to carry out in 
conversations with other students (Palincsar & Brown, 1989), using instructional scaffolding 
(Hogan, Natasi, & Pressley, 1999), and constructing classroom norms for cooperation in 
groups (Yackel, Cobb, & Wood, 1991). 

Rarely studied are how teachers’ established instructional practices may influence how 
students collaborate with each other. In this paper we address the role of one aspect of 
teachers’ instructional practices in fostering student explaining in collaborative groups: the 
extent to which teachers, in the context of teaching the curricular content (here, 
mathematics), encourage students to explain their thinking. There is a long history of teacher-
dominated discourse in the classroom, in which teachers do most of the talking and students 
are rarely asked to share their thinking (Cazden, 2001; Cuban, 1993; Kennedy, 2004). 
Classroom discourse is often characterized by forms of instructional discourse described as 
recitation (Nystrand & Gamoran, 1991), Initiation-Response-Evaluation (I-R-E; Turner et al., 
2002), or Initiation-Response-Follow-up (I-R-F; Hicks, 1995–1996; Wells, 1993) in which 
teachers ask students questions and evaluate their responses in a rapid-fire sequence of 
questions and answers with little or no wait time (Black, Harrison, Lee, Marshall, & Wiliam, 
2002). Moreover, the vast majority of teacher queries consist of short-answer, low-level 
questions that require students to recall facts, rules, and procedures (Ai, 2002; Graesser & 
Person, 1994), rather than high-level questions that require students to draw inferences and 
synthesize ideas (Hiebert & Wearne, 1993). Even reform-minded teachers often ask 
questions that require students to do little more than provide correct answers (Spillane & 
Zeuli, 1999). 



 4 

In recent years, educators and researchers have called for a different role of the teacher. 
The Professional Standards for Teaching Mathematics (NCTM, 1991) characterizes the 
teacher’s role as “active in a different way from that in traditional classroom discourse. 
Instead of doing virtually all the talking, modeling, and explaining themselves, teachers must 
encourage and expect students to do so” (p. 36). This document highlights the importance of 
students clarifying and justifying their thinking, even listing specific kinds of questions that 
teachers might ask to stimulate student explaining, including, for example, “Does anyone 
else have the same answer but a different way to explain it?; Can you convince the rest of us 
that that makes sense?; How did you reach that conclusion?; How did you think about the 
problem?” (pp. 3–4), and specific practices such as regularly following “students’ statements 
with ‘Why?’ or by asking them to explain” (p. 35). 

The question motivating this study, and one that has rarely been examined, is whether 
and how teachers’ instructional practices, especially the extent to which teachers do or do not 
encourage students to explain their thinking during classroom instruction, may influence how 
students interact with each other in collaborative groups. 

A recent study showed that teacher-centered instructional practices may have a limiting 
effect on student explaining in collaborative groups. Webb, Nemer, and Ing (2006; see also 
Webb & Mastergeorge, 2003) examined student behavior in peer-directed groups in 
classrooms in which teachers implemented a large collection of activities designed to 
promote students’ communication and help-related skills, with the goals of increasing student 
explaining and improving student achievement. The activities targeted help-giving skills such 
as providing elaborated descriptions of how to solve problems (instead of answers) and of 
checking for student understanding. That study focused on activities the teachers could use to 
prepare their students for collaborative group work and did not address, or try to change, 
teachers’ accustomed manner of interacting with students. Teachers’ instructional styles 
could be characterized as “teacher centered.” During whole-class presentations and in much 
of their interactions with small groups, teachers maintained a recitation style of instruction in 
which they assumed most of the responsibility for setting up the steps in the problem and 
generally asked students simply to provide results of specific calculations that the teachers 
posed. Almost never in the whole class, and infrequently in visits with small groups, did 
teachers ask students to explain or describe how they arrived at their answers. Teacher 
questioning of students about their work, when it did occur, seemed intended to uncover 
errors that could be corrected rather than to uncover details of student thinking or 
misconceptions that could be addressed. 
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Through their behavior, then, teachers in that study modeled the role of “teacher” as 
active problem solver and the role of “student” as a fairly passive recipient of the teacher’s 
instruction. In their small groups, students largely mimicked these roles, with help-givers 
usually giving low-level help (e.g., answers) rather than explanations, help-seekers passively 
receiving the help, and students rarely sharing their thinking and problem-solving strategies 
or probing others’ thinking. 

The current study, in contrast, examines teacher practices and student conversations in 
classrooms whose teachers were explicitly encouraged to elicit students’ mathematical 
thinking. In particular, this study examines student behavior and teacher practices in 
elementary school classrooms whose teachers participated in a professional development 
program specifically designed to help them engage with their students in algebraic thinking 
around ideas of relationships between numbers and equality (Carpenter, Franke, & Levi, 
2003; Jacobs, Franke, Carpenter, Levi, & Battey, 2005). Unlike the teachers in the Webb et 
al. (2006) study, teachers in this study received instruction and practice in posing 
mathematics problems designed to stimulate student thinking, asking questions to elicit 
student descriptions of their thinking, and setting up whole-class and small-group contexts in 
which students could converse with one another and with the teacher about their thinking, 
and in which sharing answers, ideas, and strategies was expected and encouraged. 

In this report, we examine student achievement, student participation in collaborative 
groups, and teacher practices—and the links among them—in classrooms in which teachers 
received specific instruction in eliciting details of student thinking. We address the following 
specific questions: Does the previously demonstrated importance of student explaining for 
achievement hold up in these classrooms? How do student participation and teacher practices 
with respect to eliciting student thinking differ from those in the previous study, in which 
teachers did not receive such instruction and engaged in a recitation style of instruction? In 
classrooms with a focus on eliciting student thinking, what is the nature of the link, if any, 
between teacher practices and student participation in collaborative groups? 

Method 

Sample 

Three elementary school teachers (two second-grade, one third-grade) and their 
students from a large urban school district in Southern California are the focus of this study. 
These schools serve predominantly African American and Hispanic students and are similar 
in terms of their academic performance, percentage of students receiving free or reduced 
lunch and percentage of students designated as English language learners (California 
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Department of Education, 2006). These teachers were part of a large-scale study focused on 
supporting teachers to engage with students in algebraic thinking (see Carpenter, Franke, & 
Levi, 2003; Jacobs et al., 2005). The teachers were from low-performing schools in a large 
urban district and participated in at least 1 year of on-site professional development. 

