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LATENT VARIABLE MODELS FOR ANALYSIS OF GROWTH

Bengt Muthen, CRESST/University of California, Los Angeles

Ginger Nelson, CRESST/University of California, Los Angeles

Introduction

In a recent issue of Journal of Educational Measurement, Williamson,

Appelbaum and Epanchin (1991) discussed the analysis of individual growth

in longitudinal studies.  Using longitudinal data on reading and mathematics

achievement scores, they analyzed the individual variation in level and rate of

learning for a cohort of students from North Carolina progressing from

grade 1 to grade 8.  They pointed out that the estimation of such models could

be handled by hierarchical linear models, such as described by Raudenbush

and Bryk (1988).  The aim of the present paper is to show that models of this

type can also be estimated using widely available structural modeling

software.  This provides a flexible framework for model explorations,

including the use of latent variables purged of the influence of measurement

error.

Modeling of Individual Differences in Growth

Consider an achievement score yti for individual i at time point t,

(1)   yti = ν + ληti + εti

where ν is a measurement intercept parameter, λ is a measurement loading

parameter, η is latent variable, and ε represents measurement error.

We will focus on the special case of an error-free indicator of η,

(2)   yti = ν + ηti

To this measurement specification we will add a growth curve

specification, where it is assumed that all individuals are measured at the

same discrete time points t, t=0, 1, ..., T,
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(3)   ηti = αi + βi t + ζti

It may be noted that instead of assuming growth that is linear in t, as in

(3), any function of t may be used, including functions involving parameters to

be estimated, such as logistic growth and exponential decline.  In (3), αi and βi

are individual-specific parameters describing initial level of achievement and

rate of learning, while ζ represents a residual.  The characteristic feature of

this model is that the regression intercepts and slopes are random coefficients,

varying over individuals, possibly as a function of an individual background

variable zi,

(4)   αi = α + γα zi + δαi

(5)   βi = β + γβ zi + δβi

Here, α and β represent overall values, γ's are regression parameters,

and δ's represent residuals.  The residuals for the intercepts and the slopes

may be correlated so that the growth rate may be related to initial status.  As

an example, y may be reading achievement and z may represent verbal ability,

in which case the γ's are likely to be positive.  The random intercepts αi and

random slopes βi may also be estimated for each individual so that an

individual-specific growth curve can be derived.

The model implies growth in means and variances as a function of t and

z,

(6)   E ( ηti | zi ) = α + γα zi + (β + γβ zi) t

(7)   V ( ηti | zi ) = σ2α + 2 t σαβ + t2 σ2β + σ2ζ

The model may be extended by adding time-specific "shocks" xti to the

growth curve of (3),

(8)   ηti = αi + βi t + γt xti + ζti

In the context of the present achievement example, xti may represent

amount of course work prior to time point t for individual i.
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A special case of the growth curve model of (3), (4), (5) is the conventional

repeated measures model assuming compound symmetry.  Here, (4) and (5)

are replaced by

(9)   αi = α + δαi

(10)   βi = β

Equation (9) captures the fact that the same individuals are observed

repeatedly so that observations are correlated over time even when the

residuals of ζ are uncorrelated over time.  In this way, initial status is taken to

vary over individuals, while equation (10) specifies that the rate of learning is

constant over individuals.  The assumption is added that δα and ζ are

uncorrelated over time and have constant variances over time.

Structural Modeling

The above growth model can also be viewed as a structural model with

latent variables.  The key to this is to note that in (3)-(4) αi and βi can both be

viewed as latent variables instead of random parameters.  The fact that αi can

be viewed as a latent variable was noted in Muthén (1991).  This is true also for

βi because t does not vary over individuals so that t can be viewed as a fixed

regression parameter for the variable βi.

The growth model imposes restrictions on both the mean vector and the

covariance matrix for the observed variables.  Under the assumption of

multivariate normality for the observed variables, the usual maximum

likelihood estimator of structural modeling can therefore be applied to the

sample mean vector and sample covariance matrix.

