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LATENT VARIABLE MODELING OF GROWTH WITH MISSING DATA

AND MULTILEVEL DATA1

Bengt Muthen, CRESST/University of California, Los Angeles

1.  Introduction

The aim of this paper is to describe three important methods areas of

multivariate analysis that are not always thought of in terms of latent variable

constructs, but for which latent variable modeling can be used to great

advantage: random coefficients describing individual differences in growth;

unobserved variables corresponding to missing data; and variance

components describing data from cluster sampling.  An educational

achievement data set will be described as a motivating example.  Using the

features of the example, it will be shown that all three topics can be simply

expressed in terms of latent variable modeling which fits into existing and

generally available structural modeling software.  This development makes a

connection between mainstream statistical methods and work by

psychometricians and other methodologists interested in latent variable

modeling.  Having put the methodology in a general latent variable context,

several interesting extensions of the statistical analyses are evident.

2.  A General Latent Variable Framework

Analysis of latent variable models is most often carried out by minimizing

the following fitting function

(1)     { Np [ ln | Σp∑
p = 1

P

 | + tr  ( Σp
-1 Tp ) - ln | Sp | - r  ] } N-1 ,

where

(2)     Tp  =  Sp + ( yp - µp ) ( yp - µp )' .

1 I thank Ginger Nelson, who provided helpful research assistance.
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In maximum-likelihood (ML) estimation of conventional structural

equation models with latent variables, this is the fitting function

corresponding to independent random samples from P populations with

sample sizes Np and total sample size N.  Here, an r-dimensional vector y, say,

is observed with sample covariance matrix Sp, sample mean vector yp ,

population covariance matrix ∑p, and population mean vector µp.  The terms

containing  ln |Sp| - r are offsets so that a perfectly fitting model has the

function value of zero.  The sample covariance matrices Sp are the ML

estimates of the unrestricted ∑p matrices and are therefore divided by Np, not

Np - 1.  Multiplying the minimum value for any model by 2 x N  then gives the

value of the likelihood-ratio chi-square test of the H0 model against the H1

model of unrestricted mean vectors µp and covariance matrices ∑p.  Many

models do not impose any restrictions on µp in which case the second term on

the right-hand-side of (2) vanishes and only covariance matrices are involved

in the estimation.  The simultaneous analysis of several populations is

considered when the populations have parameters in common, so that equality

constraints of parameters across populations are invoked.

The specification of latent variable models in terms of µp and ∑p is

described in several sources (see, e.g., Joreskog, 1977; Muthen, 1983).  One

common framework is as follows.  For a certain population a linear

measurement model for a latent variable vector  is specified

(3) y = υ + Λ η + ε ,

where υ and Λ contain measurement intercept and loading (slope)

parameters, respectively, and ε denotes a vector of measurement errors.  In

addition, linear structural equations are specified for η,

(4) η =  α + Βη + ζ ,

where α and Β contain structural regression intercepts and slopes,

respectively, and ζ denotes a vector of residuals.  With E(η) = α, V (ε) = Θ, V (ζ) =
Ψ , usual assumptions give the mean and covariance structure for the y vector as

(5) µ = ν + Λ(I - B)-1 α,
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(6) Σ = Λ(I - B)-1 Ψ (I - B)-1'  Λ' + Θ.

3.  A Motivating Example

The example concerns longitudinal observations on mathematics

achievement in grades 7-12 collected in the U.S. within the National

Longitudinal Study of American Youth (LSAY) (Miller, Suchner, Hoffer,

Brown, & Pifer, 1991).  Two cohorts were followed, one spanning grades 7-10

and the other grades 10-12.  The mathematics curriculum is quite varied in the

U.S. and students are likely to show differences in growth as a function of

differences in background characteristics such as course taking and gender.

The test measures mathematics skills in a number of subtopics including

algebra, probability & statistics, geometry, measurement, and arithmetic.

Topic-specific subtest scores are of interest, but since there is a rather small

number of items within subtopics, there is a need to allow for measurement

error in such subscores, for example, by specifying a factor-analytic

measurement model.