Procedures 

On two occasions within a 1-week period, we videotaped each teacher’s class using two 
cameras and six audio setups. Each video camera had two audio feeds connected to flat 
microphones (four flat microphones in all), so that four pairs of students could be recorded 
simultaneously. Each flat microphone was positioned between members of a pair. Two pairs 
were audiotaped only. To capture the complete conversation, three microphones were used 
for each pair: an individual lapel microphone for each student and a flat microphone 
positioned between the students in the pair (each attached to a different audio recorder). The 
recording from the flat microphone was the primary source of the conversation in the pair; 
the recordings from the individual microphones were used to identify the speaker and to fill 
in gaps in the conversation.  

Classrooms were taped as teachers taught topics related to equality and relational 
thinking. Teachers were asked to cover those topics but were not directed further about the 
particular problems to present. Teachers were also asked to incorporate “pairshare” time into 
the class (their accustomed practice) during which pairs of students worked together to solve 
and discuss problems assigned by the teacher. The structure of the class for all teachers was 
to introduce a problem, ask pairs to work together to solve the problem and share their 
thinking, and then bring the class together for selected students to share their answers and 
strategies with the whole class (usually at the board). 

We captured all teacher-student talk during whole-class portions of the class and 
individual student talk during pairshare for at least 12 of the 20 students in each class. We 
made comprehensive transcripts of each class session consisting of verbatim records of 
teacher and student talk, annotated to include details of their nonverbal participation. We also 
collected student written work, took field notes during class sessions, administered student 
achievement measures (written tests and individual interviews), and surveyed teachers about 
their classroom practice over the course of the year. 

Coding of Student and Teacher Participation 

Student participation. Using transcripts of all class talk (notated to include important 
nonverbal interaction) and videotapes, we coded student participation during both whole-
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class interaction with the teacher and during pairshare for each mathematics problem 
according to the following categories: 

1. General form of interaction among students in a pair for each problem (students 
were engaged in back-and-forth conversation about the mathematics; students 
talked about mathematics but not with or to their partner; students engaged in 
conversation with their partner but not about the mathematics; students did not say 
anything). 

2. Accuracy of answer given (correct, incorrect, none). 

3. Level of elaboration of mathematical talk (explanation vs. talk about the problem 
that did not include an explanation—e.g., answer to problem, calculations 
verbalized while students were trying to arrive at answer). 

4. Nature of explanation given (gives correct and complete computational explanation; 
gives correct and complete relational thinking explanation; gives correct and nearly 
complete relational thinking explanation; gives ambiguous, unclear, or incomplete 
explanation; gives explanation for an incorrect answer; gives explanation of a faulty 
strategy that would lead to the incorrect answer; see Table 1 for examples). 

5. Discrepancies in answers or strategies offered by members of a pair, and whether 
and how they were noticed, addressed, and resolved. 

6. Questions students asked of each other (nature of question, nature of responses 
provided, and follow-up to these responses). 

7. Monitoring behavior (students asking each other questions to determine their 
understanding of the problem or an explanation offered). 

For each problem, we coded all types of participation that occurred and used 
dichotomous scoring for each type (e.g., a student who offered both a complete and correct 
computational justification for his or her answer and an ambiguous explanation was scored as 
offering both types of explanations). Most of the quantitative analyses use scores 
representing the number of problems during which a student exhibited a certain type of 
behavior. 
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Table 1 

Examples of Student Explanations 

Student explanation Classroom 1 Classroom 2 Classroom 3 

Correct and complete  
 

   

 Computational It will have to be 200 
because 200 plus 1 
equals 201. So it’s the 
same as 1 plus 200 is the 
same as 201. 

2 times 7 equals 14 
so 3 times 2 equals 6 
plus 1 equals 7. 

I told him we took 5 times 3 
and we put 4 plus … yeah, 5 
times 3 and then we found it 
and it made it 15, and 15 take 
away, the 15 take away, um 
hold on. 15 take away 2  
equals 13. 

 
 Relational 
 

   

  Complete I think 200 is supposed 
to be in the box because 
200 on this side and 1 
next to it equals 1 plus 
200. 

—a I knew that 10 and 10 are the 
same, and I knew that 20 and 
20 have to be there. So it’s 
like a mirror. 10 and 10 are the 
same and 20 and 20 are the 
same, so they’re equal. 

 
  Nearly  
  complete 

— a — a 11 plus 2 equals 13. 10 plus 3 
equals [13]. Because you have 
this one right here or this one 
right here because, because 
this is the greater number than 
this number. The greater 
number than this number. 

 
Ambiguous Say this was this one. 

And this one you have to 
like these two are the 
same sides. And this one 
is going to have to go 
like that one. 

It just helps me, like, 
figure out the 
number. 

You have the equal sign which 
means the same, and the little 
number goes to the little one 
and the big number goes to the 
big number, and so you put 
this to the little number too. 
’Cause, look, the 2 and the 4 
and we saw the times and the 
plus, so that’s where we got 
the number. 

 
Incorrect or faulty No. It’s just like 50 plus 

50. They are kind of 
partners because they are 
the same but they are not 
(unclear). 

Look. So it equals 3. 
I got it. It’s 30. Look, 
it’s 30, right? 30, and 
then you put, and 
then you put 74. 

4. 4 plus 9 equals 5. I say it’s 
true. 

aDid not occur in this classroom.  
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Teacher participation. We coded teacher participation during whole-class interaction 
with the teacher and during pairshare for each mathematics problem according to the 
following categories: asks student(s) to give explanation; directs specific pairs to explain to 
each other; asks students to explain further or elaborate on what they said or did; revoices 
student suggestion (answer, explanation), or provides part or all of a problem-solving 
strategy. Table 2 gives examples for each teacher. 

Table 2 

Examples of Teacher Participation 

Teacher participation Teacher 1 Teacher 2 Teacher 3 

Asks student(s)  
to explain 

How do you know? Because I don’t really 
see any work here. I’m 
just a little unsure of how 
you came up with 345. 
Can you show me what 
you did? 

 

No, no, no. Don’t erase 
it. Tell me what you are 
doing right here. 

Directs specific pair of 
students to explain to 
each other 
 

—a Now share with 
[Student] what you just 
did. 

Can you explain to 
[Student] what you did? 

Asks student to explain 
further or elaborate  

Could you explain what 
numbers you are talking 
about? 

 

Okay, you are using the 
tally strategy. Why do 
you have 14 tallies? 

