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Abstract 

Measuring school and classroom environments has become central in a nation-wide effort to 

develop comprehensive programs that measure teacher quality and teacher effectiveness. 

Formulating successful programs necessitates accurate and reliable methods for measuring 

these environmental variables. This paper uses a generalizability theory framework to 

compare and contrast four widely used approaches for accounting for measurement error in 

school and classroom level variables. Then, this paper uses two empirical examples to 

demonstrate how each of these approaches lead to different conclusions about measurement 

precision, and influences the conclusions about relationships between the environmental 

variables and policy-relevant outcomes. Additionally, this paper shows how one widely used 

model may misrepresent the structure of the data in many survey administration scenarios. 

Introduction 

Developing comprehensive programs that measure teacher effectiveness is one of the most 

pressing policy issues in education today. The development of these programs has been catalyzed 

by a growing research consensus (Nye, Konstantopolous, & Hedges, 2004; Rivkin, Hanushek, & 

Kain, 2005; Rowan & Correnti, 2009) that effective teachers can make meaningful differences in 

the learning trajectories of students; the injection of large amounts of federal funding through 

initiatives including Race to the Top; and the technological advances that have enabled districts 

to track and store large amounts of data on student achievement. Measures of school and 

classroom environments are frequently included as key features of programs to measure teacher 

effectiveness. 

Data about school and classroom environments is often collected through surveys 

administered to teachers and students, who function as raters of the environments in which they 

work and study. In such a measurement scheme, data from a lower level (individuals) are 

aggregated to establish higher level constructs that allow for inferences to be made about group 

qualities (Kozlowski & Klein, 2000). This process for constructing group-level variables is 
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widely studied in organizational psychology. Chan (1998) describes group variables that emerge 

in this way as being elemental composition variables. 

In 2009, the Bill and Melinda Gates initiated The Measuring Effective Teaching (MET) 

project, one of the largest efforts in the United States to assemble an empirical research base to 

describe effective teaching. MET is based largely on information collected through five different 

sources. These include the Tripod Survey, developed by Ron Ferguson, which measures the 

quality of classroom learning environments, and the Working Conditions Survey (WCS), 

developed by the New Teacher Center, which measures the quality of school working conditions 

(Bill & Melinda Gates Foundation, 2010). 

Information about classroom and school environments can be used for a variety of 

purposes. It can be used as a direct measure of teacher or school quality. For example, Memphis, 

Tennessee bases 5% of a teacher evaluation on student surveys. By 2013, 10% of teacher 

evaluation in Chicago public schools will be based on student surveys. (Butrymowicz, 2012). In 

New York City, teacher and parent surveys about the school environment can account for up to 

15% of a school’s score on its annual Progress Report. (“NYC School Survey”, n.d.) 

Environmental data can also predict important outcomes, such as student achievement and 

teacher retention. Preliminary results from the MET project, for example, demonstrate significant 

relationships between student’s perceptions of classroom environment and estimates of teacher’s 

value added (VAM) scores. (Bill & Melinda Gates Foundation, 2010) Ladd (2011) discusses 

how links between teacher mobility and working conditions can be used to develop and test 

teacher retention policies. Better understanding how targeted improvements in working 

conditions may improve retention is particularly critical for schools serving high-poverty, low-

achieving student populations, where teacher turnover rates may be as high as 50% (Ingersoll, 

2001). 

In each of these applications, understanding the validity and reliability of the measure of 

school or classroom environment is essential. Recent work (Lüdtke, Marsh, Robitzsch, 

Trautwein, Asparouhov, & Muthén, 2008; Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; 

Raudenbush & Sadoff, 2008; Shin & Raudenbush, 2010) has demonstrated that quantifying 

errors in measures of school and classroom environments has immediate consequences for 

assessing how well groups can be distinguished based on individual perceptions (James, 1982). 

As one example, Wei and Haertel (2011) note that standard errors of measurement are often used 

to make “margin of error” adjustments in order to determine whether a school or classroom is 

meeting a performance standard. Differences in the perception of reliability can lead to different 

determinations of whether or not a school or classroom is meeting performance standards. 
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There are also consequences for assessing how strongly school and classroom climate 

relate to external variables. Raudenbush, Martinez, Bloom, Zhu, and Lin (2011) point out that 

without a reliable and valid measure of the environment, in a situation such as that described by 

Ladd (2011), it would be impossible to determine whether strategies that fail to improve teacher 

retention failed because they improved working conditions but did not improve retention, or 

because they did not improve working conditions in the first place. 

One area that has gone relatively unexplored is an explicit consideration of the sources of 

measurement error that may emerge under different data collection designs, and how these 

sources of error impact judgments about reliability and validity. 

This article investigates these issues for five commonly used designs for studying 

classroom and school environments. Generalizability theory (Cronbach, Gleser, Nanda, & 

Rajaratnam, 1972) is used to examine the designs within a unified framework for examining the 

sources of error variance and estimating the reliability of the resulting indicators. Finally, the 

article explores how different conceptions of error may influence the strength of the relationship 

between aggregate indicators and external variables. 

Conceptual Framework 

Table 1 describes five commonly used designs for quantifying error variance in measures 

of school and classroom environments. Design A is a two level hierarchical model, where people 

are nested in groups. In a situation where students are rating classroom environment, this would 

mean that each student assigns a single rating to describe the overall environment of their 

classroom. A particular classroom’s score is determined by averaging those individual ratings 

together. In a situation where teachers are rating school working conditions, it would mean that 

each teacher provides only one rating of working conditions, and a school rating is obtained by 

averaging across those ratings. Design A is technically configured as a one-way random effects 

ANOVA (Raudenbush & Bryk, 2002; Shrout & Fleiss, 1979). This design is referred to in 

Marsh, Lüdtke, Robitzsch, Trautwein, Asparouhov, & Muthén, (2009) as a “manifest-manifest” 

design because it assumes that both the individual ratings and the average across those ratings 

are error-free. 
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Table 1 

Descriptions of Five Commonly Used Designs for Quantifying Error Variance in Measures of School and 

Classroom Environments 

Model Description Selected References 

Measurement 

error 

Sampling 

error 

Design A People nested in groups, 

each person provides one 

rating  

 Raudenbush & Sadoff (2008) 

 Marsh et al. (2009) 

No No 

Design B People nested in groups, 

each person provides one 

rating 

 Raudenbush & Sadoff (2008) 

 Marsh et al. (2009) 

 Lüdtke et al. (2008) 

No Yes 

Design C People nested in groups, 

each person answers 

several items. The same 

items are administered to 

all people. 

 Marsh et al. (2009) 

 Lüdtke et al. (2008) 

 Preacher, Zyphur, & Zhang 

(2010) 

 Kane & Brennan (1977) 

Yes Yes 

Design D People nested in groups, 

each person answers 

several items. The same 

items are administered to 

all people. Items are 

random. 

 Brennan (2001a) 

 Kane & Brennan (1977) 

Yes Yes 

 

Design E People nested in groups, 

each person answers 

several items. Different 

items are administered to 

all people.  

 Bryk & Raudenbush (1988) 

 Raudenbush, Rowan, & Kang 

(1991) 

 Raudenbush & Bryk (2002) 

 Brennan (2001a) 

Yes Yes 

 

Design B also describes a two-level hierarchical design, with people nested in groups. 

