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TEST THEORY RECONCEIVED1

Robert J. Mislevy

Educational Testing Service/CRESST

Introduction

Test theory, as we usually think of it, is part of a package.  It encompasses

models and methods for drawing inferences about what students know and

can do—as cast in a particular framework of ideas from measurement,

education, and psychology.  This framework generates a universe of discourse:

the nature of the problems one defines, the kinds of statements one makes

about students, the ways one gathers data to support them.  Test theory, as we

usually think of it, is machinery for inference within this framework.

The emerging paradigm of cognitive psychology also generates a universe

of discourse, engendering its own kinds of scientific and applied problems,

suggesting alternative models for the nature and the acquisition of

competence, prompting new considerations about how to collect and interpret

evidence.  Just as under the standard testing paradigm, however, we face

such questions as:  What kinds of evidence are needed to support inferences

about students?  How much faith can we place in the evidence, and in the

statements?  Are elements of evidence overlapping, redundant, or

contradictory?  When must we ask different questions or pose additional

situations to distinguish among competing explanations of what we see?

Aspects of the models and methods that have been developed within the

framework of standard test theory can be extended, augmented, and

reconceived to address problems cast in a broader universe of discourse about

students’ learning.  It is necessary, however, to disentangle the statistics from

the psychology in standard test theory; to distinguish how we are reasoning

from what we are reasoning about.

1 An earlier version of this paper was presented at the annual meeting of the National Council
of Measurement in Education, Atlanta, April 1993.  Comments by the discussants Bob Glaser,
H.D. Hoover, and Dick Snow have been incorporated, along with comments from Isaac Bejar,
Kalle Gerritz, and Howard Wainer.
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To this end, the following section discusses the interplay of reasoning per

se and the universe of discourse in which a problem is framed.  Educational

testing within alternative psychological paradigms, and inferential tasks thus

entailed, are then considered.  Implications of cognitive psychology for test

theory are discussed and illustrated with examples from current projects.

Evidence and Inference

Inference is reasoning from what we know and what we observe to

explanations, conclusions, or predictions.  We are always reasoning in the

presence of uncertainty.  The information we work with is typically

incomplete, inconclusive, amenable to more than one explanation.  We must

apply in educational assessment many of the same skills needed in such fields

as troubleshooting, medical diagnosis, and intelligence analysis.  We attempt

to establish the weight and coverage of evidence in what we observe.  But the

very first question we must address is “Evidence about what?”  There is a

crucial distinction between data and evidence: “A datum becomes evidence in

some analytic problem when its relevance to one or more hypotheses being

considered is established. . . . [E]vidence is relevant on some hypothesis if it

either increases or decreases the likeliness of the hypothesis.  Without

hypotheses, the relevance of no datum could be established”  (Schum, 1987,

p. 16).

Test data, like clues in a criminal investigation, acquire meaning only in

relation to a network of conjectures.  The same observation can be direct

evidence for some conjectures and indirect evidence for others, and wholly

irrelevant to still others.  In criminal investigations, we construct our

conjectures around notions of the nature of crime, of justice, of proof, of

human nature itself (compare the proceedings of contemporary trials with

those of the Inquisition).  The conjecture we might entertain under one

conception of justice, let alone the kind of data we would seek to support it,

might not even be possible to express under an alternative conception.  In

educational assessment, we construct our conjectures around notions of the

nature and acquisition of knowledge and skill.

An example hints at directions we need to explore.  The Mathematical

Sciences Education Board (MSEB) recently published a collection of prototype

assessment tasks designed to allow children to “demonstrate the full range of
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their mathematical power, including such important facets as

communication, problem-solving, inventiveness, persistence, and curiosity”

(MSEB, 1993, p. iii).  Figure 1 is part of one task.  A National Research Council

newsletter stated that “rather than focusing on rote recall and routine

arithmetic, [the prototypes] measure the ability to understand and apply

higher-level concepts” (Push & Hicks, 1993, p. 7).

A graph and a series of questions may indeed stimulate interesting

mathematical thinking on the part of students.  They may, further, evoke

behavior that tells us something about that thinking—data that may turn out

to be useful evidence for conjectures we are interested in.  But they do not, in

and of themselves, “measure” anything.  Exactly what aspects of thinking do

we want to talk about, and how do we relate what we observe in this specific

situation to a more abstract level of discourse?  Do we want to speak beyond this

particular graph and set of questions, to, say, how students might handle

different questions about the same graph?  Or similar graphs with different

questions?  Or tasks that don’t involve graphs at all, but require explanations of

mathematical concepts?  Should we summarize our observations in terms of a

single aspect of students’ solutions or many? In terms of numbers, ordered

categories, qualitative distinctions, or some mixture of these?  We must start by

determining just what we want to talk about.

Paradigms

Thomas Kuhn (1970) used the term “paradigm” to describe a set of

interrelated concepts that frames research in a scientific field.  A paradigm

gives rise to what I’ve been calling a “universe of discourse.”  Of all the

phenomena that we can experience directly or indirectly, a paradigm focuses

on patterns in a circumscribed domain.  The patterns determine the kinds of

things we talk about; the characteristics, the particular things we say.  (In

formal scientific work, the patterns might be expressed as models; the

characteristics, as values of variables in models.)  A paradigm determines

what we construe as problems, and how we evaluate our attempts to solve

them.  Some examples of paradigms are Newtonian and quantum mechanics;

the geocentric and the heliocentric views of the solar system; and, most

pertinent to our present concerns, trait, behavioral, and cognitive

psychological paradigms.
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Robin

Lee

José
Pat

Dana

Alex

Prototype from Measuring Up

Six children are in a checkers tournament.  The figure below shows the results
of the games played so far.  Arrows point in the direction of the loser.  For
example, Alex won his game against Lee.

1. Who won the game between
 Pat and Robin?

2. Make a table showing the
 current standings of the six
 children.

© 1992 National Research Council

3. Dana and Lee have not played yet.
 Who do you think will win when they
 play? Explain why you think so.

Figure 1.  A mathematics task prototype.
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No paradigm is all-encompassing.  Birnbaum (1991, p. 65) describes the

view that “. . . problem-solving depends on the manipulation of relatively

fragmented and mutually inconsistent microtheories—each perhaps

internally consistent, and each constituting a valid way of looking at a

problem: ‘This will allow us to say, for example, that some [set of beliefs] is

more appropriate than some [other set of beliefs] when confronted with

problems of diagnosing bacterial infections.  Scientists are used to having

different—even contradictory—theories to explain reality . . . Each is useful in

certain circumstances’ (Nilsson, 1991, p. 45).”

Sometimes paradigms address overlapping phenomena.  When two

observers view the same event through the lens of different paradigms,

however, they attend to different aspects of what they see, and make different

connections to other concepts.  Where Priestly “saw” dephlogistated air,

Lavoisier “saw” oxygen (Kuhn, 1970, p. 118).  Confusion reigns when different

paradigms use the same words with different meanings, as the same

observation can lead to contradictory conclusions.  We shall discuss an

example from test theory below, concerning how to “account for the difficulty”

of assessment tasks.

Most scientific research is carried out within an existing paradigm.

Kuhn used the term “normal science” for solving the outstanding puzzles a

paradigm poses.  Normal science improves measurements, develops

inferential machinery, works out relationships in greater detail, extends ideas

to new situations, and integrates previously separate elements.  Applied

problem solving takes the same flavor.  The concepts and patterns of a

paradigm are taken as givens, into which the elements of a particular

application are mapped.  These structures guide data gathering,

interpretation, and decision making.

Kuhn studied “scientific revolutions,” in which a new major paradigm

displaces an existing paradigm.  A paradigm shift can be precipitated by a

paradigm’s failure to deal with some outstanding problem—perhaps a puzzle

that is intractable as framed in the existing paradigm, or a problem it cannot

frame at all.  New concepts arise; new relationships are highlighted.  Some

concepts and relationships overlap with those of the previous paradigm, as do

methodologies and phenomena addressed, but the essential organizing
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structure changes.  A paradigm shift redefines what scientists see as

problems, and reconstitutes their tool kit for solving them.  Previous models

and methods remain useful to the extent that certain problems the old

paradigm addresses are still meaningful, and the solutions it offers are still

satisfactory, but now as viewed from the perspective of the new paradigm.