Why did you minus 10? 
And where did you get 
that 10 from? 

Repeats or revoices 
student explanation  
or answer 
 

   

 Student explanation Oh, okay, I see what you 
saying. So the 200 and 
the 200 are partners. Is 
that what you are saying? 
So it doesn’t matter 
which way. These ones 
are still partners. They 
are the same. These 
200’s are partners. They 
are still the same. So 
either way we do it, it’s 
still the same on both 
sides. 

 

Wow, okay. Just to 
clarify here. Just to 
clarify, it kind of seems 
to me like you did this in 
your mind? Is that kind 
of what you did in your 
mind? I’m just curious. 
I’m trying to clear it up 
here. 

Okay, so you did 5 times 
3 equals 15. 

 Student answer You think 200.  — a You still think it’s false? 

aDid not occur in this classroom. 
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Classwork Problems 

Teachers were asked to cover equality and relational thinking on the days that we 
observed their classes, topics that were central to the professional development program on 
algebraic thinking. The following are sample problems: (1) 50 + 50 = 25 + □ + 50 , and (2) 
11 + 2 = 5 + 8 (true or false?). 

Measures of Student Algebraic Reasoning 

Two measures of student algebraic reasoning were used in this study. A written 
assessment designed to measure relational thinking was administered to all students. Four 
items were designed to “assess students’ understanding of the equal sign, in particular, 
whether students held a relational view of the equal sign” (Jacobs et al., 2005). These items 
are referred to as the equality items because students were asked to demonstrate that the 
equal sign means “the same as.” An example of an equality item is: 3 + 4 = □ + 5. To answer 
this question, students need to know that the numbers to the left of the equal sign need to sum 
to the same result as the numbers to the right of the equal sign. Nine additional items were 
designed to assess students’ abilities to identify and use number relations to simplify 
calculations. For example, in 889 + 118 – 118 = □, students could simplify this problem by 
recognizing that 118 – 118 = 0. 

The 12 students from each class who were audio or videotaped on the observation days 
were also individually interviewed. Students were asked what number they would put in the 
box to make certain number sentences true, for example, 13 + 18 = □ + 19. Students were 
asked to describe how they solved particular problems, and both their answers and strategies 
were coded. 

Four items addressed students’ understanding of the relational nature of the equal sign, 
specifically the equivalence of the numerical expressions on either side of the equal sign. An 
example of a targeted computation item is: 889 + 118 – 118 = □. To answer this question, 
students could compute the sum of 889 and 118 and then subtract 118. Another way for 
students to solve this item was to recognize that 118 – 118 = 0 so the answer is 889. Students 
with higher levels of relational thinking might notice this relationship between the 118s and 
solve this problem without needing to compute. 

The analyses include three scores: (a) the score on the equality items on the written 
assessment, (b) the total scores on the written assessment, and (c) the total score on the 
individual interview. 
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Results 

Relationship Between Student Participation and Student Achievement 

This section explores the relationship between student interaction during pairshare time 
and student achievement. Because few students interacted with the teacher during whole-
class time, the frequencies of student behavior in the whole class were small. Consequently, 
it was not meaningful to correlate student participation in the whole class with student 
achievement. 

Table 3 presents correlations between categories of student participation during 
pairshare conversations and scores on the achievement measures. Engaging in discussion of 
problem-solving strategies and giving correct and complete explanations were positively 
related to achievement scores. The greater the number of problems during which students 
displayed these behaviors, the higher was their achievement. Giving no explanations was 
negatively related to achievement scores. The greater the number of problems during which 
students gave no explanation—either giving the answer only or not engaging in talk about the 
problem—the lower was their achievement. Giving answers (either correct or incorrect) and 
giving ambiguous, incomplete, or incorrect explanations were not significantly related to 
achievement. 

Table 3 

Correlations Between Student Participation During Pairshare and Achievement Scores 

 
 

Student participation categorya  

Written 
assessment score 

(equality) 

Written 
assessment score  

(total) 

Individual 
interview  

score 

General form of interaction     

 Talk about problem-solving strategy .49** .39* .30 

 Talk about answer only -.10 -.08 .03 

 No talk about problem -.39* -.30 -.26 

Gives answer .26 .23 .12 

 Correct .31 .31 .18 

 Incorrect -.06 -.11 -.09 

Gives explanation .55*** .50*** .21 

 Correct and complete (or nearly complete)  .67*** .60*** .48** 

 Ambiguous, incomplete, or incorrect -.04 -.11 -.33 

Gives no explanation -.55*** -.50** -.21 

aProportion of equality and relational thinking problems in which a category occurred. 
*p < .05. **p < .01. ***p < .001. 
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Table 4 presents a simplified picture of the relationship between student participation 
and achievement. For each problem, a student’s participation was coded according to the 
highest level of participation for the problem (gives correct and complete explanation, gives 
ambiguous or faulty explanation, or gives no explanation). This contrasts with the previous 
analysis in which a student could be coded as giving explanations of different types, for 
example, a complete and correct explanation and an ambiguous explanation, for the same 
problem. As can be seen in Table 4, giving correct and complete explanations was positively 
correlated with achievement scores whereas giving ambiguous or faulty explanations and 
verbalizing mathematics work at a lower level than an explanation were both negatively 
correlated with achievement scores, at least for one of the two achievement measures. 

Table 4 

Correlations Between Student Participation During Pairshare  
(Highest Level of Participation on a Problem) and Achievement Scores  

Highest level of student explanation  
on a problem during pairshare  

(proportion of problems) 

Written 
Assessment 

Score (Equality) 

Written 
Assessment 

Score (Total) 

Individual 
Interview  

Score 

Correct and complete explanation .67*** .66*** .47** 

Ambiguous or faulty explanation -.17 -.15 -.44** 

No explanation -.55*** -.50*** -.21 

**p < .01. ***p < .001. 

It should be noted that the correlations in Tables 3 and 4 cannot be used to draw 
inferences about causality. It would be preferable to compute partial correlations controlling 
for an antecedent measure of achievement. Although standardized test scores from the 
previous spring were available for the third-grade class (Teacher 2), none were available for 
the second-grade classes (Teachers 1 and 3) because standardized tests are not administered 
to first-graders in this district. Consequently, partial correlations could not be computed. 