In order to measure different ability levels, the test items that are

administered vary across grades and groups of students within grades.  The

various test forms do, however, have many items in common so that the

various test forms can be equated.  Due to the large variation in mathematics

achievement, an adaptive testing strategy was employed in the LSAY in order

to avoid floor and ceiling effects and to maximize the information obtained on

the students' achievement level.  Given the performance at the first testing

occasion, an easy, medium, or hard test form was chosen for the next grade

with possible test form alterations also in subsequent grades.  The test forms

also differed across grades within difficulty designation. Table 1 shows the

different groups of individuals in the youngest cohort taking different sets of

tests.  It is seen that the adaptive testing strategy gives rise to certain patterns

of missing data.  Missing data also occurs due to attrition so that not all

students have observations for all grades.

As is typical for large-scale educational data, the LSAY data are obtained

through multi-stage, complex sampling.  A key feature is that about 60

students are randomly sampled within each of about 60 schools.  It is well-

known that assuming simple random sampling when data have in fact been

3



Table 1

Missing Data Patterns

Grade 7
—————

Grade 8
———————————

Grade 9
———————————

Grade 10
————————

Sequencea Frequency Form: A Forms: C D E Forms: A B D Forms: A B

7EEE 503 X X -- -- X -- -- X --

7EET 97 X X -- -- X -- -- -- X

7EME 242 X X -- -- -- -- X X --

7EMT 106 X X -- -- -- -- X -- X

7ETT 174 X X -- -- -- X -- -- X

7MME 40 X -- X -- -- -- X X --

7MMT 113 X -- X -- -- -- X -- X

7MTT 116 X -- X -- -- X -- -- X

7TTT 205 X -- -- X -- X -- -- X

7EE- 210 X X -- -- X -- -- -- --

7EM- 59 X X -- -- -- -- X -- --

7ET- 56 X X -- -- -- X -- -- --

7MM- 14 X -- X -- -- -- X -- --

7MT- 17 X -- X -- -- X -- -- --

7TT- 30 X -- -- X -- X -- -- --

7E-- 355 X X -- -- -- -- -- -- --

7M-- 41 X -- X -- -- -- -- -- --

7T-- 38 X -- -- X -- -- -- -- --

7--- 347 X -- -- -- -- -- -- -- --

Note.  X denotes observed data;  -- denotes missing data.
a 7 denotes 7th grade test (form A)

E denotes easy test (form C in grade 8, A in grades 9, 10)
M denotes medium test (form D in grades 8, 9)
T denotes tough test (form E in grade 8, B in grades 9, 10)



obtained by cluster sampling leads to deflated standard errors of estimates

(see, e.g., Skinner, Holt, & Smith, 1989).  This effect is often described in terms

of the "design effect" (deff), taken as the ratio of the corresponding variance

estimates.  To illustrate the effect of this cluster sampling feature,  intraclass

correlations were calculated for a set of achievement variables obtained at the

seventh grade.  Testlets corresponding to topic-specific sums of items scored

right/wrong were used for the following topics (intraclass correlation in

parenthesis): algebra (.03), probability & statistics (.15), geometry (.12),

measurement (.12), methods (.05), numbers & operations1 (.10), numbers &

operations2 (.08), numbers & operations3 (.09), numbers & operations4 (.13),

organization (.09).  Several intraclass correlations are larger than .10.  Using

the deff formula for a variance estimate of a mean, 1+ (c-1) ρ for cluster size c

and intraclass correlation ρ (Cochran, 1977, p. 242), gives a sizeable design

effect of about 7 due to the large cluster size of 60.  The intraclass correlations

may in fact be deflated since the within-school variance is likely to contain a

large amount of measurement error variance (see Muthen, 1991).

4.  Modeling of Individual Differences in Growth

For the example discussed in the previous section, consider an

achievement score yti for individual i at time point t where t corresponds to the

different grades (t = 0, 1, ..., T, say),

(7)    yti = αi + βi t + ζti

In (7), αi and βi are individual-specific parameters describing initial level

of achievement and rate of learning, while ζ represents a residual.  The

characteristic feature of this model is that the regression intercepts and slopes

are random coefficients that vary over individuals, possibly as a function of

individual-specific values of a time-invariant covariate zi,

(8)    αi = α + γα zi + δαi

(9)    βi = β + γβ zi + δβi
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Here, α and β represent overall values, γ 's are regression parameters,

and δ's represent residuals.  The residuals for the intercepts and the slopes

may be correlated so that the growth rate may be related to initial status.  As

an example, z may represent participation in enriched or algebra classes, in
which case the γ 's are likely to be positive.  The random intercepts αi and

random slopes βi may also be estimated for each individual so that an

individual-specific growth curve can be derived.