Unlike Design A, Design B does not assume that the sample mean is an error-free measure of the 

population mean. Had a different group of raters been randomly selected, or a larger number of 

them, a slightly different observed mean rating would have been obtained. Marsh et al. (2009) 

refer to this design as a “manifest-latent” model that captures sampling error. 

In Design C, individuals do not provide a single rating of the environment, but rather, 

answer a set of survey items about their environment. For example, students answer 10 questions 

about classroom quality and the responses to these 10 items are averaged together to give a 

composite rating. Design C is a “doubly latent” model where the composite rating incorporates 

random measurement error as an additional source of variance (Marsh et al., 2009; Preacher et 
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al., 2010). Importantly, Design C treats the items as fixed and cross-classified; that is, it is 

assumed that the same survey items are administered to all individuals, regardless of group 

(classroom or school) membership. Kane and Brennan (1977) note that this design is technically 

configured as a mixed-effects split-plot ANOVA, where students or teachers are treated as 

random and items are treated as fixed. 

Design D is also a design with cross-classified items. Unlike Design C, however, this 

design incorporates random item effects—the specific items included on the survey are assumed 

sampled from a larger pool of items. These samples of items are administered to individuals 

across groups (classrooms or schools). In Design D, items are explicitly considered as sources of 

error variance. Kane and Brennan (1977) conceptualize this as a split plot random-effects 

ANOVA, with students or teachers random and items random. 

Finally, Design E is a three-level hierarchical model, with items nested in people, and 

people nested in groups. Notably, in this model, the items are not cross-classified but nested. 

Substantively speaking, this corresponds to a situation in which every individual receives a 

different set of items from every other individual. 

Each of these five designs makes a different set of theoretical assumptions about the nature 

of the data, depending on whether they treat items as fixed or randomly sampled, and as cross-

classified or nested. Designs A, B, and C treat the items as fixed. Certainly, there are many 

sensible reasons why items may be considered as fixed when interest centers in drawing 

inferences for a particular set of items, or where the pool of possible items is relatively small 

(Webb & Shavelson, 2005). In the case of a survey about classroom quality, it may be that there 

are only specific dimensions of classroom quality that are of interest, such as instructional clarity 

and organization, and the survey items thus constitute a “census” (Bollen & Lennox, 1991) of 

items, rather than a sample. In a working conditions survey, there may be a limited number of 

aspects of school leadership that are of interest—support for discipline, communication of vision, 

etc. 

Designs D and E on the other hand treat the items as randomly sampled, thus assuming that 

there is an infinite (or large) number of items that could have been included, each measuring 

school or classroom climate in the same way. De Boeck (2008) points out that random items are 

of particular interest in situations where items are generated by cloning existing items, or where 

it is beneficial to have large pools of potential items available for inclusion on a particular test or 

survey form. In many surveys of the school or classroom environment, the items occupy a gray 

area, where there is some evidence for treating them as fixed, and some evidence for treating 

them as random. Kane and Brennan (1977) compare and contrast a variety of designs with 
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students nested within classrooms, crossed with items. They explore designs where both items 

and students are treated as random, where items are treated as random and students treated as 

fixed, where items are treated as fixed and students treated as random, and where both are treated 

as fixed. Kane and Brennan (1977) note that while it is usually advisable to treat both students 

and items as random, there are times where a design that treats items as fixed may be 

appropriate. 

Designs C and D treat the items as crossed with people. All survey takers respond to the 

same set of items, regardless of school or classroom membership. On the other hand, Design E 

treats the items as nested within people. This means that it is assumed that each survey taker 

responds to a unique set of items. While the hierarchical model represented by Design E is 

common in education research, it represents a misspecification of the structure of the data in the 

case of survey administrations, where items are typically crossed with people (Kane & Brennan, 

1977). Raudenbush, Rowan, and Kang (1991) explored the measurement of school climate using 

Design E, but did not specifically justify treating the items as nested, rather than crossed. Thus, a 

pressing question with Design E is, how robust are the inferences drawn to this misspecification 

of the data structure? 

Though emerging from separate research traditions, the five designs can be understood 

under a common lens through the perspective of generalizability theory. First outlined by 

Cronbach et al. (1972), generalizability (G) theory is a flexible framework that can be used to 

assess the accuracy of both individual and group distinctions from a unified perspective. G-

theory acknowledges that measurement error comes from a variety of sources allowing for a 

direct comparison of the relative magnitude of each source (Shavelson, Webb, & Rowley, 1989). 

This framework offers a consistent lens for examining the implications of the different 

conceptions of error variance in the five designs described above, specifically as they pertain to: 

1) the reliability of school and classroom climate aggregates and 2) the relationships between 

these aggregates and external variables or indicators. 

Reliability of Group Means 

Two different types of reliability coefficient may be of interest, depending on whether the 

unit of analysis is the group or the individual. The reliability of group means would be useful for 

assessing how well classrooms can be distinguished based on individual student ratings, or how 

well schools can be distinguished based on individual teacher ratings. By comparison, when the 

unit of analysis is the individual the reliability of individual ratings is of interest. In that situation, 

it is important to understand how much error there is in student or teacher ratings of their 

classrooms or schools. In the current study, the primary units of analyses are respectively the 
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classroom and the school, and so interest centers on the reliability of the group means under 

these five scenarios. However, this study also includes estimates of Cronbach’s alpha (Cronbach, 

1951), an individual-level reliability coefficient, since that coefficient is frequently reported as an 

assessment of the reliability of group means. While it is often assumed that high values of alpha 

imply high group-mean reliability, this is not always true. Brennan (1995) explored the 

relationship between the reliability of group means and the reliability of individual scores and 

outlined a series of situations where group means can be less reliable than individual scores and, 

importantly, vice versa. Indeed, if the unit of measurement is the group, it may be theoretically 

desirable to have low variance within-groups. As Bliese (2000) points out, in the ideal scenario 

involving aggregated measures, there would be no within-group variance at all—and thus, the 

implied reliability of individual ratings would approach zero. 

By quantifying the various sources of error that contribute to observed variance, G-theory 

also makes it possible to answer policy-relevant questions such as the minimum number of 

individuals per group that need to be surveyed in order to maintain acceptable group-mean 

reliability. For example, classroom and school sizes can vary widely, and understanding how that 

variation in size impacts the reliability of aggregates obtained for those clusters is imperative if 

these indices are to be interpreted for practical use. Likewise, it may be important to ask how 

many items need to be administered. Improved understanding of the components of 

measurement error can help reduce response burden and improve information quality. 

Relationships With External Variables 

Differing conceptions of error and reliability can also have implications for understanding 

the relationship of group means with external variables. For illustration, this study uses both 

ordinary least squares regression and multilevel contextual effect models when the relationship 

between an outcome and a predictor is hypothesized to differ across levels of aggregation. 

Contextual effects have a long history in the social sciences (Iversen, 1991; Raudenbush & 

Bryk, 2002; Shin & Raudenbush, 2010) and are often of interest from a policy perspective, as 

they permit to address questions involving a comparison of the predictive power of indicators at 

the individual and group levels. For example, a contextual effects model might be used to assess 

the impact on teacher retention of school environment indicators as perceived by individual 

teachers and in the aggregate as reported by all teachers across the school. Similarly we might 

investigate how aggregate measures of classroom environment, (in contrast to or beyond 

individual students’ perceptions of classroom environment) influence student achievement. 