Achievement differences between classrooms. Significant differences between 
classrooms emerged on both measures of student achievement. As shown in Table 5, students 
in Teacher 3’s class (Grade 2) scored the highest and students in Teacher 1’s class (Grade 2) 
scored the lowest. The remaining sections of this report probe the student participation and 
teacher practices that may explain these classrooms differences in student achievement. 
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Table 5 

Mean Student Achievement in Each Classroom  

 Classroom   

Achievement score 1 2 3 F 

Written assessment (Equality) .15a (.28)b .50a (.46)b .75a (.35)b 8.67*** 

Written assessment (Total) .16a (.23)b .29a (.30)b .51a (.19)b 6.60** 

Individual interview .17a (.30)b .36a (.41)b .38a (.38)b 4.60* 

aProportion of problems correct.  
bStandard deviation. 
*p < .05. **p < .01. ***p < .001. 

Differences Between Classrooms: Student Participation During Pairshare 

Significant differences between classrooms emerged for student participation. Table 6 
shows differences in the general form of student interaction during pairshare across 
classrooms. Because teachers assigned different numbers of problems, Table 6 presents the 
information in terms of the proportion of problems. Students in Teacher 3’s class engaged 
with each other around problem-solving strategies more frequently than did students in the 
other classes. In nearly two thirds of the problems in Teacher 3’s class, on average, students 
engaged with each other around mathematics strategies. In the other two classes, students 
were most likely to talk about the answer or not talk about the problem at all. 

Table 6 

General Form of Interaction Between Students in Pairshare: Differences Between Classrooms  

 Classrooma  

Form of interaction 1 2 3 F 

Talk about problem-solving strategy .27 .45 .65 6.20** 

Talk about answer only .15 .09 .15 3.00 

No talk about the problem .58 .45 .20 4.30* 

aMean proportion of problems with pairshare opportunities. 
*p < .05. **p < .01. 
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Table 7 

Student Explanations Verbalized During Pairshare 

 Classrooma  

Student explanation 1 2 3 F 

Gives explanation .31 .32 .62 4.09* 

 Correct or complete  .08 .18 .48 6.94** 

 Ambiguous or faulty  .23 .18 .17 .96 

Gives no explanation .69 .68 .38 4.09* 

aMean proportion of problems. 
Note. Some columns sum to more than 1.00 because some students gave both correct and incorrect  
explanations during discussion of a problem. 
*p < .05. **p < .01. 

Table 7 shows the degree to which students elaborated their thinking in each classroom. 
In Teacher 3’s class students gave explanations on more than half of the problems, on the 
average, whereas students in the other classes gave explanations on about a third of the 
problems, on the average. Moreover, on nearly half of the problems, students in Teacher 3’s 
class gave correct and complete explanations, whereas students in the other two classrooms 
gave correct and complete explanations on a small proportion of the problems. 

Not only did students in Teacher 3’s class give more explanations during pairshare than 
students in the other classes, they spent more time explaining than students in the other 
classes, as reflected in the volume of student talk during explanations. In Teacher 3’s class, 
students who gave explanations spent an average of 193 words on their explanations during a 
problem, compared to an average of 117 words in Teacher 2’s class, and an average of 49 
words in Teacher 1’s class. 

Table 8 gives a simplified picture of student participation by categorizing students by 
whether they gave at least one correct and complete (or nearly complete) explanation on any 
problem during pairshare, whether they gave only ambiguous or faulty explanations (but 
never correct, complete, or nearly complete explanations), and whether they never gave an 
explanation on any problem. In Teacher 3’s class, every student gave at least one correct and 
complete explanation. In Teacher 1’s class, although most students gave at least one 
explanation, only a third of students gave a correct and complete explanation; half of the 
students only gave explanations that were ambiguous, incorrect, or incomplete. In Teacher 
2’s class, half of the students never gave any explanation, whether correct or incorrect; 
among students who did give an explanation, only a small proportion ever gave a complete 
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and correct explanation. Differences between teachers are statistically significant, χ2(2, N = 
36) = 27.14, p < .001. 

Table 8 

Categories of Student Participation During Pairshare  

 Classrooma 

Category of student participation across all problems 1 2 3 

Student gives at least one correct and complete  
(or nearly complete) explanation  

.33 .18 1.00 

Student gives only ambiguous or faulty explanation .50 .27 .00 

Student never gives an explanation .17 .55 .00 

aProportion of students. 

While the quantitative results point to important differences among classrooms in the 
degree to which students explained their thinking, especially whether they were able to give 
correct and complete explanations, closer inspection of student talk reveals further detail 
about the quality of the student conversations. The following excerpt from Teacher 1’s class 
is typical of student interaction in her classroom. There is no evidence that students in this 
pair were talking to each other or even listening to each other. Only one person in a pair gave 
an explanation (S1) and it was brief and ambiguous (line 5). This student didn’t clarify which 
numbers were “playing together” nor what he meant by the term. Nor did his partner ask him 
about his explanation. 

Problem: 50 + 50 = 25 + □ + 50 

1 S1 The second one (unclear). I don’t know the first one. I don’t know. 

2 S2 I know the answer. 

3 S1 I know the answer. 

4 S2 I know the answer is 50 … it’s 25. 

5 S1 It’s 25 for real. (unclear) And it’s not 56, And not 56. 56 and not … 56 and 
not 56. They are playing together. They are playing together.  

The next excerpt is typical of the student interaction in Teacher 2’s class. As in Teacher 
1’s class, only one person in a pair provided an explanation. However, the explanation was 
longer, complete, and fairly clear. It also appears that one student (S1) was trying to explain 
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to the other student. Although there was an attempt at conversation, the second student (S2) 
didn’t react to the student providing the explanation, except to repeat the last few words 
(lines 3, 4), and the explainer did not notice her partner’s incorrect answers (line 2). 

Problem: 14/2 = (3 * □) + 1 

1 S1 Three. This is … This is 3. It’s a 3 plus 2 times 7 equals 14. It’s a 3 because 
two times seven equals fourteen. So three times three equals … no wait. 

2 S2 I think it’s four. It equals 1. 

3 S1 It’s a two. Three times two equals six. Plus 1 is 7. 

4 S2 Plus 1 is 7. 

5 S1 Look, 2 times 7 equals 14 so we put 3 times 2 equals 6 plus 1 is 7. So right 
here the answer is 7. 

6 S2 Let’s do number two. 

The excerpt below from Teacher 3’s class typifies the two-way conversations that 
occurred during pairshare in this classroom. Students talked to each other, explained their 
thinking repeatedly and in detailed fashion, and explicitly referred to each others’ 
suggestions. Moreover, they tried to apply multiple strategies for solving the problem, 
including a computational approach (lines 2, 4) and an approach using relational thinking 
(lines 4–9).  