The structural model may be represented as in Figure 1.  In Figure 1

there are four time points and at each time point there are two measures y

(squares at the top of the figure) of a latent variable η (the circle below each

pair of squares).  There is one time-invariant background variable z (the

square in the bottom left of the figure) and four time-varying background

variables x (the remaining squares at the bottom of the figure).  The random

intercept αi and the random slope βi (the two circles to the left in the figure)

influence the factor η at each time point.  The random intercept factor has all
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Latent Variable Modeling of Growth

 t=0  t=1  t=2  t=3

α i

βi

Figure 1.  Path diagram for a latent variable model of growth.

regression slopes equal to one, while the random slope factor has regression

slopes 0, 1, 2, 3, 4.

The structural modeling approach to longitudinal data makes for a very

flexible analysis tool.  As exemplified in Figure 1, multiple indicators can be

handled so that growth pertains to latent variables without measurement

error.  This type of modeling is an example of the latent curve analysis of

Tucker, Meredith, McArdle and others (see, e.g., Meredith & Tisak, 1990).
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This modeling framework appears not to have been utilized among

educational researchers.

As pointed out by Rogosa (1988), conventional structural equation

modeling of longitudinal data is not suitable to analysis of growth.  A typical

structural model for longitudinal data is the simplex model as shown in

Figure 2.

Conventional Covariance Structure
Modeling of Growth:  Simplex Model

Simplex model fit to growth model covariance matrix:

Chi-square (20) = 29.96               (p = 0.07;  N = 1,000)

Standardized auto regression coefficients:

0.67 0.87 0.87

True growth model correlations:

0.56 0.70 0.80

Figure 2.  Using a conventional simplex model to analyze growth data.

5



To illustrate the dangers of such modeling, a mean vector and a

covariance matrix were generated from a growth model such as (3)-(5).  As

shown in Figure 2, the simplex model fits these quantities quite well.

However, the conclusions drawn from the simplex model are not correct.  The

correlations between adjacent factors are clearly overestimated.  Furthermore,

information on the growth curves is not obtained.

An Example:  Reanalysis of the North Carolina Data

As an illustration of the structural modeling approach, we will now

reanalyze some of the data from Williamson et al. (1991).  For simplicity, we

choose to work with only the last five time points and focus on the reading

achievement scores for the female sample of 278 individuals.  For details about

the sample and the variables, see the original article.

It is interesting to note that the standard repeated measurement model

assuming compound symmetry does not fit the data at all.  The value for the

chi-square test of model fit is 130.5 with 16 degrees of freedom.  In terms of

growth modeling, this model specifies a random intercept but a fixed slope.

Allowing the slopes to be random as well results in a chi-square value of

21.8 with 14 degrees of freedom.  This well-fitting model is the one studied in

Williamson et al. (1991).  The variation in the slopes is significant.  The overall

slope estimate is, of course, positive.  The correlation between the intercepts

and the slopes is 0.68.  This means that the rate of growth in achievement has

a strong positive correlation with initial status.

The latter model uses several strong assumptions.  For example, the

variances of the residuals are assumed to be equal over time, the residuals are

assumed to be uncorrelated over time, and growth is assumed to be a linear

function of time.  Focusing on the assumption of linearity, the slopes connected

with the βi factor may be relaxed.  In the linear growth model these slopes are

0, 1, 2, 3, 4.  The linearity assumption is embedded in the fact that the step from

0 to 1 is of the same size as the steps from 1 to 2, 2 to 3, and 3 to 4.  The size of

the latter three steps may instead be estimated in an exploratory fashion.  In

these data, the relaxed model obtained a chi-square value of 18.9 with 11

degrees of freedom.
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This does not indicate a significant deviation from linearity.  The point

estimates of the three extra parameters, 1.9, 2.8, and 3.7, do suggest a slightly

retarded growth trend as compared to the fixed, linear values of 2, 3, 4.  In

these data, there is no clear indication of non-constant residual variances or

correlations among residuals over time.
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