This article applies the models of measurement and sampling error of Designs A-E to two 

empirical examples involving a widely used student survey of the classroom environment, and a 
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teacher survey of working conditions. In doing so, this article addresses the following research 

questions: 

 How do the differences in the treatment of error variance in each design impact the 

estimated reliability of aggregated and individual level variables? 

 How does variation in the number of items and the number of people impact estimates 

of group-mean reliabilities in each design? 

 How do the different models impact the determination of relationships between 

aggregated variables and external variables? 

Methods 

Sample and Data Sources 

The Tripod Classroom Environment Survey. The Tripod Survey assessment (Ferguson, 

2010) is designed to assess seven dimensions of teaching practice, often referred to as the “Seven 

C’s”: Caring, Captivating, Conferring, Clarifying, Challenging, Controlling, Consolidating. This 

version of the Tripod Survey contains 36 items, and was administered in an urban school district 

in California in 2010. All items have 5-point scales (1=totally untrue and 5=totally true). For 

illustration purposes, this analysis focuses only on the 8 eight items contained in the Challenging 

scale, and only on classrooms with more than 5 students. The Challenging scale is intended to 

measure the degree to which the classroom supports “academic rigor”. An example item is, “My 

teacher wants us to use our thinking skills, not just memorize things.” The sample used in this 

analysis contained 5,508 students nested in 285 classrooms. The average classroom size was 

approximately 17 students, and the range was from 5 to 33 students. The external outcome 

variable is an evaluation report of the teacher’s ability to create and maintain and effective 

environment for student learning based on administrative observations. All teachers are 

evaluated on a 4-point scale, with scores of 3 or 4 indicating that they have met a particular 

standard. Observation data was available for 135 teachers. 

The Working Conditions Survey. This survey was designed to assess teaching conditions 

at the school level (New Teacher Center, 2008). The sample data comes from the 2008 survey, 

administered to both teachers and principals at schools in K-12 public and charter schools across 

the state of North Carolina. For this analysis, only surveys completed by teachers were 

considered, resulting in a data set with 88,936 individual teacher cases in 2,423 schools. Though 

the average school size is approximately 37 teachers, schools in this analysis range from 5 

teachers to 146 teachers. The survey measures five theoretical constructs: Time, Decision 

Making, Leadership, Professional Development, and Facilities & Resources. For illustration, this 

study focuses on the eight items included in the Decision Making scale. The Decision Making 
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items ask teachers to rate how large a role teachers play in a variety of decisions that impact 

classroom and school practices. For example, “Teachers are centrally involved in decision 

making about educational issues.” All items are judged on a 5-point scale (1=no role at all, and 

5=the primary role). In the absence of other external indicators in the dataset, the outcome 

variable is another survey item asking teachers to rate their level of agreement (1=strongly 

disagree to 5=strongly agree) with the statement, “Overall, my school is a good place to teach 

and learn.” 

Analytic Methods 

Reliability of group means. In order to address the first research question, we first obtain 

variance component estimates for Designs B, C, D, and E.
2
 Table 2 summarizes the variance 

components estimable for each design. In Design B the variance of the school or classroom score 

effects is denoted   
  and is considered true variance reflecting the extent to which schools or 

classrooms differ from one another, on average. The remaining variance denoted by        
  

represents residual variance from sources not systematically incorporated into the model—

specifically, the confounded variance of people, a person-group interaction, and random error. 

Variance components for Design B were estimated using the nlme package in R (Pinheiro, Bates, 

Saikat, Sarkar, & the R Development Core Team, 2012; see Appendix A for additional details on 

the estimation of variance components for several designs). 

                                                 

2
In Design A, all variance is treated as true variance, and the model is assumed to be measurement error and 

sampling error free. 



 

 

Table 2 

Estimable Variance Components and Their Associated Reliability Coefficients and Standard Errors for Designs B Through E 

Design B 

 

Design C 

 

Design D 

 

Design E 

Component Description 

 

Component Description 

 

Component Description  Component Description 

  
  Variance of 

groups 
  

  Variance of groups   
  Variance of groups   

  Variance of groups 

       
  Conflated variance 

of people, and the 

interaction of 

people and groups, 

and residual 

variance 

     
  Conflated variance of 

people, and the 

interaction of people 

and group 

     
  Conflated variance of 

people, and the 

interaction of people and 

group 

     
  Conflated variance 

of people, and the 

interaction of people 

and groups 

           
  Conflated variance of 

person-item 

interaction, person-

item-group triple 

interaction, and 

residual variance 

  
  Variance of items               

  Conflated variance 

of items, person-item 

interaction, person-

item-group triple 

interaction, group-

item interaction, and 

residual variance 
     

  Variance of interaction 

of group and items 
   

  Variance of interaction of 

group and items 

 

             
  Conflated variance of 

person-item interaction, 

person-item-group triple 

interaction, and residual 

variance 

   

Reliability Coefficients and Standard Errors  
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   √
     

 

  

 
   

 

  

 
         

 

    

 

 

   √
     

 

  

 
   

 

  

 
  

 

  

 
           

 

    

 

 

   √
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In Design C items are recognized as contributing to score variance allowing to tease apart 

some of the confounded error in Design B. Score variance here can be decomposed into four 

main sources: Variance between school or classrooms is denoted   
 . Second,      

  is the 

confounded variance attributed to people, and the interaction of people and groups. Thus, some 

people may rate their schools higher or lower than others in the same school, but because each 

person rates only one school or classroom, it is not possible to determine whether this represents 

true differences in people's opinions, or if they reflect the quality of a match between people and 

their schools/classrooms. Third,    
  represents the group-item interaction. Substantively, this 

describes the extent to which schools or classrooms differ in their relative standing across items, 

averaged over people (i.e. classrooms or schools may have higher ratings on some items than 

others). Lastly,          
  represents confounded person-item and person-group-item interactions, 

and residual variance. Variance components for Design C were estimated in Mplus version 6.11 

(Muthén & Muthén, 2010). 

Design D yields the four variance components described in Design C and a fifth 

component,   
 , representing the main effect of items. This describes the extent to which some 

items are rated more highly than others, averaging across people and groups. For Design D, 

variance components were estimated using urGENOVA (Brennan, 2001b). 

Design E yields only three variance components. Although items are included in this 

model, they are nested within people and so their variance is confounded with other sources. 

Design E yields a main effect variance of schools/classrooms, denoted   
 .      

  represents the 

confounded variance attributed to people, and the interaction between people and groups. 

              
  represents the confounded variance of items, person-item interaction, person-group-

item triple interaction, group-item interaction, and residual variance. It is worth noting that 

several of the variance sources that are separable in Design C and D are confounded into a single 

residual term in Design E. Variance components were estimated using the nlme package in R. 

Once variance components have been estimated, it is possible to estimate group-mean 

reliability coefficients for each design. All of these coefficients are of a general form that 

represents a ratio of true score variance to true score plus error variance (Shavelson & Webb, 

1991). 