Psychological Paradigms and Test Theory

Particular forms of tests and assessments represent particular forms of discourse,

that is, they produce particular ways of talking and communicating with others

about the schooling and education process.  (Berlak, 1992, p. 186)

I like this quotation for two reasons.  The first is that it connects how we

think about assessing with how we think about learning and teaching.  The

second was actually a reason I didn’t like it when I first saw it: the order is

backwards.  A conception of student competence and a purpose for assessment

should determine the kind of information one needs, which should in turn

suggest ways to get students to reveal something about their competencies,

that is, the forms of assessment.  But Berlak’s description does reflect common

practice.  Too often, an assessment form is adopted without conscious

consideration of the purpose of the assessment and the nature of competence

that should underlie the effort.  A universe of discourse is instantiated by

default, often presuming concepts and values of the paradigm that gave rise to

that form of assessment.

Making a rational choice of assessment methods requires thinking these

issues through.  The following sections discuss implications that the trait,

behaviorist, and cognitive psychological paradigms hold for test theory.  We

cannot deeply pursue here all the ways in which different purposes entail

different evidential requirements, even under a given conception of

competence (see Millman & Greene, 1989, on dimensions of purpose that also

shape the form of assessment).  Purposes mentioned in the following

discussion include selecting students into fixed alternatives, monitoring the

progress of groups of students, and planning instruction for individual

students.
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Trait Psychology and “Mental Measurement”

The most familiar tools of standard test theory began to evolve a century

ago under the paradigm of trait psychology, initially in a quest to “measure

people’s intelligence.”  Messick (1989, p. 15) defines a trait as “a relatively

stable characteristic of a person—an attribute, enduring process, or

disposition—which is consistently manifested to some degree when relevant,

despite considerable variation in the range of settings and circumstances.”

These invented (hence, inherently unobservable) numbers are proposed to

locate people along continua of mental characteristics, just as their heights

and weights locate them along continua of physical characteristics.

When Spearman used scores on knowledge and puzzle-solving tasks to

“measure intelligence,” the notion of a trait was not new.   Paul Broca and

Francis Galton had attempted to assess “intelligence” in the previous century,

Broca by charting cranial volumes, Galton by measuring reaction times.  Nor

was the idea of observing behavior in samples of standardized situations new.

Three thousand years ago the Chinese discovered that observation of an

individual’s performance under controlled conditions could support accurate

predictions of performance under broader conditions over a longer period of

time (Wainer et al., 1990, p. 2).  The essence of mental measurement was,

rather, a confluence of these concepts: identifying “traits” with tendencies to

behave in prescribed ways in these prescribed situations.  Variables so defined

were viewed as the way to characterize people—the psychology—and test

scores as the way to obtain the requisite evidence—the methodology:

“Intelligence is what tests of intelligence test, until further scientific

observation allows us to extend the definition” (Boring, 1923, p. 35).  As in

physical measurement, great care was taken to define the tasks, the conditions

under which they were administered, and the rules for mapping observations

to summary scores.

This psychology and the methodology suited the mass educational system

that also arose in the United States at the turn of the century (Glaser, 1981).

Educators viewed their challenge as selecting or placing large numbers of

students in instructional programs, when resources limited the amount of

information they could gather about each student, constrained the number of

options they could offer, and precluded much tailoring of programs to

individual students once the decision was made.  This view of the problem
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context encouraged building student models around characteristics that were

few in number, broadly construed, stable over time, applicable to wide ranges

of students, and discernible with data that were easy to gather and interpret.

A Brief History of Test Theory

Test theory research over the century exhibits the extensions,

generalizations, and increasing technical sophistication within a given

paradigm that mark “normal science”—in this case, within the paradigm of

characterizing people’s tendencies to behave in prescribed ways in prescribed

settings.  The inferential considerations that motivate these developments

merit a brief review because they transcend the substantive content of the

psychological paradigm under which test theory arose; analogous

considerations arise no matter which psychological paradigm underlies an

assessment.  We highlight the interplay between the substantive content of the

paradigm (the semantics) and the methodology of reasoning within the

paradigm (the syntax).

Edgeworth (1888, 1892) and Spearman (1904, 1907) launched classical test

theory (CTT) by applying mathematical models and statistical tools from

physical measurement to what were, under the paradigm, comparable

problems in mental measurement.  CTT views the average of 1-for-right/0-for-

wrong results from a sample of test items from a domain as a noisy measure

of an examinee’s “true score.”  While each individual item taps different skills

and knowledge in different ways for different people, a total score accumulates

over items a general tendency to answer items from the domain correctly, and

conveys direct evidence for conjectures about a variable so construed (Green,

1978).  Different random samples of tasks from the same domain, or parallel

tests, are alternate sources of information about tendencies to behave in the

prescribed manner in these situations.  Scores on parallel tests are direct

evidence, each with the same amount of weight and the same scope of

coverage, about the same true score.

The key inferential concept in test theory is conditional independence.

Stated generally, variables may be related in a population, but independent

given the values of another set of variables.  The paradigm of a field supplies

concepts, variables, and conditional independence relationships.  In CTT,

interest centers on the unobservable variable “true score,” with observable
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scores on parallel tests posited to be conditionally independent given true score.

Judah Pearl argues that inventing intervening variables such as true scores is

not merely a technical convenience, but a natural element in human

reasoning:

[C]onditional independence is not a grace of nature for which we must wait

passively, but rather a psychological necessity which we satisfy actively by

organizing our knowledge in a specific way.  An important tool in such

organization is the identification of intermediate variables that induce conditional

independence among observables; if such variables are not in our vocabulary, we

create them.  In medical diagnosis, for instance, when some symptoms directly

influence one another, the medical profession invents a name for that interaction

(e.g., “syndrome,” “complication,” “pathological state”) and treats it as a new

auxiliary variable that induces conditional independence; dependency between

any two interacting systems is fully attributed to the dependencies of each on the

auxiliary variable.  (Pearl, 1988, p. 44)

Spearman’s methodological insight (as distinct from his thoughts about

human abilities per se) was this: Conditional independence of observable test

scores, given an unobservable “intelligence” variable, would imply particular

patterns of relationships among the observable scores (Spearman, 1904, 1927).

This insight provides a framework for organizing observations, and for

quantifying and (at least in principle) disconfirming conjectures about

behavior in terms of hypothesized traits.  Test theorists have since been

working out the logic of inference in terms of unobservable variables: exploring

the possibilities and the limitations, developing statistical machinery for

estimation and prediction—in short, learning how to reason within the

paradigm of mental measurement.

The original indicator of a test’s evidential value under CTT was

reliability, the correlation between parallel forms in a specified population of

examinees.2  This definition reflects the classic norm-referenced usage of

tests: locating people along a single dimension, for selection and placement

decisions.  A high reliability coefficient indicates that a different sample of

tasks of the same kind would order the examinees similarly, leading to the

same decision about most of them.  Reliability is a sensible summary of the

2 Even if only one form of a test existed, an estimate of its reliability could be obtained
nevertheless from the internal consistency of its constituent elements; e.g., for tests of
exchangeable items, the average correlation among all possible half-tests, adjusted upwards to
account for their shorter length.
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evidence a test provides in this specific context (a particular group of students

and a domain of tasks), for this specific purpose (lining the students up

comparatively for selection or placement), under this specific psychological

paradigm (assuming that lining them up according to true scores would

capture what matters).  Reliability does not characterize the evidence test

scores might provide about other conjectures, even those framed within the

CTT paradigm; for example, whether a student’s true score is above a

specified cutoff value, or the magnitude of change in true score from pretest to

posttest.

Extending the Methodology to Behavioral Psychology

Messick’s phrase “relatively stable” softens the extreme early conception

of a trait—which might be described as “inborn and unchangeable”—and

acknowledges the extended range of phenomena to which the models and

methods of CTT came to be applied.  We hope that a student’s tendency to

perform well on mathematics tasks will change, through instruction and

experience.  At any given point in time, however, one might contemplate

gauging her overall proficiency with respect to specified domains of tasks, as

defined perhaps by this week’s lesson, or by a consensually defined collection

that “a minimally competent eighth grader” in her state “should be able to

answer.”  This usage extends the application of CTT machinery beyond the

original selection and placement decisions, to planning and evaluating

instruction from the perspective of behavioral psychology:

The educational process consists of providing a series of environments that permit

the student to learn new behaviors or modify or eliminate existing behaviors and to

practice these behaviors to the point that he displays them at some reasonably

satisfactory level of competence and regularity under appropriate circumstances.