Problem 2: 11 + 2 = 10 + □ 

1 S2 Look. 

2 S1 No, but I … 11 plus 2 equals 10 plus 3, huh? All I did is, um …  

3 S2 Add 11 plus 2. 

4 S1 I just added 11 plus 2, and then I, and then I saw it was 13, huh. So then I 
added 10 plus 3, and I saw it was 13 too. So I pull down a number and I put 
13, huh. And then suddenly I look at they just did one up. Goes from 10, next 
is 11 … it goes from 2, next is 3. 

5 S2 Yeah. So you know why I put the lines? It’s ’cause if this is a higher number, 
and this is a lower number, and the next one is 2 plus 3, this is 11. ’Cause 11, 
this is higher, this is lower, this is higher, this is lower. So 2, if if, it doesn’t 
care if it’s switched. But 3 plus, I put this ’cause this number is lower and 
this number …  this number is higher and this number is lower. 
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6 S2 And then I say that if this is higher, the next one has to be lower. And if this 
is lower …  

7 S1 11 plus 2 equals 10 plus 3. 

8 S2 And if this is lower, this has to be higher. 

9 S1 I know you had told me that ’cause, ’cause I saw that too. ’Cause 11 is higher 
than 10, verdad, is higher than 10, y this one, this one’s lower, this one’s 
gotta be higher than this one. So this one’s lower and this one’s higher. And 
this one’s lower and this one’s higher. Get it? 

Finally, differences across classrooms appeared in the extent to which students 
monitored each other’s work or understanding; the frequency with which students asked each 
other questions; and whether discrepant answers and ideas were noticed, addressed, or 
resolved. First, whereas students in Teacher 1’s and Teacher 2’s classes only showed one 
instance of monitoring behavior apiece (“Get it?”), students in Teacher 3’s class exhibited 
monitoring behavior nine times, including asking questions of each other (“You don’t 
understand it?”) and following up with explanations when a student indicated lack of 
understanding. Second, students in Teacher 3’s class asked each other questions more 
frequently than did students in the other classes (six times vs. three and one time). Students in 
Teacher 3’s class asked for confirmation of their strategy (“Did you all do it like I did?”) and 
for explanations (“How did you know it was 3?”, “Then how come you get the second…?”). 

Although the incidence of discrepant answers in a pair was similar across the three 
classrooms, whether they were addressed and how they were resolved differed markedly 
across classrooms. In Teacher 1’s class, all five cases of discrepant answers went 
unaddressed (and in at least four cases, probably unnoticed). In Teacher 2’s class, two cases 
of discrepant answers went unaddressed; in three cases, students noticed the different 
answers and actively disagreed without resolving the disagreement (e.g., “The missing 
number is seven.” “No, it’s not.”). In Teacher 3’s class, students argued about and resolved 
their disagreements (sometimes with the help of the teacher). In one case, for example, 
students disagreed about whether the number sentence 4 + 9 = 5 x 3 – 2 was true or false. 
Both students voiced their reasons for their answers (e.g., the student who gave the incorrect 
answer “false” said “That’s 13. But this one is not. This is 15”). The student who gave the 
correct answer (true) explained in detail how to solve the problem, which convinced the other 
student, who realized his error in omitting the -2 and voiced the correct calculation (“and take 
away 2 is 13”). 
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In summary, students in Teacher 1’s class tended not to engage with each other around 
the mathematics, which limited their opportunities to notice and resolve discrepant answers 
and monitor each other’s work and understanding. Although most students gave at least one 
explanation, their explanations tended to be ambiguous or faulty. Students in Teacher 2’s 
class also tended not to engage with each other around the mathematics, and half of them 
never offered an explanation. However, the students who gave explanations tended to 
provide correct and complete explanations. Students in Teacher 3’s class more often than not 
did engage with each other around the mathematics. They gave the most explanations and 
justifications of their answers, most frequently asked questions of each other and monitored 
each other’s understanding, and were the most likely to recognize discrepant answers and 
carry out active discussion to resolve disagreements. 

Differences Between Classrooms: Student Participation During Whole-Class 
Discussions 

To analyze whole-class discussions, we separated the interaction into “segments” 
which consisted of interaction between the teacher and a particular student. Typically, a 
student was called upon to share his or her answer and explain how he or she solved the 
problem. The teacher interacted with this student, and then called upon another student or 
posed another problem for the class. The analyses of whole-class discussions presented here 
focus on these segments. 

Differences between classrooms in student participation during whole-class discussions 
mirror those that emerged during pairshare time. As seen in Table 9, although students in all 
classes gave explanations, more students gave correct and complete explanations during 
whole-class time in Teacher 2’s and Teacher 3’s classes than in Teacher 1’s class, χ2(2, N = 
66) = 16.25, p < .001. Moreover, students in Teacher 3’s class spent more time explaining 
than students in the other classes, as reflected in the volume of student talk during 
explanations. In Teacher 1’s class, students who gave explanations spent an average of 49 
words in their explanations; in Teacher 2’s class the average was 117 words, and in Teacher 
3’s class the average was 193 words. The more extensive explanations in Teacher 3’s class 
were partly due to students’ tendency to provide explanations without prompting and partly 
due to the teacher’s frequent questioning, which encouraged students to elaborate and clarify 
their explanations (as described in the next section). 



 19 

Table 9 

Student Participation in the Whole Class  

 Classrooma 

Student explanation 1 2 3 

Student gives explanation .93 1.00 1.00 

 Student gives correct and complete explanation .25 .80 .71 

 Student gives ambiguous, incorrect, or 
 incomplete explanation 

.68 .30 .54 

Student gives no explanation .07 .00 .00 

aProportion of whole-class segments. 
Note. Columns sum to more than 1.00 because some students gave correct and incorrect  
explanations in the same segment. 