The formulas for the reliability coefficients that are implied by Designs B through E are 

presented in Table 2, along with the associated standard errors of measurement (Crocker & 

Algina, 1986). Design B results in a reliability index where the denominator contains the total 

variance of the mean—which is composed of the main effect variance of schools/classrooms and 

the residual variance averaged over the number of individuals per group. Design C averages the 
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person (within school/classroom) variance over the number of individuals per group, the 

variance of the school-item interaction over the number of items, and the residual variance over 

both the number of individuals and the number of items. 

Design D contains all of the variance components of Design C with one additional 

component, 
  
 

  
, in the denominator. Design E yields an index with the variance of items 

incorporated into the denominator, in the confounded variance term               
 , which is 

averaged over both the number of items and the number of people. 

As can be seen in the formulas, group-mean reliability is a function of the estimated 

variance components, the number of items     , and the number of individuals per group     , 

and thus, the reliability coefficients will vary depending on the size of the group and the number 

of items included. As such, the reliability coefficients presented in Table 2 were estimated for a 

range of group sizes and item counts. Standard errors will also vary depending on group size and 

number of items, and so all else being equal larger groups have smaller standard errors. The final 

reliability coefficient estimated was Cronbach’s alpha (Cronbach, 1951). Cronbach (2004) shows 

how alpha can be expressed: 

  
  

 

  
  

     
 

  

 

  
  and      

  represent variance between individuals and residual variance respectively, 

averaged over items (  ). This formulation makes apparent that the true-score variance included 

in  ,   
 , does not correspond to our unit of analysis if surveys are intended to measure properties 

of schools or classrooms. Moreover, alpha is dependent only on the number of items—and, thus, 

if the number of items is held constant, alpha will be constant, regardless of the size of the school 

or classroom. An infrequently acknowledged aspect of alpha is that it does not consider the 

clustered data structure. There are no variance sources here that are attributable to schools or 

classrooms. As such, even for within-group reliability, alpha is an inappropriate coefficient 

(Raykov & Penev, 2009). Nevertheless, alpha is presented here for reference because it is still 

frequently reported (inappropriately) instead of coefficients appropriate for aggregate indicators. 

Relationships with external variables. In order to address the second research question 

concerning the relationship between aggregated variables and outcomes of policy interest, two 

different types of regression models were used. For the Working Conditions Survey, a 

contextual-effects model was estimated using the nlme package for Designs A, B, D, and E, and 

using MPlus 6.11 for Design C. The contextual-effects model can be expressed 
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           (       )                (1) 

Where     is a grand mean,        is a group mean centered predictor,    is the group 

mean value of the predictor, and    and     are normally distributed error terms with mean 0. An 

important feature of the contextual effects model is that the two predictors,         and    , are 

orthogonal by design. The group-mean centered predictor is included in order to unconfound the 

between and within effects of the predictor on the outcome.     describes the fixed between-

effect of    on    , and     describes a fixed within-group effect. The difference between these 

effects,        , is referred to as a contextual effect; the effect of the group beyond the effect 

of the individuals within groups. The outcome variable used in this analysis is another survey 

item asking teachers to rate their overall opinion of the school. 

Frequently, the contextual effects model is used on the observed data    , and observed 

means,      Such analysis assumes that there is no sampling error, and no measurement error, a 

model consistent with Design A (Table 1). Because reliability is assumed to be perfect, Design A 

introduces bias into the estimation of     and     if measurement error exists. (Lüdtke et al., 

2008; Preacher et al., 2010; Raudenbush & Sadoff, 2008). One way of adjusting for 

measurement error in contextual effects models is to use the means of the Empirical Bayes 

posterior distributions for the independent variables as predictors (Shin & Raudenbush, 2010), 

These Empirical Bayes estimates for each group are essentially a reliability weighted average of 

an observed mean and a grand mean. Schools with low reliability borrow more heavily from the 

grand mean, resulting in what is commonly referred to as “shrinkage.” For Design B, adjusted 

means are estimated only for the schools, since the only source of error variance considered in 

that model is sampling variability. For Designs C-E, adjusted means are estimated for each 

teacher, as well as for each school. This is because these four designs assume there is individual 

level measurement error as well as sampling error (see Appendix B for more details on 

estimating adjusted contextual effects for several designs). 

For the Tripod survey, a regular ordinary least squares (OLS) regression was used with 

observation ratings of a teacher’s ability to create and maintain an effective learning environment 

as the outcome variable. OLS is used here because the outcome variable is measured at the 

classroom level, and so the relationship between the predictor and the outcome can only be 

impacted by group-level components (Preacher et al., 2010). Four different predictors were used 

to predict observation ratings: the observed classroom means (Design A), and bias-adjusted 

classroom means consistent with Designs B through E (Raudenbush & Sadoff, 2008). It is 

possible to get a rough sense of how different conceptions of error variance will influence 

regression parameter estimates in both the contextual effects model and the OLS regression. In 
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its simplest form (for one predictor, or for predictors uncorrelated), the slope parameter can be 

expressed: 

    
        

      
 

And the reliability-adjusted slope can be expressed 

   
   

 
         

       
 

 

 
    

Since the reliability,    ranges from 0 to 1, this means that the minimum value of    
   

is the 

observed fixed effect estimate,    . The more that reliability decreases, the greater the magnitude 

of the adjusted slope coefficient. Technically, these equations only apply to situations where all 

groups are the same size, and, thus, have equivalent reliabilities. However, in the general case, 

the reliability estimated at the harmonic-mean group size (Brennan, 2001a) can give a rough 

estimate of the extent of the disattenuation. 

In the contextual effects model, it is anticipated that both the within-group slopes and the 

between-group slopes will be disattenuated when adjusted values are used as predictors. In the 

OLS model, it is anticipated that the slopes will also be disattenuated. The extent of that 

disattenuation will be a function of reliability. 

Results 

How do the Differences in the Treatment of Error Variance in Each Design Impact the 

Estimated Reliability of Aggregated and Individual Level Variables? 

Table 3 shows the variance components for Designs B through E. For the WCS,   
  is 

substantial for all of the designs. In Design B, for example,   
  accounts for about 18% of the 

total variance. In Design C,   
  is still significant, but the percentage of variance due to schools 

in this model is much smaller—approximately 8%. Design C attributes approximately 30% of 

the variance to teachers within schools, and approximately 7% to the interaction of schools and 

items. In Design D, approximately 4% of the variance is due to schools. About 23% is due to 

teachers-within-schools, and approximately 30% of the total variance is due to items. The 

   
 component accounts for approximately 4% of the variance. In Design E, approximately 6% of 

the variance is between schools, and approximately 18% of the variance is between teachers-

within-schools. 
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Table 3 

Estimated Variance Components for Designs B Through E 

 Design B  Design C  Design D  Design E 

Survey Component Estimate  Component Estimate  Component Estimate  Component Estimate 

WCS 

  
  0.101    

  0.096    
  0.070    

  0.101 

       
  0.446       

  0.363       
  0.377       

  0.297 

  

    
  0.077    

  0.499                
  1.178 

  

          
  0.607     

  0.065   

                
  0.616    

            

Tripod 

  
  0.099    

  0.097    
  0.095    

  0.099 

       
  0.459       

  0.392       
  0.390       

  0.386 

  

    
  0.021    

  0.010                
  0.581 

  

          
  0.549     

  0.021   

 

  

             
  0.549   

  

For the Tripod Survey,   
  is also substantial for all of the designs. In Design B, 

  
  accounts for approximately 18% of the variance. In Design C, approximately 10% of the 

variance is attributed to classrooms. Approximately 40% is attributed to students-within-

classrooms, and approximately 2% is due to the classroom-item interaction,    
 . In Design D, 

approximately 9% of the variance is between classrooms, and approximately 36% is between 

students within classrooms (     
 ). Only approximately 1% of the variance is due to items. The 

classroom-item interaction, accounts for approximately 2% of the variance. In Design E, 

approximately 9% of the variance is between classrooms, and approximately 33% is between 

students-within-classrooms. 