The statement of objectives becomes the description of behaviors that the student is

expected to display with some regularity.  The evaluation of the success of

instruction and of the student’s learning becomes a matter of placing the student in

a sample of situations in which the different learned behaviors may appropriately

occur and noting the frequency and accuracy with which they do occur.  (Krathwohl

& Payne, 1971, pp. 17-18)

The familiar standardized achievement test consists of a sample of tasks

in an area of learning, and students’ “true scores” are tendencies to make

correct responses rather than incorrect responses, for example, or to write
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coherent rather than disjointed essays.  The object of inference in this case is

not a “trait” in Galton’s or Spearman’s sense, but simply a summary of a

behavioral tendency in a class of stimulus situations—an “overall proficiency”

in the prescribed domain of tasks.  CTT’s data-gathering methodologies and

inferential machinery for summarizing behavior in samples of prescribed

situations were thus extended to instructional problems cast in behavioral

psychology.

Generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972)

broadened the notion of the evidential value of an observed test score, taking

into account the conditions under which the data were obtained and how they

were to be used.  The statistical machinery of generalizability theory first

characterizes the variation associated with facets of observation, such as

samples of tasks and students, and, when judgment is involved, numbers and

assignment patterns of raters.  It can then quantify the evidence that scores

from an observational setting convey for such various inferences as

comparisons between examinees, of examinees against a fixed criterion, and

of changes over time; in terms of the domain of tasks as whole, with different

numbers or kinds of raters, in different subdomains (e.g., what does a

student’s narrative essay tell us about how well she can write friendly letters?),

and so on.  Generalizability theory expands the range of conjectures one can

address, but still within a universe of discourse in which inferences still

concern “overall tendency toward specified behavior in a specified domain,” as

defined from the point of view of the test designer.

Item Response Theory

A source of dissatisfaction with CTT early on was that its

characterizations of examinees (e.g., domain true score and percentile rank)

and tasks (e.g., percent-correct and item-test correlation) were tied to specific

collections of examinees and tasks. Item response theory (IRT; see Hambleton,

1989, for an overview) originated in the early 1940s as an attempt to

characterize examinees’ proficiency independently of the tasks they happened

to have taken, and tasks independently of the examinees who happened to take

them—a goal inspired by the analogy to physical measurement.  Like CTT,

IRT addresses examinees’ proficiency in a domain of tasks.  Beyond CTT, IRT

posits a functional relationship between proficiency and probability of correct
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response to a given item that is the same for all examinees.  That is,

differences in students’ chances of success are modeled as depending solely on

their values on the single overall-proficiency variable (e.g., tendency to mark

correct answers in this domain of test items).  Such a pattern cannot be

expected a priori for simply any domain of tasks and any group of students.

(And, as we discuss below, there are inferences for which this pattern is not

the one we need to model!)  However, when we do successfully construct an

assessment context in which observations do approximate this pattern, we are

justified in using a formal measurement framework to guide inference in that

context (Wright, 1977).

IRT helped solve practical problems that could be expressed in the mental

measurement paradigm but were poorly handled with CTT tools, such as

constructing tests with desired properties and tailoring tests to individual

examinees.3  The IRT formulation lends itself well to the machinery of

statistical inference.  The relationships among observable variables, and by

implication between observable and hypothesized unobservable variables, are

laid out more explicitly than in CTT.  Rapid progress has been made by

applying recent developments in statistics to IRT (e.g., Bock & Aitkin, 1981;

Lord, 1980; Mislevy, 1991).  And Georg Rasch (1960) solved a central theoretical

question of mental measurement by explicating the class of models under

which, if true, examinees could be compared independently of the items they

responded to, and items compared regardless of the sample of examinees who

responded to them.4  Note that these are all issues of how to reason within a

paradigm, of syntax within a universe of discourse.  Determining the real-

world contexts for which the models are appropriate is quite a separate issue.

In statistical framework, estimation tools strengthen inference under the

assumption that a model is correct.  Just as importantly, however, diagnostic

tools help determine when and where the model fails—at once improving

3 This is due to the use of a more powerful conditional independence relationship.  Rather than
CTT’s test level conditional independence of scores on parallel tests given true score, IRT is
based on item level conditional independence, namely responses to items given the
hypothetical proficiency variable.  One can thus combine evidence from individual test items
in far more flexible arrangements than parallel tests—at the cost, of course, of verifying a
more restrictive model.  It is important in a given application to explore how the particular
ways the model fails to fit will affect the particular inferences one wants to make.

4 See Andrich (1988) for a discussion of Rasch’s approach as a paradigm shift in test theory.
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applications within the paradigm and providing clues to see beyond it: “To the

extent that measurement and quantitative technique play an especially

significant role in scientific discovery, they do so precisely because, by

displaying serious anomaly, they tell scientists when and where to look for

new qualitative phenomena” (Kuhn, 1970, p. 205).  We shall say more in

Example 1 about the importance of diagnostic tools for using IRT in light of

results from cognitive psychology.

In addition to IRT, a separate stream of test theory research has been the

analysis of relationships among scores from different tests.  Factor analysis,

structural equations modeling, and multitrait-multimethod analysis all

address patterns in correlations among scores of several tests, in hopes of

better understanding the meaning of variables so defined.  A researcher might

seek to identify recurring patterns in tests with systematically varying tasks;

for example, looking for a broadly defined tendency to perform well on

scientific inquiry tasks, using scores from multiple-choice items, computer

simulations, and laboratory notebooks (Shavelson, Baxter, & Pine, 1992).

Additional tests with the same formats, but with, say, mathematics content,

might be added to see whether examinees vary systematically as to their

performance in various formats, as distinct from their proficiencies in the

content areas (Campbell & Fiske, 1959).

These correlational tools are the main way test theorists have sought to

establish the weight and coverage of evidence test scores provide for

inferences—in a word, validity. Early selection and placement applications

focused exclusively on the correlation between the scores used to make

decisions and the scores summarizing outcomes of subsequent programs,

calling this number the validity coefficient.  Contemporary views of validity

even within the paradigm (Messick, 1989) are considerably broader:

Validity is an integrated evaluative judgment of the degree to which empirical

evidence and theoretical rationales support the adequacy and appropriateness of

inferences and actions based on test scores or other modes of assessment. . . .

[W]hat is to be validated is not the test or observation device as such but the

inferences derived from test scores or other indicators—inferences about score

meaning or interpretation and about the implications for action that the

interpretation entails . . .

Different kinds of inferences from test scores may require a different balancing of

evidence, that is, different relative emphases in the range of evidence presented.
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By evidence is meant both data, or facts, and the rationale or arguments that

cement those facts into a justification of test-score inferences. . . . One or another

. . . forms of evidence, or combinations thereof, have in the past been accorded

special status as a so-called “type of validity” [e.g., content, criterion, predictive,

concurrent, and construct validity].  But because all of these forms of evidence bear

fundamentally on the valid interpretation and use of scores, it is not a type of

validity but the relation between the evidence and the inferences drawn that should

determine the validation focus.  (Messick, 1989, p. 13ff)

At its leading edge, if not in everyday practice, test theory for the mental

measurement paradigm has come of age—in the sense of having developed

methodological tools for gathering and interpreting data, and a coherent

conceptual framework for inference about students’ tendencies to prescribed

behaviors in prescribed settings.  The question is the extent to which the

inferences we now want to make for guiding and evaluating education can be

framed within this universe of discourse.

What Overall-Proficiency Measures Miss

Evidence can now be brought to bear on inferences about students’ overall

proficiency in behavioral domains, for determining a student’s level of

proficiency, comparing him to others or to a standard, or gauging change

from one point in time to another.  Summarizing competence in these terms

suits the kinds of low-resource, long-lasting decisions it was designed for:

sorting, assigning, or selecting students into educational activities—

presumably with the general objective of helping students become more

proficient.  Conjectures about the nature of this proficiency or how it develops

fall largely outside the mental-measurement paradigm’s universe of

discourse.  As Stake (1991, p. 245) notes, “The teacher sees education in terms

of mastery of specific knowledge and sophistication in the performance of

specific tasks, not in terms of literacy or the many psychological traits

commonly defined by our tests.”