It may be noted that instead of assuming growth that is linear in t, as in

(7), any function of t may be used, including functions involving parameters to

be estimated, such as logistic growth and exponential decline.

The model implies growth in means and variances as a function of t and

z,

(10)    E ( yti | zi ) = α + γα zi + (β + γβ zi) t

(11)    V ( yti | zi ) = σα
2 + 2 t σαβ + t2 σβ

2 + σζ
2

The model may be extended by adding a time-varying covariate xti to the

growth curve of (7),

(12)    yti = αi + βi t + γt xti + ζti

In the context of the present achievement example, xti may represent amount

of course work prior to time point t for individual i.

The above growth model can be seen as a model with latent variables.  As

is clear from (7)–(9), αi and βi can be viewed as latent variables instead of

random parameters (Muthen, 1991, 1992).  Both αi and βi are unobserved i.i.d.

variables varying across individuals.  Because t does not vary over individuals,

t can be viewed as a fixed regression parameter for the variable βi.  The model

fits into the general framework of equations (3)–(6) letting  contain αi and βi.

This type of modeling is an example of the latent curve analysis of Tucker,

Meredith, McArdle and others (see, e.g., Meredith & Tisak, 1990).  The growth

model imposes restrictions on both the mean vector and the covariance matrix
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for the observed variables.  In this way, both  and ∑ of (1) are used in the

estimation.  A single population is used.

The structural modeling approach to longitudinal data makes for a very

flexible modeling framework.  Multiple indicators can be handled so that

growth pertains to latent variables without measurement error.  In the math

achievement example, it is reasonable to assume that the testlets measure a
single factor ηti.  In this case the factor ηti replaces yti in (7) and the testlets

correspond to multiple indicators ytij as in (3),

(13)    ytij =  νj + λj ηti + εtij ,

j = 1, 2, ..., J, where ν is a measurement intercept parameter, λ is a

measurement loading parameter, and ε represents measurement error

assumed to be uncorrelated with η and among themselves.  Binary and

ordered categorical variables can also be handled in this framework (Muthen,

1983, 1992).

5.  Modeling of Missing Data

For the motivating example discussed in Section 3, Table 1 showed the

pattern of missing data. The missingness was both by design due to the use of

adaptive testing and due to attrition.  Missing data theory is presented in Little

and Rubin (1987) and is discussed in the latent variable context by Allison

(1987) and Muthen, Kaplan, and Hollis (1987).  Following Muthen et al. (1987),

we may modify the measurement model of (3) as

(14)    y* = ν + Λ η + ε

(15)    s* = Γ y* + δ

Here,  y* and s* are sets of r continuous, latent variables assumed to be

multivariate normal.  The residual vector δ is possibly correlated with η and ε.

Using a threshold parameter τj , each s*ij variable defines a probit regression

describing the propensity for y*ij to be observed for individual i,
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(16) yi j =  { 
y*

i j , if s*
i j  >  τj

missing, otherwise

Returning to the missing data example of Table 1, consider the first and
last missing data patterns.  Let the observed test scores in grade 7 be denoted y1

and the scores of the test sequence E, E, E in grades 8, 9, 10 be denoted y2.  In

this way, there is no missingness on y1 for either pattern, whereas the last

pattern has missing data for y2.  Let y2 contain p variables, define πi as

(17) Pr (s*
i1  ≤  τ1,  s*

i2  ≤  τ2,  ...,  s*
ip  ≤  τp)  =  πi

and let φ denote multivariate normal densities.  The likelihood component for a

sample unit in the last missing data pattern is then obtained by integrating

over the p latent variables y*2 in a truncated normal distribution,

(17)  φ  ( y1i ) πi ...
- ∞

τ1

.
- ∞

τp

...
- ∞

∞

πi
-1

- ∞

∞

 φ  (y2
*, s* | y1i ) d y2

*  d s*

This gives

(18)  φ  ( y1i ) ...
- ∞

τ1

 φ  ( s* | y1i

- ∞

τp

) d s*

The conditional normal density inside the integrals of (18) depends on the

specification of the relationship between s* and y* in (14) and (15).  Consider

the case where conditional on y1i, s* is independent of y*2, so that s* is only

influenced by y*1 in (15).  In our example, y*1 is observed as y1.  Then the

conditional density in (18) does not involve parameters of the latent variable

model but only parameters describing how y1 predicts the missingness on y*2.