Because it decomposes variance into the largest number of distinct components, Design D 

in particular makes for an important point of comparison between the WCS and the Tripod 

Survey. In this design, it is clear that there is a large difference between these two surveys in the 

amount of variance that is attributable to items (  
 ). Additionally, the    

  effect is larger in the 

WCS than in the Tripod Survey. 

Table 3 also shows that—for both surveys—the   
  component is equal for Designs B and 

E, but that the   
  components of Design C and D is slightly smaller than the   

 component from 

Designs B and E. The magnitude of that difference is equal to 
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Because the    
  effect is larger in the WCS, there is a larger difference between the   

  

estimates in the WCS than there is in the Tripod Survey (see Appendix C for more details). 

For both surveys, the estimates of      
  differ between Design C and Design E. In fact, the 

difference in the estimates of teacher variance between Design C and Design E is equal to 

     
 

  
 

Because the   
  and    

  components are larger for the WCS than for the Tripod survey, 

there is larger of a discrepancy in the estimate      
  between these designs for the WCS than 

there is for the Tripod (see Appendix C for more details). 

These differences in the magnitude of the   
  and    

 variance components have immediate 

implications for the estimated reliabilities under the different designs. Table 4 shows reliability 

estimates across a range of classroom and school sizes. The ranges of reliabilities presented in 

Table 4 show that, while larger groups can result in precise measurement, smaller groups can be 

highly unreliable. 

Table 4 

Group-Mean Reliability Coefficients for Designs B Through E Across a Range of Group Sizes 

Survey Design 

 

Group mean reliability 

 

 

Min group size Mean group size Max group size 

 

Cronbach's 

alpha 

WCS 

Design B 

 

0.531 0.854 0.970 

 

0.840 

Design C 

 

0.496 0.779 0.883 

  Design D 

 

0.303 0.442 0.487 

  Design E 

 

0.532 0.854 0.970 

         
 

Tripod 

Design B 

 

0.684 0.787 0.877 

 

0.872 

Design C 

 

0.666 0.765 0.854 

  Design D 

 

0.656 0.754 0.842 

  Design E 

 

0.683 0.787 0.877 

  Note: Group sizes for WCS are 5, 25 and 143, respectively. Group sizes for Tripod are 10, 17, and 33 

respectively. 
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For the WCS, the group-mean reliability estimated in Design C (  =.779 at the mean group 

size) is about 10% lower than the reliabilities in Designs B and E. The reliability coefficient for 

Design D, when items are treated as crossed and random, is nearly 50% lower than the other 

estimates, because the   
  and    

 variance components are relatively large in the WCS. 

For the Tripod, the reliability estimates are fairly consistent across all four designs. While 

the group-mean reliability estimated in Design C (  =.765 at the mean group size) is lower than 

the reliabilities in Designs B and E, it is only approximately 3% lower. The reliability coefficient 

for Design D, when items are treated as crossed and random, is only about 5% lower than the 

other estimates. This is because the   
  and    

 variance components are relatively small in the 

Tripod. 

Cronbach’s alpha, presented in the last column, is constant across all group sizes. This 

means that, for the small groups, alpha highly over-estimates reliability. In the WCS, alpha 

overestimates group-mean reliability in Designs B and E (at the mean group size). In the Tripod 

Survey, alpha over-estimates group-mean reliability for all designs in all but the largest groups. 

The group-mean reliabilities for Designs B and E are equal in both the WCS and Tripod 

examples for all group sizes (approximately .85 in the WCS, and .79 in the Tripod at the mean 

group size). This has the strong implication that accounting for error variance among the items 

has no impact on the estimate of group level reliability if the items are treated as nested (see 

Appendix D for more details). 

There are important policy implications for these differences in reliability estimates, 

particularly in a performance evaluation context, such as those described in Memphis, Chicago 

or New York City. If teachers or schools whose aggregate ratings place them below a certain 

threshold are to be placed on a list for potential intervention, an informed sense of measurement 

reliability can be highly impactful. This can be shown by examining how the magnitude of the 

standard errors varies across designs. 

Figure 1 shows the standard errors of measurement implied by Designs B through E for 

both the WCS and Tripod surveys, based on the formulas presented in Table 2. Because the 

standard errors are influenced by group size, they are presented at the minimum, harmonic mean, 

and maximum group sizes for both surveys. 
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Tripod WCS 

  

Figure 1. Standard errors of measurement based on reliability estimates for a range of group sizes. 

For the WCS, the standard errors get smaller as the group sizes increase for all four 

designs, and the standard errors for Designs B and E are identical (hence the plots overlap). 

However, for schools that have only 5 raters (the minimum school size), the standard errors are 

uniformly large. If we were to consider a school with a median rating on the Decision Making 

scale, the 95% confidence interval implied by this standard error of measurement would range 

from approximately the 2
nd

 percentile to the 96th percentile. 

While standard errors decrease as a function of group size for all designs for the WCS, 

when items are treated as crossed and random, as in Design D, the standard errors are 

systematically larger than for all other designs, which is expected given that the estimated 

reliability is so much lower for this design. In this case, even for a school of average size, the 

95% confidence interval spans from the 2
nd

 percentile to the 96
th

 percentile. 

For the Tripod, some similar patterns are observed. Standard errors also decrease as group 

sizes increase, and the standard errors for Design B and E are identical. For all four designs, for 

small classrooms (10 students) with a median rating on the Challenging scale, the standard errors 

are large enough that the 95% confidence interval for a classroom’s score ranges from 

approximately the 7th percentile to the 99th percentile. There is less of a difference between 

Design D and the other three designs for the Tripod survey, because there is less item variance in 

the Tripod survey, and the estimated reliability for Design D is more similar to the estimated 

reliabilities for Designs B, C, and E. 
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This highlights two important considerations in regard to standard errors of measurement. 

First, the sources of error variance that are quantified can have large impacts on the estimated 

size of the standard errors, particularly if item variance is large and is considered as a source of 

error variance. Second, standard errors vary as a function of group size, and while standard errors 

estimated at larger group sizes may be satisfactory for making determinations about whether a 

school or classroom has met the cut score for a particular standard, standard errors estimated at 

smaller group sizes may be unacceptably large. 

How Does Variation in the Number of Items and the Number of People Impact Reliability 

in Each Design? 