Cronbach and Furby’s (1970) “How should we measure ‘change’—or

should we?” reflects the frustration of recognizing vital questions beyond a

paradigm’s reach.  After cogently analyzing the subtleties of inference about

change under CTT, they lament an overarching inadequacy of all of the

techniques they discuss:
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Even when [test scores] X and Y are determined by the same operation [e.g., a given

CTT or IRT model for specified behavior in a specified domain of tasks], they often

do not represent the same psychological processes (Lord, 1958).  At different stages

of practice or development different processes contribute to the performance of a

task.  Nor is this merely a matter of increased complexity; some processes drop out,

some remain but contribute nothing to individual differences within an age group,

some are replaced by qualitatively different processes.  (p. 76)

The criterion-referenced testing movement of the 1960s (e.g., Glaser, 1963)

attempted to bring the machinery of the mental measurement paradigm to

bear on instructional problems by defining behavioral domains with greater

specificity, so that educators could infer in detail what students could and

could not do.   Merely providing detailed descriptions of performance proves

insufficient to make test scores relevant, however, if it fails to address the

underlying knowledge, skills, and strategies that lead to performance and

serve as the foundation for further development (Glaser, 1981).

Implications of Cognitive Psychology for Test Theory

Most contemporary research into human abilities takes place within

neither the trait nor behavioral psychological paradigms, but within what has

come to be called the cognitive paradigm.  Cognitive functions include “such

activities as perceiving relationships, comparing and judging similarities and

differences, coding information into progressively more abstract forms,

classification and categorization, memory search and retrieval” (Estes, 1981,

p. 11), and, more to our point, learning and problem solving.  Cognitive

psychology explores just how it is that people do these things.  Three working

propositions from cognitive psychology (paraphrasing Lesh & Lamon, 1992,

p. 60) hold implications for education:

1. People interpret experience and solve problems by mapping them to
internal models.

2. These internal models must be constructed.

3. Constructed models result in situated knowledge that is gradually
extended and decontextualized to interpret other structurally similar
situations.  With use, aspects of mapping and problem solving become
automated.
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People Interpret Experiences and Solve Problems by Mapping Them to Models

Knowledge structures have been studied as “mental models” (Johnson-

Laird, 1983), “frames” (Minsky, 1975), and “schemas” (Rumelhart, 1980).  A

schema (using Rumelhart’s term inclusively for convenience) can be roughly

thought of as a pattern of recurring relationships, with variables that in part

determine its range of applicability.  Associated with this knowledge are

conditions for its use.  Rumelhart (1980, p. 33ff) views schemas as “the building

blocks” of cognition: “Schemata are employed in the process of interpreting

sensory data (both linguistic and nonlinguistic), in retrieving information

from memory, in organizing actions, in determining goals and subgoals, in

allocating resources, and, generally, in guiding the flow of processing in the

system.”

Moreover, “it looks like schemas are the key to understanding expertise”

(VanLehn, 1988, p. 49).  While experts in various fields of learning do generally

command more facts and concepts than novices, and have richer

interconnections among them, a key distinction lies in their ways of viewing

phenomena, and representing and approaching problems (e.g., Chi, Feltovich,

& Glaser, 1981, on physics; Lesgold, Feltovich, Glaser, & Wang, 1981, on

radiology; and Voss, Greene, Post, & Penner, 1983, on social science).  The

advanced concepts that college physics students acquire can be organized

around informal associations or naive misconceptions (Caramazza,

McCloskey, & Green, 1981).  They tackle problems less effectively than expert

physicists, whose more appropriate schemas lead them to the crux of the

matter (Chi et al., 1981):

Schemata play a central role in all our reasoning processes.  Most of the reasoning

we do apparently does not involve the application of general purpose reasoning

skills.  Rather, it seems that most of our reasoning ability is tied to particular

bodies of knowledge. . . . Once we can “understand” the situation by encoding it in

terms of a relatively rich set of schemata, the conceptual constraints of the

schemata can be brought into play and the problem readily solved.  It is as if the

schema already contains all of the reasoning mechanism ordinarily required in

the use of the schemata.  Thus, understanding the problem and solving it is nearly

the same thing.  (Rumelhart, 1980, p. 55ff)
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Internal Models Must Be Constructed

A schema is “instantiated” when we perceive some of its relationships in

a situation, which focuses our attention on filling in other variables, inferring

additional relationships, and checking for specifics at odds with usual

expectations.  Much of this activity is unconscious and automatic, as when we

process individual letters in the course of reading a text.  Sometimes aspects of

it are conscious and deliberate, as when we try to determine the text’s

implications.  “The total set of schemata instantiated at a particular moment

in time constitutes our internal model of the situation we face at that moment

in time” (Rumelhart, 1980, p. 37).  No act of cognition is purely passive or data-

driven; we must ever and always construct meaning, in terms of knowledge

structures we have created up to that point in time.  Thus,

. . . it is useful to think of a schema as a kind of informal, private, unarticulated

theory about the nature of events, objects, or situations that we face. The total set of

schemata we have available for interpreting our world constitutes our private

theory of the nature of reality.  (Rumelhart, 1980, p. 37)

Situated Knowledge Is Extended and Decontextualized; Procedures Are
Automated.

If perception is an active process (selecting, building, and tailoring

representations from currently available schemas), then learning is all the

more dynamic: extending, modifying, and replacing elements to create new

structures.  In some cases learning is merely adding bits to existing

structures.  Sometimes it involves generalizing or connecting schemas.  Other

times it involves wholesale abandonment of major parts of schemas, with

replacement by qualitatively different structures (Rumelhart, 1980).  The

parallels between the development of personal knowledge within an individual

and public knowledge in scientific community have not gone unnoticed:

The process of knowledge acquisition can be conceptualized as involving different

kinds of changes; some require the enrichment of existing knowledge structures,

and others require the creation of altogether new structures.  Current discussions of

the notion of restructuring in knowledge acquisition differentiate between weak

and radical restructuring.  Weak restructuring involves the creation of new,

higher-order relations between existing concepts, whereas radical restructuring

involves a fundamental change in schemata, similar to paradigm shifts in the

history of science.  (Vosniadou & Brewer, 1987, p. 62)
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Far less is known about actual mechanisms underlying these changes

than about conditions that seem to facilitate them (the bottom line for educators

anyway): One encounters a situation with enough that is familiar to make it

meaningful for the most part, but with unanticipated patterns or

consequences.  Vosniadou and Brewer (1987) suggest Socratic dialogues and

analogies as pedagogical techniques to facilitate restructuring.  Using them

effectively requires taking into account not only the target knowledge

structures, but the learner’s current structures.  Lesh and Lamon (1992, p. 23)

describe the use of case studies in fields where the goals of instruction are

associated with the construction of models for building and understanding

complex systems.  Relationships in the specific case are highlighted as the

foundation of recurring patterns, which are then related to other specific cases

to promote the construction of more general encompassing structures.

With practice, some kinds of information processing are automatized, or

“compiled.”  Young children learn to recognize letters and words with

concentration and conscious effort; practiced readers are practically unaware

of individual words as they grapple with the concepts, the motivations, the

implications of the texts they encounter.  Similar phenomena occur in every

field of learning.  A skilled roentgenologist, for example, quickly identifies a

spot in a chest X-ray as a tumor, although to a novice it looks like any other

shadow on the plate (Lesgold et al., 1981).

Are Schemas “Real”?