Differences Between Classrooms: Teacher Participation During Whole-Class 
Discussions2 

Teacher participation differed across classrooms in ways that shed light on differences 
in student achievement and student participation. During whole-class discussions, as shown 
in Table 10, although all teachers asked students to explain how they solved the problem in 
the majority of segments, Teacher 3 asked students to provide further explanation in nearly 
all segments, whereas the other two teachers requested further explanation in about half the 
segments (differences between teachers are statistically significant, χ2[2, N = 66] = 17.04, p < 
.001). Differences between teachers also appeared in how they responded to explanations that 
were correct and complete versus explanations that were not (that is, explanations that were 
ambiguous, incomplete, or incorrect). Teachers 1 and 3 responded similarly for all 
explanations, whereas Teacher 2 asked for further elaboration mainly when students’ initial 
explanations were not correct. 

                                                
2 For more in-depth discussion of how teacher participation supported students in elaborating their thinking 
during class discussions, see Franke et al., 2007. 
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Table 10 

Teacher Participation During Whole Class Discussions and Pairshare  

 Whole classa  Pairshareb 

Behavior Teacher 1 Teacher 2 Teacher 3  Teacher 1 Teacher 2 Teacher 3 

Asks student to explain 1.00 1.00 .96  .50  .71 .90 

Requests further 
explanation  

.46 .50 .93  .31 .06 .31 

 Initial explanation is  
 correct and complete  

.43 .29 .92  —c —c —c 

 Initial explanation is 
 not correct/complete 

.48 1.00 .93  —c —c —c 

aProportion of whole-class segments. 
bProportion of visits to pairs in which teacher engaged in this behavior. 
c Does not apply to pairshare; teachers’ requests for explanation did not occur after an initial explanation. 

In the segments during which the teacher did not request further explanation from the 
student, teachers’ practices differed little across teachers. All three teachers repeated 
students’ answers or explanations, revoiced them, added something to them, or described a 
problem-solving strategy themselves. 

Closer examination of teachers’ practices during the whole-class segments shows the 
specific ways in which the teachers encouraged students to explain their thinking. 

Teacher 1. Teacher 1 tended to respond only briefly to incomplete explanations that 
were given in conjunction with correct answers. In the following typical interchange, Teacher 
1 asked a student to share how she solved the problem □ + 1 = 1 + 200. Teacher 1 repeated 
the student’s answer but did not address or ask about her explanation (line 5). While the 
student indicated that putting 200 in the box made the two sides of the number sentence 
equal, she did not provide either a computational or a relational explanation for the equality 
of the two sides, leaving it unclear as to the reason why she thought both sides were the same 
(line 4). 

1 T Okay [student], what do you think needs to go inside that box and why? 

2 S I think 200 is supposed to be in that box. 

3 T You think 200. Why do you think that? 

4 S I think 200 is supposed to be in the box because 200 on this side and 1 next 
to it equals 1 plus 200. 
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5 T Okay, so does it matter where I put … So you said, 200, right? 

6 S Yeah. 

In some segments, Teacher 1 probed ambiguous explanations to some extent but did 
not push the student to give a clear and complete explanation. In the following problem, for 
example, students were asked to decide whether the order of the numbers on the left side of 
200 + 1 = 200 + 1 influenced whether the number sentence was true (the concept of 
commutativity). Teacher 1 did not ask the student to explain her conception of numbers 
being “partners,” but instead asked enough questions to obtain an explanation that she (the 
teacher) believed she understood, which she then revoiced more completely. Although the 
teacher drew a link between the student’s partner idea and the equality of the number 
sentence, the student herself never made it clear exactly how she was linking the idea of 
partners to commutativity and to equality of the number sentence. 

1 T Okay, who wants to share out their answers? Who wants to share out? 
[Student]? 

2 S It doesn’t matter the way you put it because it still has a partner. 

3 T Oops, okay, hold on. 

4 S It doesn’t matter the way you put it because it still has a partner. 

5 T Oh! What has a partner? What are you talking about? 

6 S The numbers. 

7 T Could you explain what numbers you are talking about? 

8 S 200 and the ones. 

9 T One more time. 

10 S 200 and one and the one. The 200 and the 1. 

11 T 200 and the 1 like this are partners? 

12 S The 1 and the 1 are partners and the two [200’s?] are partners. 

13 T Oh, okay, I see what you are saying. So the 200 and the 200 are partners and 
the 1 and this 1 are partners. Is that what you are saying? So it doesn’t matter 
which way. These ones are still partners. They are the same. These two 
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hundreds are partners. They are still the same. So either way we do it, it’s 
still the same on both sides. True? 

When students had difficulty with the problem and had trouble voicing an explanation, 
Teacher 1 either called another student to help or stepped in herself to direct the student to go 
in a certain direction with the problem. In the following problem in which students had to fill 
in the blank in 50 + 50 = 25 + □ + 50, the student sharing at the board obtained an incorrect 
answer (50) and had trouble explaining his thinking. Teacher 1 directed the student’s 
thinking and gave him little opportunity to respond or explain. She asked bundles of 
questions without pausing for the student to answer (line 7). Rather than probing his thinking, 
Teacher 1 took control of the interchange, asking the class whether his suggested answer was 
correct (line 9). In the end, the student never did explain what he meant by a pattern, how he 
was thinking about the numbers as partners, or even how he arrived at his incorrect answer. 
Thus, there were few clues as to how he was thinking about the problem. 

1 T Who would like to tell me what goes inside that box and you need to explain 
it in front of the class. [Student]? What goes inside that box? 

2 S I think 50. 

3 T You think 50? Go ahead and write 50 and then show us how you know that. 

4 S I know because it has a pattern. So these (unclear). 

5 T Doesn’t need to have a pattern? What do you mean? 

6 S Like it doesn’t need to have a partner (unclear). 

7 T Well, take a look. Karen helped us. 50 plus 50 is 100. So isn’t this side 100? 
Can I write that? Do you agree? Okay, so how can we get to the same 
amount as 100 on that side? How do you know that that side is the same as 
100? Can you show us by adding or by some sort of strategy to show us how 
you got 50? 

8 S 50 plus 50 is 100. 

9 T So this 50 plus this 50 you said is 100. What about the 25? Are both sides the 
same? 

10 Class No. 

11 T I see this 100 has a partner but what about the 25? It doesn’t have a partner, 
does it? So can this answer here be 50 in the box? 
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12 Class No. 

13 T No. Did someone else think differently?  

Teacher 2. In some respects, Teacher 2’s style of interacting with students was similar 
to that of Teacher 1. When students’ explanations were correct, Teacher 2 asked few 
questions about them. In the following typical interchange, the student provided a correct 
computational explanation for the answer for the problem 14 ÷ 2 = (3 x □) + 1. Although the 
student could have explained more completely, especially making explicit how the answer 
(two) would make the right hand side of the number sentence equal to seven (line 4), Teacher 
2 did not address this issue. Unlike Teacher 1, however, Teacher 2 invited other students  
to share their work and thinking even when the student sharing gave a correct explanation 
(line 5). At her invitation, another pair volunteered their strategy and did share it. 