Based on the variance components in Table 3, it is possible to explore ways in which 

reliability can be improved by asking questions like, “with the current number of items, how 

many teachers need to be surveyed per school in order to get reliable estimates of the school 

means?” Or, “will adding additional items, or surveying more people result in greater gains in 

measurement precision?” Figure 2 shows how changes in group size and the number of items 

impact reliability estimates for Designs B through E. For investigation into the impact of sample 

size, items are held constant at 8. For investigation into the impact of number of items, group 

sizes are held constant at the respective harmonic mean group sizes. 
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Tripod WCS 

 
 

  

Figure 2. Changes in group-mean reliabilities for a variety of group size and item configurations. 

There is an interesting contrast between the graphs for these two survey instruments. With 

regards to the WCS, for Designs B, C, and E, increasing the number of teachers per group has a 

larger impact on reliability than raising the number of items. Even with 100 items, the 

reliabilities for those three designs are less than .9. For Design D, however, increasing the 

number of items has a much larger impact on absolute reliability than increasing the number of 

raters. With 8 items, reliability does not reach .5 even with 100 raters per group. 

With regards to the Tripod, a similar conclusion would be reached. Increasing the number 

of students per classroom has a larger impact in general than adding items. However, this is true 

across all designs—including Design D—and the profiles of all of the plots for the Tripod survey 

are essentially flat. 
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How Do the Different Models Impact the Relationships Between Aggregated Variables and 

External Variables? 

Table 5 present results regarding the differences in correction to regression parameters that 

occur when different models are used to describe error variance. Design D, which had the lowest 

estimates of group mean reliability, has the highest adjustment to the between-group regression 

parameters. In fact, the between schools slope parameter is nearly 1.5 times as large in Design D 

as in the other designs. This is all consistent with expectations based on the estimated reliabilities 

for each design. 

Table 5 

Differences in Correction to Regression Parameters That Occur When Different Models Are 

Used to Describe Error Variance 

Survey Model Between Within 

Compositional 

effect 

Percent 

change 

WCS 

Design A 0.90 0.46 0.44 -- 

Design B 0.99 0.46 0.53 20.45% 

Design C 1.13 0.55 0.58 31.82% 

Design D 1.65 0.62 1.03 134.09% 

Design E 1.21 0.68 0.53 20.45% 

 

Model Parameter 

Percent 

change 

 

Tripod 

Design A 0.64 -- 

Design B 0.86 34.4% 

Design C 0.87 35.9% 

Design D 0.89 39.1% 

Design E 0.86 34.4% 

Note. All parameters are statistically significant at the .01 level. 

While it is possible to look only on the changes to the regression coefficients on their own, 

an interesting pattern emerges in the contextual effects. Design D results in the largest contextual 

effect for the WCS. The size of the contextual effect is nearly 1.3 times larger than the observed 

contextual effect. The contextual effect estimated in Design A can be interpreted as meaning, 

“for two teachers who rate their school environment equally, but work in schools that differ in 

school quality by one scale point, there is an expected difference in an individual teacher’s 

feelings that their school is a good place to work and learn of .44 units. On this scale, that is than 

a change from “Neither disagree nor agree” to “Somewhat agree.” However, in Design D, the 
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conclusion would be that there would be an anticipated change of almost one scale point—

corresponding to a move from a feeling of ambivalence (“Neither disagree nor agree”) to a 

feeling of agreement. 

Because the   
  and    

  components are large in the WCS, the estimate of      
  is smaller in 

Design E. This results in lower estimates of within-group reliability, and, thus, Design E results 

in the largest disattenuation of the within-group slope. In fact, this disattenuation is large enough 

that Design E results in a contextual effect equal to that of Design B. This suggests that, even 

though it accounts for item variance, using Design E can result in a downward bias in the 

estimate of the contextual effect. For the Tripod, Designs B and E give the same adjusted slope 

estimates. Design D, which has the lowest estimated reliability, has the largest disattenuated 

regression parameter. In the Tripod survey, because the   
  and    

  components are so much 

smaller (as compared to those in the WCS), the group-mean reliability estimates are much more 

similar across all designs, and the differences between the parameter estimates is much less 

pronounced. 

Summary and Discussion 

This study examined the reliability of group indicators created when surveys are 

administered, and individual responses aggregated in order to make classroom or school—level 

inferences. Consistent with previous work (Marsh et al., 2009; Raudenbush & Sadoff, 2008), this 

study suggests that how we account for measurement error in group-level variables has 

implications for the estimation of reliability, measurement precision, and biases in relationships 

with external variables. This study goes beyond prior research by demonstrating that it is not 

only the presence or absence of measurement error in the model that impacts precision and 

biases relationships with external variables. The specific sources of error variance that are 

quantified play a substantial role, as well. Specifically, it was shown that different models of 

error variance lead to a) different estimates of the reliability of aggregate measures, b) different 

conclusions about measurement precision, c) different sense of the effect of additional 

individuals or items for improving measurement precision, and d) different inferences about the 

strength of adjusted relationship with external variables. In addition, it was shown that 

Cronbach’s alpha is an inappropriate coefficient for estimation of group-mean reliability. 

A thorough consideration of the sources of error variance can have direct implications for 

policy. This raises the issues addressed in this paper from ones of psychometric interest to ones 

of practical importance. For example, differing conceptions of precision may impact whether or 

not it is justifiable to include a measure as part of a teacher or school evaluation. Or, it may 

impact how much weight is given to a measure in an evaluation composite. Careful consideration 



 

23 

of error variance can lead to a more nuanced understanding of how to think about how predictive 

working conditions are of teacher quit decisions, or how much variance in student achievement 

is attributable to variance in classroom climates. Moreover, the range of parameter estimates that 

can result depending on how error is quantified raises important questions. What does it mean for 

policy if the potential magnitude of the effect of interest has a range that is fairly large? 

Of all of the sources of error variance that were considered in this study, two design 

considerations consistently had the largest impact on estimates reliability, precision, and 

regression parameters. Specifically, the decision of whether it is appropriate to treat items as 

crossed or nested, and whether it is appropriate to treat items as random or fixed. As is suggested 

in Kane and Brennan (1977), there is no “universally best” (p. 289) approach to treating items as 

random or fixed in scenarios where surveys are administered to teachers or students and the 

school or classroom is the unit of analysis. This decision, ultimately, can only be made in the 

context of a particular study (Kane & Brennan, 1977). However, it is rarely the case that a fully 

nested design appropriately describes the context of a particular survey administration. In the 

vast majority of cases, the fully nested design, Design E, misspecifies the structure of the error. 

The results of this study show that this misspecification can have important practical 

consequences. First, and perhaps most surprisingly, the group-mean reliability implied by Design 

E is equal to the group-mean reliability implied by Design B. This means that, when groups are 

the unit of analysis, it is inconsequential whether you treat items as fixed or fully nested. And the 

reliability of class or school means is likely to be over-stated in Design E. The extent of this 

over-statement will be a function of the amount of item variance, and the size of the group-item 

interaction. What’s more, the reliability of individual scores is likely to be understated in Design 

E, also as a function of item variance. In the case of a contextual effects model, this can impact 

inference about the magnitude of a contextual effect. Overall, the results show that when 

aggregated survey measures are going to be used as indicators of school and classroom 

environments, careful attention should be paid to the sources of error that are relevant to the data 

collection design. 