The previous sections fall into the easy style of talking about schemas as if

they correspond directly to something inside people’s heads—not at all unlike

the language of intelligence testing.  But the reality of knowledge structures as

we have described them is actively debated in the artificial intelligence (AI)

community.  Rodney Brooks’s mechanical “creatures” display such complex

activities as following people around a room and finding electrical outlets to

recharge their batteries, using only layers of parallel primitive units that

communicate in primitive ways.  Although a schema theory could “explain”

his creatures’ behavior, Brooks (1991) emphasizes that they incorporate no

central representation of concepts.  In contrast, most AI researchers do

explicitly code the relationships that constitute concepts into their programs,

and others,
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. . . connectionists[,] seem to be looking for explicit distributed representations to

spontaneously arise from their networks.  We harbor no such hopes because we

believe representations are not necessary and appear only in the eye or mind of the

observer.  (Brooks, 1991, p. 154)

For cognitive science, determining the locus and mechanisms of

knowledge structures is the paramount objective.  With the benefit of

hindsight, our successors may see this as a guiding vision to exciting

breakthroughs, or as naive a dead end as the alchemists’ quest to transform

lead into gold.  Schema theory has today the ontological status Spearman’s g

had nearly a century ago: a conceptual tool for talking about certain patterns

that seem to recur in human behavior, possibly useful for solving some

practical problems.  For educators, the objective is discovering when and how

planning instruction in this framework helps students learn.  For those of us

in test theory, the objective is determining how to gather and interpret

information to guide these efforts.  If nothing else, the cognitive paradigm

generates, where the trait paradigm could not, a common universe of

discourse for learning and assessment.

Considerations for Test Theory

Essential characteristics of proficient performance have been described in various

domains and provide useful indices for assessment.  We know that, at specific

stages of learning, there exist different integrations of knowledge, different forms

of skill, differences in access to knowledge, and differences in the efficiency of

performance.  These stages can define criteria for test design.  We can now propose

a set of candidate dimensions along which subject-matter competence can be

assessed.  As competence in a subject-matter grows, evidence of a knowledge base

that is increasingly coherent, principled, useful, and goal-oriented is displayed,

and test items can be designed to capture such evidence.  [emphasis original]

(Glaser, 1991, p. 26)

We must begin every application by asking “What do we want to make

inferences about?” and “Why do we want to make them?”  The answers should

be driven by the nature of the knowledge and skills we want to help students

acquire, the psychology of acquiring that knowledge, and a determination of

who will use the information (teachers, parents, legislators, researchers, the

students themselves) and how they will use it.  There is no single “true” model

for educational testing, but only models more or less useful for various

purposes, by virtue of the information they convey.  There is no single “best”
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method for gathering data, but only methods more or less effective at evoking

evidence for the inferences to be made.  These factors can vary dramatically

across applications, with seemingly antithetical approaches sharing only a

mandate to provide information consistent with a conception of how

competence develops in a learning area; for example:

• John Anderson’s intelligent tutoring systems (ITSs; see, e.g.,
Anderson & Reiser, 1985) characterize competence in a domain such
as LISP programming as the capacity to utilize a specified set of
production rules, or condition-action relationships.  The tutor models a
student in terms of which production rules she has mastered, and
estimates her current status from the frequency with which she
employs production rules in appropriate situations.  These estimates
are the basis of comments to the student, problem selection, and
subsequent instruction.  All students are expected to incorporate these
production rules in their eventual model, regardless of the exact
structure any student actually internalizes (e.g., understandings may
be very different for a student who enters already knowing FORTRAN),
and only apparent production-rule usage is monitored.  Thus, not all
aspects of the structures of students’ developing knowledge are
modeled—only key aspects deemed sufficient to guide instruction and
monitor targeted competencies.

• The American Council on the Teaching of Foreign Languages
(ACTFL) Proficiency Guidelines describe stages of developing
language in reading, writing, speaking, and listening (ACTFL, 1989).
Table 1 contains excerpts from the reading guidelines.  These generic
scales are based on theories of language acquisition, as observed
across languages; guidelines for specific languages help examiners
map observed behavior to this more abstract frame of reference.  Note
the guidelines’ distinction between familiar and unfamiliar contexts.
Since what’s familiar to one student is unfamiliar to another, the
same behavior from two students can lead to different interpretations
in light of additional information.  Note also that the grain-size of these
guidelines is too coarse for specific instructional guidance.  Two Mid-
Novice students, for example, might require different experiences to
progress to High-Novice.  Finally, note that mapping behavior to the
ACTFL guidelines requires judgment.  We shall return in Example 2
to the problem of making abstractly stated guidelines meaningful in
practice.

Whatever the paradigm, learning area, or assessment method, whenever

the results affect education we are responsible for assuring that the weight

and coverage of evidence are appropriate to their use.  As Messick (1992, p. 2)

points out, “validity, reliability, comparability, and fairness are not just

measurement issues, but social values that have meaning and force outside of
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Table 1

Excerpts from the ACTFL Proficiency Guidelines for Reading

Level Generic Description

Novice-Low Able occasionally to identify isolated words and/or major phrases when strongly supported by context.

Novice-Mid :

Novice-High :

Intermediate-Low :

Intermediate-Mid Able to read consistently with increased understanding simple connected texts dealing with a variety of basic and
social needs . . . They impart basic information about which the reader has to make minimal suppositions and to which
the reader brings personal information and/or knowledge.  Examples may include short, straightforward descriptions
of persons, places, and things, written for a wide audience. [emphasis added]

Intermediate-High :

Advanced Able to read somewhat longer prose of several paragraphs in length, particularly if presented with a clear underlying
structure. . . . Comprehension derives not only from situational and subject matter knowledge but from increasing
control of the language.  Texts at this level include descriptions and narrations such as simple short stories, news
items, bibliographical information, social notices, personal correspondence, routinized business letters, and simple
technical material written for the general reader. [emphasis added]

Advanced-Plus . . . Able to understand parts of texts which are conceptually abstract and linguistically complex, and/or texts which
treat unfamiliar topics and situations, as well as some texts which involve aspects of target-language culture.  Able to
comprehend the facts to make appropriate inferences. . . . [emphasis added]

Superior Able to read with almost complete comprehension and at normal speed expository prose on unfamiliar subjects and a
variety of literary texts.  Reading ability is not dependent on subject matter knowledge, although the reader is not
expected to comprehend thoroughly texts which are highly dependent on the knowledge of the target culture. . . . At the
superior level the reader can match strategies, top-down or bottom-up, which are most appropriate to the text. . . .

Distinguished :

Note.  Based on the ACTFL Proficiency Guidelines, American Council on the Teaching of Foreign Languages (1989).



measurement wherever evaluative judgments and decisions are made.”  This

is where test theory, broadly construed, comes in.  It means defining what we

wish to accomplish, specifying what we need to know about students to achieve

it, and constructing a framework in which we can determine how well we’re

doing.  Only then can we tell if we’re succeeding, see where we are falling

short, and glean clues to improve efforts to achieve our stated goals.

The paragraphs below discuss pervasive issues that arise when one

attempts to frame assessment within a cognitive paradigm.  The discussion is

general and discursive, but each issue holds specific implications for models

and methods in any given application.  The examples that follow the

discussion, therefore, will show how we grapple with some of these issues in

three current projects.

The nature of the “student model.”  Test theory is statistical machinery for

reasoning from students’ behavior to conjectures about their competence, as

framed in a particular conception of competence.  In a particular application,

this conception takes the form of a set of aspects of skill and knowledge that are

important for the job at hand, be it guiding further instruction or

summarizing the stages of competence students have reached.  These are the

variables in a “student model,” as I use the term: a simplified description of

selected aspects of the infinite varieties of skills and knowledge that

characterize real students.  Depending on the purpose, one might distinguish

from one to hundreds of aspects.  They might be expressed in terms of

numbers, categories, or some mixture; they might be conceived as persisting

over long periods of time, or apt to change at the next problem-step.  They

might concern tendencies in behavior, conceptions of phenomena, available

strategies, or levels of development.  These variables are not directly

observable.  We observe only students’ behavior in limited circumstances—

indirect evidence about competence as more abstractly conceived in the student

model.

My use of the term “student model” is much broader than its typical use in

AI, where “student model” usually means “runnable model,” or a set of rules

and conditions for their use that can be applied to provide an answer to any

problem in a domain of interest (Clancey, 1986).  As in Anderson’s LISP tutor,

this can include incomplete or erroneous rules, to mimic the behavior of
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students with incomplete or erroneous understandings.  In my usage, this is

indeed an instance of a student model; but so are “domain true scores” from

CTT, status on ACTFL scales of demonstrated capabilities in second language,

and categorizations of mastery of generally-stated skills in high school

algebra—none “true,” yet all potentially useful for certain real-world

educational problems.