1 T Okay [pair of students], do you want to come up and tell us how you solved 
number one? Remember that you need to make sure your audience is 
listening and that they can hear you. 

2 S The answer is 2. 

3 T Okay, the missing number is 2? 

4 S Because 2 (unclear). Because 7 times 2 is 14 so if that equals 7 this side has 
to equal 7. 

5 T Okay. So is there anyone who disagrees with [pair of students’] explanation 
on how they solved number one? Wow. Let’s give them a silent round of 
applause. Okay. Thank you boys. Well said. Is there anyone who worked this 
problem out different? 

Like Teacher 1, Teacher 2 probed explanations only when they were unclear. She 
prompted students to go in a particular direction when they had trouble explaining. In the 
following problem, a pair of students had difficulty explaining why they thought the answer 
to 14 ÷ 2 = (3 x □) + 1 was 2. Teacher 2 did not push these students to explain their “tally” 
strategy or how they arrived at their answer. Instead, she provided hints for the students to 
help them explain how to solve the problem (lines 7, 11) and eventually invited other 
students to help out (line 14). 

1 T Okay, tell us what you are doing right now. 

2 S1 We are using the tally strategy. 

3 T Okay, you are using the tally strategy. Why do you have fourteen tallies? 
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4 S1 14 divided by 2 is 7. 

5 T Okay, so your quotient is 7. 

6 S2 And there’s seven groups. 

7 T Okay, so how does that help you? How does knowing that 14 divided by 2 
help you? I’m sorry. How does it help you to know that 14 divided by 2 is 7? 
How does that help you solve number one? 

8 S2 Because we counted by two’s. 

9 T Okay. 

10 S1 It’s divided by 2. 

11 T But how does it help you knowing that 14 divided by 2 is 7? Look at number 
one. Now you solved the left hand side of that problem. Now you know that 
the left side is seven. The answer to, the quotient, on the left hand side is 7 
and how does that help you with the right hand side, with that missing 
number that you are looking for? 

12 S2 The left side …  

13 S1 7. 

14 T Is there anyone out in the audience that can help out? 

Teacher 3. In contrast to the other two teachers, Teacher 3 “unpacked” student work 
and explanations whether they were clear and correct or not. In the following example, 
Teacher 3 asked multiple questions of a student who gave a correct answer and explanation 
for the problem 11 + 2 = 10 + □. Through her questioning, Teacher 3 was able to uncover 
details of students’ thinking. Furthermore, she was successful in pushing him to explain not 
only the computational strategy he was using (adding the numbers on the left hand side and 
subtracting 10 from the total) but the process he used to confirm that the answer 3 was 
correct (adding the two numbers on the right hand side to make sure that the total was the 
same as the total on the left hand side). Like Teacher 2, she invited other students to share 
their strategies, even though this student’s answer and explanation were correct. 

1 T Okay, let’s lift up your papers. One, two, three. And I see a lot of people put 
the number 3 in here. Okay. … Okay, [student], would you like to come up? 

2 S I put 11, then I put 2. And I added the 13, and I put zero here. I take away 
(unclear). 
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3 T You want to do it again? Write a little bit bigger, please. 

4 S I put 11 here, put a 2 right here, then I plussed it, and it was 13. I put take 
away… (unclear) take away [holds fingers up]. I write 13 right here. I put 
right here a caret and put 13. I put here a 13. Three, 13 take away, take away 
(unclear) and then I minus. I minus 10. And then (unclear). 

5 T Wow. Okay. This is really interesting. Okay, let’s look at this. Does 
everybody understand how you got 11 plus 2 equals 13? 

6 Class Yes. 

7 T Okay. Why did you minus 10? And where did you get that 10 from? 

8 S Cause on the 3 I added first … I went 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
(unclear). 

9 T There. Okay, does anyone see that connection? 

10 Class Yes. 

11 T  So he adds 11 plus 2. He adds this side together to get 13. And the way for 
him to find this unknown is he takes away? 

12 Class 10. 

13 T He takes 10 away. So 13 minus 10 equals 3, and he counted up. Okay, is 
there another way that someone else found that is different from his answer? 

Teacher 3’s interaction when a student obtained an incorrect answer was also much 
different from that of the other two teachers. As can be seen in the example below, Teacher 3 
engaged in a lengthy process of uncovering the student’s reasoning, generating a correct 
strategy, and making sure that the student understood the correct strategy. When the student 
did not know how to handle the multiple operations in the problem 4 + 9 = 5 x 3 – 2 and 
simply omitted the -2 to come up with the answer that the number sentence was false, 
Teacher 3 asked him to explain his strategy, pointed the student to the omitted - 2 (lines 9, 
11), and led the student through the correct calculations until he saw the that “the equation 
balanced.” 

1 T  … Okay, [Student] you thought it was false. Can you explain what you 
thought? Do you still think it’s false now that she did it? 

2 S Yeah. 
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3 T You still think it’s false?  

4 S I thought it was false because 4 plus 9 is 13, and 5 times 3 is 15. 

5 T Okay. 

6 S Those two do not match. 

7 T Okay, say it one more time. 4 plus 9 is 13. 

8 S And 5 times 3 is 15. 

9 T Is 15? You think it makes 15? You wrote 5. Write 15 on the bottom. Okay. 
So do you guys understand why [Student] thinks it’s false? … Because he’s 
looking at it like this. He says 4 plus 9 … Okay, so [Student] said 4 plus 9 is 
13. Five times 3 is 15. That’s not the same number, so it’s false. Okay, I can 
agree with that. [Student], what about the minus two? What did you do with 
that? 

10 S Oh! 

11 T Did you see the minus two? 

12 S I thought because 5 times 3 that’ll make it 15 because 5 times 3 take away 2. 

13 T So it doesn’t make sense? Okay, so what could [Student 1] do? What could 
be the next step for [Student 1]? [Student 3], what can be the next step? 

14 S2 15 take away 2 equals 13. 

15 S Because I’ve never done three … 5 times 3 take away 2. 

16 T This is the first time you’ve done this. Okay, so while we continue on to 
operate the different symbols, we can continue on with the math. 