Additional Questions and Limitations of the Current Study 

This study described how several competing models of error variance can impact 

reliability, and can also impact parameter bias. Thoughtful consideration of the relevant sources 

of bias for the design and use of measures of classroom and school variables can be highly 

consequential. There are, however, several limitations of this study, and these present areas for 

future research and additional questions. 
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Hidden Facets 

It is important to note that, due to the cross-sectional nature of the data set, only three main 

sources of variance are considered in this study. Variance due to groups (schools or classrooms), 

variance due to raters (teachers or students) and variance due to items. It may be that, in fact, 

there are other sources of error variance that are salient that were not included in this study. In G-

Theory, these are referred to as “hidden” facets (Shavelson & Webb, 1991). Just as these models 

demonstrated that three competing models of error could result in different conclusions, 

incorporating other sources of variance into the design would also potentially impact results. For 

example, there is no variance attributed to occasion in any of the models investigated in this 

study—but it may be that if this same survey were administered at the beginning and end of the 

school year, there would be some variance attributed to the occasion on which the survey was 

administered. 

In addition, with both the student surveys of classroom climate and the teacher surveys of 

schools, only one level of nesting is accounted for. For the Tripod, the assumption was that 

students were nested within classrooms. For the WCS, the assumption was that teachers were 

nested within schools. However, it is possible to imagine nested facets that are excluded here. 

For example, students nested within classrooms nested within teachers (nested within schools). 

Or teachers nested within departments nested within schools. Wei and Haertel (2011) suggest 

that omitted levels of variance can bias the estimation of variance components, and so this merits 

further consideration. 

Assumption of Reflective Measurement 

In the two examples used in this study, it is assumed that schools and classrooms have true 

scores on the climate variables in question, but that individuals do not. In other words, variance 

between schools represents true variance in the quality of working conditions, or variance 

between teachers represents true variance in the fairness of teachers, but variance between 

teachers in the same school (or students assigned to the same teacher) can be attributed to 

sampling variability and represents “noise.” 

This has important ramifications for the appropriateness of the measurement models used 

in this article. As Lüdtke et al. (2011) point out, the use of reflective, rather than formative 

indicators at level 2 is contingent upon the supposition that individuals do not have meaningful 

true scores on the construct of interest. In other words, the latent variable model is built on the 

supposition that variance between people is caused by school or classroom features, and not by 

true differences between people. 
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This is a nuanced issue in organizational climate research. Sirotnik’s (1980) affective-

descriptive continuum attempts to delineate items that are intended to measure individual, 

psychological constructs from items that are intended to measure organizational constructs. 

Many items defy categorization and fall somewhere between the two extremes. Take the 

following example (Sirotnik, p. 261) of five potential items about the construct of trust. 

 I am generally a trusting type of person. 

 I trust the staff members at this school. 

 We trust one another at this school. 

 You trust one another at this school. 

 Staff members trust one another at this school. 

Sirotnik suggests that the first item listed above is on the affective end of the continuum. This is 

signaled both by the item's “I-form” and because the item content relates to a psychological 

construct, an individual’s trustworthiness. The fifth item is on the descriptive end of the 

continuum. It is a “they-form” item, and positions individuals as raters of a single organizational 

quality. The most interesting items are the middle three, which gradually progress from items 

that are clearly describable as psychological, into a space that is less clearly circumscribed. This 

raises important questions about what is being measured. Are the items measuring qualities of 

the classroom or school? Qualities of the teachers or students? Or something else? 

The two surveys used in this article are based primarily on “they-form” items from the 

descriptive end of the continuum. However, that does not mean they do not reflect a certain 

amount of true variation in the psychological standing of the respondents. If school climate is to 

be measured by aggregating lower level responses to questions about climate, attention should be 

paid to whether items refer primarily to the psychological characteristics of individuals, or 

primarily to characteristics of organizations. 

Tau-Equivalent Measures and Cross-Level Measurement Invariance 

Several other assumptions were made in the course of this study. It is assumed that all of 

the items in the Decision Making and Challenging scales are tau-equivalent (Marcoulides, 1996) 

and that they all measure the constructs equally well. However, it may be the case that the items 

differentially tap on the Decision Making or Challenging constructs. This may make the 

“averaging over” inherent in G- Theory inappropriate. 

It is also assumed that the concepts of Decision Making and Challenge can be constructed 

by averaging over individual responses. Much recent work in multilevel factor analysis has 

revealed that it is often the case that the structure of constructs at the group level is not 
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isomorphic (or even partially isomorphic) to the structure of constructs at the individual level 

(Hox, 2002; Holfve-Sabel & Gustaffsen, 2005; Zyphur, Kaplan, & Christian, 2008). One 

possible approach is to use a Structural Equation Modeling (SEM) framework, as Marsh et al. 

(2009) shows. This allows for the isomorphism assumption to be tested empirically (Lüdtke et 

al., 2011). 
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Appendix A 

 

The following appendix provides more detail on the models used to estimate variance 

components. In addition, this appendix provides syntax for estimating these models in MPlus 

and in the nlme package in R. 

Design B 

For Design B, the one-way random effects ANOVA, variance components were 

estimated using an empty model (Raudenbush & Bryk, 2002). The mixed equation can be 

expressed: 

               

    here is taken as an individual level composite score. For the analyses in this study,     

was taken as either the average individual score across the 8 survey items for the WCS, or the 

average individual score across the 8 survey items for the Tripod.    is a school specific 

deviaition from the grand mean,    , and     is a person specific deviation. The variance of 

  represents the estimated school variance,   
 , and the variance of    is        

 , a residual 

variance that is composed of the variance attributable to teachers, a teacher-school 

interaction, and random error. 

This design is implemented in R using the following syntax: 

Library(nlme) 

fit<-lme(y~1,random=~1|Group,data=data) 

VarCorr(fit) 

 

Alternately, this design can be implemented in MPlus: 

TITLE: One-way Random-effects ANOVA in MPlus 

DATA: File is data.dat; 

VARIABLE : Names are yij; 

ANALYSIS : Type is twolevel ; Estimator is ML; 

MODEL: 

%within% 

yij; 

%between% 

yij; 

OUTPUT: sampstat; 
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Design C 

Design C incorporates variance components that result from a mixed-effects split-plot 

ANOVA. Estimation can be conducted using a multilevel factor analytic (MFA) framework. 

MFA relies on the covariance structure for parameter estimation. Muthen (1994) shows that 

for a two level model, an observed variable     can be expressed as a linear function of a 

within level latent trait,   , and a between-level latent trait,   .    and    are residual 

variances that are independent and normally distributed. Given the factor model: 

                    

The covariance structure of the observed variables can be expressed 

        
        

        

In this study,     is an      matrix of individual item responses (for either the WCS or 

Tripod survey),    is an     vector of factor loadings for the individual level (student or 

teacher) latent variable (in this study, because of the assumption of tau-equivalence, all of the 

factor loadings are set to 1), and    is an     vector of between-level factor loadings (also 

set to 1) for the school or classroom level latent variable.    is a     matrix, containing 

the variance of the individual level latent trait, and    is a     matrix containing the 

variance of the between level latent trait. 

   is an     diagonal matrix, containing individual level residual variances, and    is an 

    diagonal matrix, containing group level residual variances. 