Obviously any student model oversimplifies the reality of cognition

(whatever that may be!).  In real-world educational assessment, utility is the

bottom line.  Greeno (1976, p. 133) points out that “it may not be critical to

distinguish between models differing in processing details if the details lack

important implications for quality of student performance in instructional

situations, or the ability of students to progress to further stages of knowledge

and understanding.”5   For immediate feedback for short-term instructional

decisions, as in intelligent tutoring systems, there is a need for more detail in

the student model.  Enough information may be otherwise available about the

student, however, that great detail is not required over a broad range of aspects

of competence, but only those involved in the immediate decision.  For

accountability purposes, a coarser grain-size will suffice, although ideally the

student model should be construed as a collapsing of a model that makes sense

at the fine grain-size (see Example 1 below).  Coherence of competence models

in this manner allows feedback to be consistent with the learning model, even

if it does not provide sufficient detail for all purposes under that conception.

The student’s point of view.  When assessment inferences are grounded

in the cognitive paradigm, one must determine the extent to which the student

model should reflect the student’s perception of the tasks in the domain.  The

standard mental measurement paradigm attends to the problem stimulus

only from the tester’s point of view, administering the same tasks to all

examinees and recording outcomes in terms of behavior categories applied in

the same way for all examinees.  Behavior constitutes direct evidence about

behavioral tendencies.  But in problem solving, “the search process is driven by

5 An analog is the Smith & Wesson “Identikit,” which helps police construct likenesses of
suspects.  Faces differ in infinitely many ways, and skilled police artists can sketch
infinitely many possibilities to match witnesses’ recollections.  Communities that can’t
support a police artist use an Identikit, a collection of face shapes, noses, ears, hair styles, and
so on, that can be combined to approximate witnesses’ recollections from a large, though finite,
range of possibilities.  The payoff lies not in how close the Identikit composite matches the
suspect, but whether it aids the search enough to justify its use.
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[the] products of the understanding process, rather than the problem stimulus

itself” (VanLehn, 1988, p. 6).  Because different knowledge structures can lead

to the same behavior, observed behavior constitutes indirect evidence about

cognitive structure.  Increasingly many right/wrong item responses drive the

uncertainty about a student’s true score to zero without providing insight into

the skills and strategies she employs.

Again the guiding principle is purpose.  For example, effective tutoring

demands an understanding of individuals’ current knowledge.  Instruction

based on analogy fails when students are not familiar with the context and

relationships the analogy is meant to extend.  The relevant questions for

tutoring are not “How many items did this student answer correctly?” or “What

proportion of the population would have scores lower than his?” but, in

Thompson’s (1982) words, “What can this person be thinking so that his

actions make sense from his perspective?” and “What organization does the

student have in mind so that his actions seem, to him, to form a coherent

pattern?”  On the other hand, behavioral summaries may suffice for

monitoring progress, as long as appropriate mechanisms are in place to guide

progress along the way.  Coaches find it useful to chart pole vaulters’ highest

jumps to track performance, even though details of form, approach, and

conditioning must be addressed to improve performance.  Examples 1 and 2

below show how CTT and IRT, with their purpose and usage properly

(re)conceived, can serve this monitoring function in ways compatible with a

conception of how proficiency develops.

Compared with inference about behavioral tendencies, a chain of

inference that ends with conjectures about knowledge structures has

additional links, additional sources of uncertainty, that require us to work both

harder and smarter.  Working harder means, first, knowing how competence

in the domain develops.  The inferential challenges we routinely face under

the standard mental measurement paradigm, such as limited information

and multiple sources of uncertainty, do not disappear when interest shifts to

inference about cognitive structure.  But principled reasoning now demands,

in addition to theory about inference under uncertainty, theory about the

nature and acquisition of competence in the domain.  What are the important

concepts and relationships students are to learn, and how do they learn them?

What evidence must we see to gauge their progress, and help determine what
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they should do next?  Working harder also means having to gather more

evidence—typically not just more of the same kind of data, as in CTT and IRT,

but of multiple kinds of evidence—if we want to disambiguate competing

explanations of behavior (Martin & VanLehn, in press).  And gathering and

interpreting direct evidence for development over time or for productive

performance requires more resources than the indirect evidence provided by

familiar achievement tests.

It follows that working smarter first means being clear about exactly

what inferences we want to make.  This done, working smarter next means

using strategies and techniques analogous to those long used to make

inference under the mental measurement paradigm more efficacious:

knowing exactly what it is we want to make inferences about, so we don’t

waste resources collecting data that hold little value as evidence for our needs.

Identifying, then reducing, sources of uncertainty all along the chain of

inference, as when training judges to use a rating scheme, or tuning tasks to

evoke evidence about the skills of interest while eliminating extraneous

sources of difficulty.  Using data-capture technologies to reduce costs (e.g.,

Bennett, 1993, on AI scoring).  Capitalizing on statistical design and analysis

concepts to increase efficiencies (e.g., Shoemaker, 1975, on matrix sampling

for assessing groups rather than individuals).  Finally, working smarter

means recognizing the role of conditionality in inference.

The role of conditionality in inference.  The “traits” that achievement tests

purportedly measure, such as “mathematical ability,” “reading level,” or

“physics achievement,” do not exist per se.  While test scores do tell us

something about what students know and can do, any assessment task

stimulates a unique constellation of knowledge, skill, strategies, and

motivation within each examinee.  To some extent in any assessment

comprising multiple tasks, what is relatively hard for some students is

relatively easy for others, depending on the degree to which the tasks relate to

the knowledge structures that students have, each in their own way,

constructed.  From the behavioral perspective, this is “noise,” or measurement

error, leading to low reliability or low generalizability under CTT, low item

discrimination parameters or low person-separation indices under IRT.  It

obscures what one is interested in under that perspective, namely, locating

people along a single dimension as to a general behavioral tendency; tasks that
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don’t line up people in the same way are less informative than ones that do.

(Hence the so-called “low generalizability” phenomenon often associated with

performance assessment; Shavelson et al., 1992.)

These interactions are fully expected from the cognitive perspective, since

knowledge typically develops first in context, then is extended and

decontextualized so it can be applied more broadly to other contexts.  How to

handle interactions depends again on the way competence develops in the area

of interest and on purpose of assessment.  The same task can reveal either

vital evidence or none at all, depending on the relationship of the information it

carries to what is known from other sources of information.  The test theory of

the standard mental measurement paradigm does not address this principle

at the level of the tasks, but at the level of the combined test score.  The greater

investment that each task demands and the more contextual knowledge it

demands, the less efficient this approach becomes.  The in-depth project that

provides solid assessment information and a meaningful learning experience

for the students whose prior knowledge structures it dovetails becomes an

unconscionable waste of time for students for whom it has no connection.

Consider, for example, a course that helps middle school students

developing their understandings of proportionality.  Each student might begin

in a context with which she was personally familiar, perhaps dividing pizzas

among children or planning numbers of fish for different sized aquariums.

Early assessment would address each student’s understanding of

proportionality, conditional on the context in which she was working.  Having

everyone answer a question about the same context or about a randomly-

selected context would not be an effective way to gather evidence about learning

at this stage.  Over the next few weeks, each student might carry out several

investigations, eventually moving to unfamiliar contexts.  Now a random

sample of tasks would be a useful check on the degree to which each student,

starting from his or her own initial configuration of knowledge, had developed

a schema general enough to apply to all the contexts in the lesson.  A final

project might challenge students to push proportionality concepts in contexts

they chose themselves.  Judges would map performance in possibly quite

different contexts to a common framework of meaning, rating the degree to

which various aspects of understanding had been evidenced.  As in the early
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assessment, inference at this higher level of competence would be again

conditional on the context in which it has been evinced.

We can now see how such an apparently straightforward term as

“difficulty” can take contradictory meanings under different paradigms.  We

agree that when students respond to different assessment tasks, our

inferences should somehow “take the difficulty of the tasks into account.”  But

difficulty from whose point of view?  The examiner’s, in ignorance about the

student, or the student’s?  The true concern is a deeper question: Given

observations in different settings, how do we draw inferences about

competence as defined in such-and-such a way?  The same data can have

different meanings under two different conceptions of competence.  The word

“difficulty” may be used in each case, but to describe qualitatively different

patterns among people, skills, and performances—neither right or wrong,

both well-defined and useful within their respective universes of discourse:

• For inferences about overall proficiency in a domain of prespecified
tasks, “difficulty” is defined empirically from the tester’s point of view.
Under CTT, “difficulty” means the proportions of people who would
answer an item correctly.  Under IRT, it means items’ relative
likelihoods of correct response at different levels of overall proficiency.6
Suppose we must predict whether Mary or Charlie would correctly
answer more tasks from a domain, knowing only that Mary succeeded
on a task most people missed and Charlie succeeded on a task most
people got right.  The smart money is on Mary.