In this case the missing data mechanism is "ignorable" and correct ML

estimation of the latent variable model is obtained using only the φ ( y1i ) term

in (18) corresponding to the data that are not missing.
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In our example, ignorability for the data that are missing by design holds

if the test form for a certain grade is indeed only dependent on the performance

on the test in the previous year.  Attrition may be predicted by factors that also

influence the performance on the tests taken.  Missingness by attrition is

ignorable if conditional on such factors, the values of the missing test scores

are independent of the values of the observed test scores.

Again considering the first and last missing data patterns of Table 1, and

assuming ignorability, (18) suggests that the log likelihood may be written as

(19)  log L = log φ  ( y1i ) +  log φ  ( y2i∑
i = 1

C

 | y1i∑
i = 1

N

 )

where N is the total number of cases in the two patterns and C is the number of

individuals that have complete data.  The second term on the right hand side of

(19) contains the regression parameters, while the first term contains the

parameters of the marginal distribution of y1.  As pointed out by Anderson

(1957), in the case of an unrestricted model the parameters of these two parts

can be estimated separately and the estimates have closed-form expressions.

For the case of a latent variable model, the restricted case, a closed-form

expression does not, however, exist and the advantage of writing the likelihood

in the form of (19) disappears.  Muthen et al. (1987) instead proposed the use of

the equivalent form

(20)  log L = log φ  ( y1i∑
i = 1

C

 , y2i ) + log φ  ( y1i )∑
i = C + 1

N

The two terms of the right hand side of (20) involve two different groups of

individuals corresponding to the two different patterns.  Equation (20) shows

that the standard multiple-group structural modeling fitting function of (1)

can be used for the estimation.  Under ignorability, a simultaneous analysis of

the two groups, using different number of observed variables in the two groups

and across-group equality restrictions on common parameters yields ML

estimates of the latent variable model parameters.  Muthen et al. (1987)

describe how to set up this analysis using structural modeling programs and
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show how the model can be tested.  The approach may be generalized to involve

groups corresponding to all the different missing data patterns of Table 1.

6.  Modeling of Multilevel Data

The final area to be discussed in terms of latent variable modeling is that

of variance components describing data from cluster sampling.  In the math

achievement example, students were sampled within schools and the

intraclass correlation coefficients showed that the degree of dependence

among student observations from the same school was quite large.  In order

for the fitting function of (1) to give proper ML estimates, standard errors of

estimates, and chi-square measure of model fit, this deviation from simple

random sampling needs to be taken into account.  Statistical theory for such

situations is described in Skinner, Holt, and Smith (1989).  Recently,

psychometricians have extended this work to encompass latent variable

modeling (see, e.g., McDonald & Goldstein, 1989).  For an overview, see

Muthen and Satorra (1989), Muthen (1989) and Muthen and Satorra (1991).  In

this work, parameters are added to those of conventional modeling in order to

properly describe the variation due to the different stages of cluster sampling.

This has given rise to the name multilevel modeling (see, e.g., Bock, 1989).

The following model describes both the school- and student-level variation.

Letting the index g denote school, we may consider the r-dimensional vector of

observed scores ygi for individual i and a q-dimensional vector zg for school g

as follows.  We may assume g = 1, 2, ..., G independently observed groups with

i = 1, 2, ..., Ng individual observations within group g and arrange the data

vector for which independent observations are obtained as

(21) dg'= (zg', yg1', yg2', ..., ygNg') ,

where we note that the length of dg varies across groups.  The mean vector and

covariance matrix of dg are assumed to have the structures

(22) µdg' = [ µz', 1Ng' ⊗ µy' ]
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(23)     Σdg = 
Σzz symmetric

1Ng ⊗ Σyz INg ⊗ ΣW + 1Ng 1Ng'  ⊗ ΣB

where INg is an identity matrix of dimension Ng, 1Ng is a unit vector of length

Ng and the symbol ⊗ denotes the Kronecker product.