The variances contained in       ,    and    can be used to estimate the variance 

components from Design C. Let: 

   |     
 | 

   |  
 | 

 

   |

         
 

 
         
 

| 

 

   |
   
 

 
   
 
| 
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Following Raykov and Marcoulides (2011).   
  is the element of   ,      

  is the element of 

  ,          
  is the average across the 8 elements of   , and    

  is the average across the 8 

elements of     

This design can be implemented in MPlus using the following syntax: 

TITLE: Split-plot Mixed-effects ANOVA in MPlus 

DATA: File is data.dat; 

VARIABLE : Names are y1 y2 y3 y4 y5 y6 y7 y8; 

CLUSTER : Group; 

ANALYSIS : Type is twolevel ; Estimator is ML; 

MODEL: 

%within% 

Factor_w by y1-y8@1; 

%between% 

Factor_b by y1-y8@1; 

OUTPUT: sampstat; 

 

Design E 

For Design E, the variance components can be found using a three-level hierarchical linear 

model, expressed: 

                      

    here is taken as an individual level item score.    is a school specific deviation from the 

grand mean,     ,     is a person specific deviation from the grand mean, , and      is an 

item specific deviation. The variance of   represents the estimated school variance,   
 , and 

the variance of    is      
  a conflated variance of teachers and a teacher school interaction. 

The variance of      is               
 , a residual variance that is composed of the variance 

attributable to items, an item teacher interaction, a triple interaction of items, schools and 

teachers, an item-school interaction, and random error. 

It is important to note that in order for this model to be implemented in R, the data 

file must have the appropriate structure. The file must be in so-called “long form”, with each 

row representing a single item score, and a new variable for each Item ID, person ID, and 

group ID. This design can be implemented in R using the following syntax. 

Library(nlme) 

fit<- lme(y ~ 1, random = ~1 | group/person, data) 

VarCorr(fit) 
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Appendix B 

This appendix provides syntax (R and Mplus) for estimating contextual effects 

models for Designs A,B, and C. For Designs B and C, the contextual effects are corrected for 

measurement error. 

Design A 

R code: 

library(nlme) 

Null.Model<-lme(xij~1,random=~1|Group,data=Data) 

VarCorr(Null.Model) 

fit<-lme(yij~xij+xbar,random=~1|Group,data=Data) 

 

In this code, the Null.Model is run to show estimated within and between variance 

components. VarCorr() outputs those estimates. The lme() command is used to estimate a 

contextual effects model, with an individual level predictor xij and a group mean predictor 

xbar. Please note that the coefficient on the xbar term here is the contextual effect, not the 

between-groups effect. 

 

MPlus code: 

TITLE: Contextual Effects model (Design A) 

DATA: File is data.dat; 

VARIABLE: Names are xij xbar yij; 

cluster = Group; 

within = xij ; 

between = xbar; 

centering = groupmean(xij); 

ANALYSIS: Type is twolevel; 

MODEL: 

%within% 

yij on xij 

%between% 

yij on xbar; 

 

This Mplus code estimates two coefficients – the within-group slope and the between-group 

slope. Because the centering option is used, the contextual effect can be obtained as the 

difference of the two slopes. 
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Design B 

R code: 

library(nlme) 

Null.Model<-lme(xij~1,random=~1|Group,data=Data) 

VarCorr(Null.Model) 

Data$EB<-predict(Null.Model) 

fit<-lme(yij~xij+EB,random=~1|Group,data=Data) 

 

In this code, the Null.Model is run to obtain Empirical Bayes means for each group. These 

means are saved into the data set and used as group level predictors. The lme() command is 

used to estimate a contextual effects model, with an individual level predictor xij and an 

adjusted group mean predictor EB. Please note that the coefficient on the EB term here is the 

contextual effect, not the between-groups effect. 

 

MPlus code: 

TITLE: Contextual Effects model (Design B) 

DATA: File is data.dat; 

VARIABLE: Names are xij yij; 

cluster = Group; 

ANALYSIS: Type is twolevel; 

MODEL: 

%within% 

yij on xij 

%between% 

yij on xij; 

 

This Mplus code estimates two coefficients – the within-group slope and the between-group 

slope. Because the centering option is used, the contextual effect can be obtained as the 

difference of the two slopes. 

 

Design C 

MPlus code: 

TITLE: Contextual Effects model (Design C) 

DATA: File is data.dat; 

VARIABLE: Names are x1 x2 x3 x4 x5 x6 x7 x8 yij; 
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cluster = Group; 

ANALYSIS: Type is twolevel; 

MODEL: 

%within% 

fw by x1-x8@1; 

yij on fw; 

%between% 

fb by x1-x8@1; 

yij on fb; 

 

This Mplus code estimates two coefficients – the within-group slope and the between-group 

slope. Because the centering option is used, the contextual effect can be obtained as the 

difference of the two slopes. 
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Appendix C 

The following provides more detail on the Expected Mean Squares (EMS) basis for 

the variance components in Designs B, C, and E. It demonstrates why the estimated school 

variance,   
 , and teacher within school variance,      

 , differ across designs. These EMS 

equations are found in Shavelson and Webb (1991). 

Differences in      
  Across Designs 

For Design C, the EMS equations for the variance components are 
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For Design E, the EMS equations for the variance components are 
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Based on these EMS equations, it can be shown that the teacher variance,      
  estimated in 

Design C will be smaller than the teacher variances estimated in Design E. Given that 

Equation (2) equals Equation (6) 
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Which implies: 
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Differences in   
  Across Designs 

Given that Equation (1) equals Equation (5), we have: 

      
    

        
    

      
    

          
    

       
    

        
    

               
    

 

(11)  

Which can be re-expressed: 
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And applying the equivalence in Equation (9), we have: 
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Which implies: 
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Appendix D 

The following provides more detail on the equivalence of the group-mean reliabilities 

for Design B and Design E. For Design B, the EMS equations for the variance components 

are : 
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  (   )
   

        
    

 (2)  

For Design E, the EMS equations for the variance components are : 

       
          

    
        

    
               

    
 (3)  

  (      )
   

        
    

               
    

 (4)  

  (               )
   

               
    

 (5)  

Results in Shavelson & Webb (1991) demonstrate that: 
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and: 
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(7)  

Thus: 

 

       
    

      
    

 
              

    

  
 

(8)  

That is, the person-variance estimate in Design B is equal to the person variance estimate 

from Design E plus the residual variance averaged over the number of items. 

By Equations (1), (3) and (6), we have: 
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(9)  

By Equation (8) we can re-express Equation (9): 
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And so 

   
    

   
    

 (11)  

Results from Brennan (2001a) shoe that the group-mean reliability coefficient for Design E 

can be expressed: 

 
  

  
    

  
    

 
     

    

  
 

              
    

    

 
(12)  

By Equations (8) and (11), the reliability coefficient given in Equation (12) can be re-

expressed: 

 
  

  
    

  
    

 
       

    

  

 
(13)  

Which is the group-mean reliability coefficient given by Brennan (2001a) for thr one-way 

random-effects ANOVA design given by Design B. 