• From the cognitive perspective, “knowing a task’s difficulty” means,
for a given student, knowing how to interpret the evidence her
performance conveys about her competence, in light of how
competence develops in the domain.  This may require interpretation
in light with other information.  For example, knowing the reader’s
familiarity with the content of a text is important for interpreting her
behavior in terms of the ACTFL levels.  Securing additional
information can be explicit, such as knowing she studied Spanish, or
implicit, such as knowing that this was the problem context she chose
(e.g., give a talk on a topic you have done research on).  In light of
additional information, the same observed behavior can have different
implications for different students, while different behaviors can map
to the same conclusion.

For example, consider the two tasks, (a) What is the word for “pencil” in

Spanish? and (b) What is the word for “pencil” in Russian?  In terms of

6 The same ideas generalize to measured responses and to ordered levels of response quality.
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specified-behavior-in-a-specified-domain, the Russian task is “more difficult”

for American college students simply because fewer know Russian than know

Spanish.  A correct answer to the Russian task “is awarded more credit” than

a correct answer to its Spanish counterpart, in terms of expectations for

responses to items in the domain not yet observed.  But suppose that in

learning both languages, “pencil” is frequently used (one of the 1000 most

common words) and is introduced at a similar point in classes.  If the

competence of interest is “development along the ACTFL scale in a foreign

language,” then the evidence for ACTFL proficiency from either item for an

examinee studying that language will be similar.  The items are “equally

difficult” from this perspective.

Examples

Example 1: Integrating Cognitive and Psychometric Models to Measure
Document Literacy

Summary test scores, and factors based on them, have often been thought of as

“signs” indicating the presence of underlying, latent traits. . . . An alternative

interpretation of test scores as samples of cognitive processes and contents, and of

correlations as indicating the similarity or overlap of this sampling, is equally

justifiable and could be theoretically more useful.  The evidence from cognitive

psychology suggests that test performances are comprised of complex assemblies of

component information-processing actions that are adapted to task requirements

during performance.  The implication is that sign-trait interpretations of test

scores and their intercorrelations are superficial summaries at best.  At worst, they

have misled scientists, and the public, into thinking of fundamental, fixed entities,

measured in amounts.  Whatever their practical value as summaries, for

selection, classification, certification, or program evaluation, the cognitive

psychological view is that such interpretations no longer suffice as scientific

explanations of aptitude and achievement constructs.  (Snow & Lohman, 1989,

p. 317)

Snow and Lohman note that sometimes it really is useful to know how

proficient students are in certain domains of problems, as indicated by their

performance on a sample of them.  But while the trait and behavioral

paradigms end with statements about tendencies in behavior, a cognitive

perspective can offer benefits even when we do use standard test theory to

gather evidence in such applications:
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• Defining and structuring the domain of tasks.

• Enriching the interpretation of scores.

• Reducing costs and gaining efficiencies.

• Improving the quality of the tasks.

• Identifying students for whom the single-number score is misleading.

This section illustrates some of this potential in a line of research being

pursued by Kathy Sheehan and me.  We focus here on the measure of

document literacy introduced in the Survey of Young Adult Literacy (SYAL;

Kirsch & Jungeblut, 1986).  SYAL included 63 tasks designed to evoke the skills

needed to locate and use information contained in non-prose formats such as

forms, tables, charts, signs, labels, indexes, schematics and catalogs.  Most of

the tasks require open-ended responses.  For example, respondents were

directed to fill in a deposit slip, determine eligibility from a table of employee

benefits, and follow a set of directions to travel from one location to another

using a map. Interviewers administered the tasks to a nationally

representative sample of approximately 3,600 young adults.  In addition to

information about responses to individual tasks, the survey was charged with

providing summaries of performance in the population.  To this end, an IRT

model was fit, and distributions of overall proficiency in terms of an IRT

variable were produced.

An item response theory (IRT) model gives the probability that an

examinee will make a particular response to a particular test item as a

function of unobservable parameters for that examinee and that item.  Our

example uses the Rasch for dichotomous items:

P X j = x j | , j( ) =
exp x j − j( )[ ]
1 + exp − j( )[ ] , (1)

where Xj is the response to Item j (1 for right, 0 for wrong);  is the examinee

proficiency parameter; and j  is the difficulty parameter for Item j.  Rewriting

this expression as the logarithm of the odds that the respondent would respond

correctly (denoted P j1( )) as opposed to incorrectly (P j0 ( )) focuses attention on
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the presumed lack of interaction between the difficulty of an item and

individual respondents:

n P j1( ) P j 0 ( )[ ] = − j . (2)

The IRT model, in and of itself, simply does not address the question of

why some items might be more or less difficult than others.  Fitting an IRT

model is an empirical exercise, capturing and quantifying the patterns that

some people tend to answer more items correctly than others, and some items

tend to be answered correctly less often than others.  The conception of

document literacy competence embodied by the IRT model is simply the

tendency to perform well in the domain of tasks.

From a cognitive perspective, what makes a task difficult for a particular

individual is the match-up between her knowledge structure and the demands

of the task.  As discussed above, these match-ups can vary substantially from

one person to another for any given task.  An IRT item difficulty parameter

captures only a population-level characteristic, the relative ordering of items

on the average.  The summaries of the difficulties of items and the

proficiencies of persons that the IRT parameters embody miss information to

the extent that items are hard for some people and easy for others.

It is sometimes possible, nevertheless, to characterize tasks from an

expert’s point of view—that is, in terms of the knowledge, operations, and

strategy requirements, and working memory load of an ideal solution.  One

may thus gain insights into the features of tasks that tend to make them

relatively easy or hard in a population of examinees.  For example,

Scheuneman, Gerritz, and Embretson (1991) accounted for about 65% of the

variance in item difficulties in the Reading section of the National Teacher

Examination (NTE) with variables built around syntactic complexity, semantic

content, cognitive demand, and knowledge demand.

Scheiblechner (1972) and Fischer (1983) integrated such cognitive

information into IRT with the Linear Logistic Test Model (LLTM), which

models Rasch item difficulty parameters as linear functions of effects that

correspond to key features of items.  Mislevy (1988) extended the LLTM to allow

30



for variation of difficulties among items with the same key features, by

incorporating a residual term to yield

j = qkj
k =1

K

∑ k + j , (3)

where k  is the contribution of Feature k to the “difficulty” of an item, for

k=1,...,K item features; qkj  is the extent to which Feature k is represented in

Item j; and j is a N(0, 2) residual term, with (estimated) variance 2.

Sheehan and Mislevy (1990) implemented this model with item features

from Mosenthal and Kirsch’s (1991) cognitive analysis of the difficulty of

document literacy tasks.  Their system begins by characterizing the

information contained in documents and document task directives according

to three basic levels of organization: (a) the organizing category, (b) the specific

category, and (c) the semantic feature.  Semantic features are bits of

information that belong to specific categories, which are nested within distinct

organizing categories.   Specific categories can also be nested within other

specific categories; complex documents can have several levels of nested

specific categories.  Using this characterization, Kirsch and Mosenthal

defined three classes of variables they expected to correlate with task difficulty:

(a) variables that characterize the length and organizational complexity of the

materials which document tasks refer to; (b) variables that characterize the

length and organizational complexity of task directives; and (c) variables that

characterize the difficulty of the task solution process.  They are listed in

Table 2.

These features accounted for about 80% of the variance of the IRT task

difficulty parameters ( ).  The structural complexity of material and directives

were important factors, but the highest contributions were associated with

process variables.  The details of such analyses help item writers control the

difficulty of the tasks they develop.  No items in this study were exceptionally

easier or harder than their modeled features would suggest.  Such outliers

would direct item writers’ attention to tasks that might be unexpectedly

difficult for irrelevant reasons, or unexpectedly easy because of unintended

cues.
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Table 2

Task Features Codings for the Document Literacy Model

Materials variables

(1) The number of organizing categories in the document;

(2) The number of organizing categories in the document that are embedded;

(3) The deepest level of embedding for an organizing category;

(4) The number of specific categories in the document;

(5) The number of specific categories in the document that are embedded; and

(6) The deepest level of embedding for a specific category.