Assuming multivariate normality of dg leads to the minimization of the

ML fitting function

(24)  { log | Σdg ∑
g = 1

G

| + ( dg - µdg )' Σdg
-1 ( dg - µdg ) }

As shown in Muthen (1989, 1990), the expression in (24) may be rewritten

in a form that both avoids using parameter arrays involving the number of

observations per group and fits in conventional structural equation models.

Reducing the summation from G groups to D, corresponding to the number of

distinct group sizes, the ML fitting function may be written as

     

(25)  Gd { ln   Σdd ∑
d

D

 + tr  [ Σdd -1  ( SBd + Nd ( vd - µ ) ( vd - µ )'  )] } +

+ (N - G ) { ln  ΣW  + tr  [ ΣW
-1 SPW ] } ,

where d is an index denoting a distinct group size category with group size Nd,

Gd denotes the mumber of groups of that size,

(26)  Σdd

    

 =  
Nd Σzz symmetric

Nd Σyz  ΣW + Nd ΣB

  

SBd denotes a between-group matrix
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(27)  SBd = Nd Gd
-1 ∑

k = 1

Gd

zdk - zd

ydk - yd
 ( zdk - zd )' ( ydk - yd )'

(28)  vd - µ = zd - µz

yd - µy

with  zd  and yd representing the sample mean vectors in group category d, and
SPW   is defined as the usual pooled-within sample covariance matrix

(29)  SPW = ( N - G )-1  ( ygi∑
i = 1

Ng

 - yg ) ( ygi - yg ) ' .∑
g = 1

G

On comparison with (1) it is seen that (25) may be viewed as an analysis of D+1

populations with certain parameter equality constraints across populations.

ML estimation by optimization of (25) is, however, cumbersome with

many different group sizes, both in terms of computational work and in terms

of input specifications for the software.  Muthen (1990) proposed a simpler, ad

hoc estimator which gives results close to those of ML, using the fitting

function

(30)  G {  ln 
c Σzz symmetric

c Σyz ΣW + c ΣB

 + tr  
c Σ zz symmetric

c Σyz ΣW + c ΣB

-1

 SB  } +

+ ( N - G ) { ln | ΣW | + tr  [ ΣW
-1 SPW ] } ,

where

(31)

SB = ( G - 1 )-1 

c ( zg - z∑
g

 ) ( zg - z )' symmetric

c ×  G/N  Ng ( yg - y∑
g

 ) ( zg - z )' Ng∑
g

 ( yg - y ) ( yg - y )'
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(32)  c = [ N2 - Ng
2∑

g = 1

G

 ]  [ N ( G - 1 ) ]-1

and SPW  is as before.  On comparison with (1) it is seen that (30) corresponds to

an analysis with two populations, one for the between part and one for the

within part.

For the math achievement test scores of y, a latent variable structure such

as in (6) may be formulated for ∑B
 and ∑

W
, not neccessarily using the same

structure.  Muthen (1990) discusses different types of models that may be of

interest.  The within structure of ∑
W  would still use a single-factor model

since it pertains to the student-level structure.  The between structure ∑
B

describes across-school variation in math achievement and it is harder to

postulate an a priori model for this variation.  Experience has shown,

however, that a single-factor model often captures the covariation in ∑
B quite

well.  The school-level variables zg may be exemplified by indicators of whether

or not the school "tracks" the 7th- and 8th-grade math programs.   Muthen

(1990) gives an example of a latent variable model with zg variables influencing

the between-part of the y variation.

7.  Discussion

A thorough analysis of the math achievement example of Section 3 calls

for the use of modeling with random coefficients describing individual

differences in growth, unobserved variables corresponding to missing data,

and variance components describing data from cluster sampling.  The

previous three sections have described how each of these modeling features

may be approached in a general latent variable context using existing

structural equation software.  The fitting function of (1) is used in all cases,

either in one or in several populations using covariance matrix structures and

possibly also mean vector structures.  In an actual analysis of this data set, the

three approaches need to be combined.  This analysis will not be carried out

here, but it is clear that the use of the fitting function of (1) accomplishes also

this complex task.

This paper has made connections between mainstream multivariate

statistics and work by psychometricians and other methodologists interested in
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latent variable modeling.  Viewing the methodology from a general latent

variable perspective, points to several interesting extensions of the statistical

analyses.
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