[Teacher then leads the student through the correct procedure until he obtains the correct 
answer and agrees that the equation balances.] 

In summary, Teacher 3 showed that she valued student participation and having 
students explain their thinking. Teacher 3’s encouragement of student participation in the 
whole class is reflected in the volume of student talk when giving explanations: an average of 
147 words per student who gave explanations compared with 58 and 41 words for Teacher 1 
and Teacher 2, respectively. Not only did more students in Teacher 3’s class give 
explanations than in the other two classes, they spent more time explaining when they did so. 
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Differences Between Classrooms: Teacher Participation During Pairshare 

Teachers differed in their patterns of interaction with pairs. Teacher 1 interacted with 
pairs during 18% of pairshare opportunities, compared to 35% and 40% for Teachers 2 and 3, 
respectively, χ2(2, N = 210) = 11.13, p = .004. Furthermore, as can be seen in Table 10,   
teachers differed markedly in their encouragement of student explaining during pairshare. 
Teacher 3 asked or reminded students to explain to each other or to her in most visits with 
pairs, Teacher 2 did so in the majority of visits, and Teacher 1 did so in half of her visits, 
χ2(2, N = 62) = 8.74, p = .013. Table 10 also shows that all three teachers tended not to ask 
students to elaborate further on their explanations during pairshare. Teachers 1 and 3 tended 
to do so more than Teacher 2, χ2 (2, N = 66) = 5.20, p = .07. 

Teacher 1. Teacher 1 responded minimally to students’ work during pairshare. When 
she did ask questions to prompt students to explain why they provided a specific answer, she 
did not push them to give a clear explanation. When students provided incorrect answers, she 
did not address their errors during pairshare time. She never once asked students in a pair to 
explain to each other. 

Teacher 2. Although Teacher 2 did not ask questions of students when their answers 
were correct, she engaged in lengthy interactions when it appeared that students were 
proceeding incorrectly or did not know how to proceed. In each case, she asked questions 
that provided hints about solving the problem (e.g., “So remember, we always ask ourselves 
which of the two sides is complete. The left side or the right side?”). At the end of her 
interaction with every pair, she directed the students to explain to each other. 

Teacher 3. In contrast to the other two teachers, Teacher 3 engaged with students both 
when students’ work was correct and when it was incorrect or ambiguous. When students’ 
answers were correct, she asked students to explain how they obtained their answers (“Can 
you explain to me what you did here?”), asked whether both students agreed on the answer 
and approach, prompted students to talk about their strategies with each other, and sometimes 
asked if students could come up with another strategy. When a student’s explanation was 
ambiguous, she asked questions to prompt the student to clarify his or her explanations and 
then directed the student to explain to his or her partner. 

Teacher 3 engaged in three additional behaviors to stimulate students explaining to 
each other, behaviors that were unique to her classroom. First, she called attention to 
discrepant answers in a pair and modeled how students might provide explanations to each 
other to resolve them. For example, when two students produced discrepant answers about 
whether a number sentence was true or false, she asked each student what he or she thought 
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the answer was (lines 1, 3), and illustrated how they should proceed to address the 
discrepancy: 

1 T What do you think? 

2 S1 I think it’s true. 

3 T You think it’s true? [to the other student] What do you think? 

4 S2 I think it’s false. 

5 T You think it’s false? Okay, I want you two to talk about it. ’Cause she says 
it’s true. So can you explain to him why you think it’s true? And then you 
explain to her why you think it’s false. You gotta watch her. No, let her 
speak first. 

Second, she modeled how students should explain in the context of monitoring each other’s 
work and understanding (line 5). When one student voiced an answer, she asked the other 
student whether he or she agreed (“Would you agree with that?”) and asked whether students 
understood each other (“Do you understand what she’s saying?”) and whether they could 
explain to each other (“Can she understand, can she explain it to you?”). Third, she made it 
explicit that students should not merely accept another student’s answer but should be able to 
explain it (“Are you just going to go with them or can you explain it too?”). 

In summary, during pairshare, Teacher 1 rarely gave explicit direction or 
encouragement of student explaining. Teacher 2, in contrast, gave general directives to each 
pair to explain and share. Teacher 3 encouraged student participation further by modeling 
how to share and explain in different situations, and by prompting students to take 
responsibility for explaining their thinking. 

Conclusions 

The results of this study strongly suggest a link between teacher participation and 
student participation. While all teachers asked students to share and to explain their thinking, 
they implemented these practices to different degrees and in different ways. The differences 
in teacher practices corresponded to differences in student participation and student 
achievement across the three classrooms. 

Teacher 3 did the most to elicit students’ explaining, by inviting students to explain and 
elaborate on their explanations whether their explanations were initially correct or not, and 
by directing students not to accept others’ answers but to be able to explain why it is correct. 
Teacher 2 was quite explicit about directing students to share their thinking in both the 
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pairshare and whole-class contexts, but tended to engage with students primarily when they 
ran into trouble (either producing an incorrect answer or strategy, or having difficulty 
articulating a clear explanation). In these cases, Teacher 2 prompted students to go in specific 
directions that would help them complete an accurate explanation. Teacher 1 was least likely 
to explicitly encourage students to share their thinking. In interchanges with students during 
pairshare, she never asked students to share their thinking with each other. During the whole 
class discussions, she invited alternative answers and strategies only when the student 
sharing at the board ran into difficulty. She tended to take control of interchanges with 
students, asking them bundles of questions that left students little opportunity to reflect or 
respond. So, compared with the other teachers, Teacher 3 gave students limited opportunities 
to elaborate on their explanations and, especially, to arrive at correct explanations after 
having given incorrect, incomplete, or ambiguous explanations. 

These differences in teacher practices were reflected in student participation and 
achievement. Teacher 3’s students explained the most, gave the most correct explanations, 
engaged with each other the most, and scored the highest on the achievement measures. 
Teacher 2’s students were likely to explain correctly when they did provide explanations, and 
scored the second highest on the achievement measures. Teacher 1’s students were least 
likely to engage with each other and were more likely to give ambiguous explanations or 
propose faulty strategies than to offer correct explanations when they did share their thinking. 
These students scored the lowest on the achievement measures. 

These results, then, show the importance for student participation and learning of 
teacher practices in terms of establishing norms for student engagement, encouraging 
students’ sharing of their thinking, and encouraging students to elaborate on their thinking. 
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