Directive variables

(1) The number of organizing categories in the directive;

(2) The number of organizing categories in the directive that are embedded;

(3) The deepest level of embedding for an organizing category;

(4) The number of specific categories in the directive;

(5) The number of specific categories in the directive that are embedded; and

(6) The deepest level of embedding for a specific category.

Process variables

(1) Degree of Correspondence.  This variable is scored on a one-to-five integer scale.  It
indicates how explicitly the information requested in the directive or question matches
the corresponding information in the text, with higher values indicating less explicit
correspondence and therefore, more difficulty.  For example, tasks requiring a single
literal match are scored one, tasks requiring an inferential text-based match are scored
three, and tasks requiring matches based on specialized prior knowledge are scored
five.

(2) Type of Information.  This variable concerns the type and number of restrictive
conditions that must be held in mind when identifying and matching features.  Lower
values on a one-to-five scale signify less restrictive conditions.

(3) Plausibility of Distractors.  Document tasks typically require the examinee to skim an
entire document to locate a piece of requested information.  Since any piece of
information in the document could be interpreted as the requested information,
document task “distractors” include all pieces of information embedded in the
document.  The degree of plausibility of a distractor is measured by the extent to which the
information embedded in the document shares semantic information with the correct
answer to the question or directive.  This variable is scored on a one-to-five scale, with
lower numbers indicating less shared semantic information and higher numbers
indicating more.

Note .  Based on the analysis of Mosenthal and Kirsch (1991).

32



The location of items along the Rasch IRT proficiency scale is directly

related to the measures of individuals’ proficiencies: items’  values indicate

the probabilities of success from people at given levels of .  Modeling the

locations of tasks with particular configurations of processing requirements

on this scale indicates what a person at a given level of IRT proficiency might

be expected to do in terms of requirements of tasks—a probabilistic link

between empirical IRT summaries of observed response and cognitive

explanations.  While the IRT  still only captures overall competence, this

connection adds a layer of meaning to score interpretation.

Recall, however, that this modeling is just “on the average.”  It only

relates the cognitive model to an analytic model that posits the items line up in

the same way for everyone.  To some degree, what is easy for one person will be

hard for another.  This interaction, missing from the IRT summary, can be

accessed through analyses of residuals from the model’s fit.  The same

processing-feature structure can be used to examine unexpected response

patterns of individual respondents, complementing overall-proficiency 

estimates with diagnostic information.

We are now exploring the extent to which cognitive requirements (and

other sources of information about tasks) provide information about IRT item

parameters in a variety of applications.  Even if the IRT paradigm is sufficient

for summarizing and monitoring purposes, exploiting information from the

cognitive perspective can reduce or even eliminate pretesting meant to

estimate item parameters (Mislevy, Sheehan, & Wingersky, 1993).  This opens

the door to using IRT with tasks created on the spot with generative

algorithms founded upon cognitive processing models (Bejar, 1993; Irvine,

Dann, & Anderson, in press).

Example 2:  AP Studio Art Portfolios

As compared to measurement, assessment is inevitably involved with questions of

what is of value, rather than simple correctness.  Questions of value require entry

and discussion.  In this light, assessment is not a matter for outside experts to

design; rather, it is an episode in which students and teachers might learn, through

reflection and debate, about the standards of good work and the rules of evidence.

(Wolf, Bixby, Glenn, & Gardner, 1991, pp. 51-52)
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Performance assessment commands attention partly because it provides

direct evidence about productive aspects of knowledge, and partly because of its

potential impact on educational practice—“What you test is what you get”

(Resnick & Resnick, 1989).  A distinguishing characteristic of performance

assessment is that the student’s response is no longer simply and

unambiguously classified as right or wrong; judgment is required after the

response has been made.  Performance assessment raises a new set of

inferential issues, some of which have counterparts in multiple-choice testing,

but others for which we have much experience.  Table 3 lists some of these

issues.7   Many highlight dimensions along which performance assessment

systems and scoring systems vary.  We need to learn more about the

consequences, costs, characteristics, advantages, type of evidence provided,

and so on, of these alternatives, so that we can construct performance

assessment systems that provide the right kind of evidence for a given purpose,

with the required weight and coverage of evidence, expending the right level of

resources.

In most performance assessments, judgment is the crucial link in the

chain of reasoning from performance to inference about students.  As with our

opening example of directed graph for checker games, each of several tasks

may, in and of itself, stimulate the kind of creative or problem-solving thinking

we are interested in—to no avail unless we can distill from the performance

the critical evidence for the targeted inferences.  It is thus essential to establish

a common framework of meaning among readers, shared standards for

recognizing what is important in performance and mapping it into a

summarizing structure.  It is no less essential that the same framework of

meaning be common to students and teachers as well.  Quite aside from the

important issue of fairness—and students should know the criteria by which

they will be evaluated—learning the framework for evaluation can be an

essential part of learning what a course is supposed to teach, namely, the

characteristics of valued work (Wolf, Bixby, Glenn, & Gardner, 1991).  The

instructional value of an evaluation scheme appears positively in cost/benefit

equation, along with more familiar characteristics such as inter-reader

agreement (Frederiksen & Collins, 1989).

7 This listing was prepared by Drew Gitomer, Carol Myford, and myself.

34



Table 3

Some Inferential Issues in Performance Assessment

What is the student model?  At one extreme, we can have a student model in performance
assessment quite analogous to that of multiple-choice assessment: We’d set up categories, and
model the student in terms of tendencies to behave in those ways across contexts.
Alternatively, we could have judges interpret behaviors on a more abstract scale, such as the
“levels of developing expertise in a content area.”  An example of the latter is the American
Council on the Teaching of Foreign Languages (ACTFL) generic rubrics for reading,
speaking, listening, and writing, based on a functional model of language development.

High inference vs. low inference scoring.  Low inference scoring systems summarize
behaviors into easily agreed-upon categories, while high inference systems summarize
observations in terms of more abstractly defined qualities.  We see a trade-off in teacher
assessment: judges agree more closely in identifying behaviors, but feel that high-inference
interpretations in terms of “teaching-related traits” or “characteristics of teaching
interactions” are more closely tied to conceptions of competence.

Generalizability.  Performance assessment tasks typically take more time than, say,
multiple-choice items.  There is a trade-off between the depth of information we can obtain in a
given context, and how broadly we can look at different contexts.  What types of skills and
purposes call for depth?  For some purposes, should we construct assessments that evoke a
combination of types of evidence, in order to learn something about depth and breadth?

Norm-referenced vs. criterion-referenced scoring.  An example:  In ARTS PROPEL, 8th- and
12th-graders’ writing portfolios are rated on the same 1-5 scales for a variety of
characteristics.  Should ratings of 8th-graders’ work take into account that they are 8th
graders, so the same portfolio would receive lower ratings if were produced by a 12th grader?
Or should the meanings of the rating points be identical over grades?  Both are options, and
each focuses information better for different purposes.  One conclusion is, though, that all of the
judges should agree on how they are using the scale in this respect.

How can the meanings of scoring systems be communicated?  Communication is required
among judges, certainly, for reliability; it seems equally important to communicate criteria to
students as well.  The standard setting processes the College Board’s Advanced Placement
(AP) program uses to train judges work back and forth between examples and verbal rubrics.
Are different approaches better suited to different settings and different purposes?  How about
when the very process of learning to understand evaluation criteria is an essential part of
developing competence in the domain?  Does this weigh in favor of scoring systems with
educational pluses, even if they entail less agreement among raters?

Local vs. central scoring.  Most current models have a core of central judges.  To handle
portfolios from tens of thousands of students, California envisages local teacher ratings,
perhaps within a system of cross-validation and moderation.  What trade-offs are involved
with these models?  What other models might there be?  How do we match characteristics of
models with purposes, resources, and systemic consequences?

Product vs. process.  It is often easier to judge products of performance assessment tasks that
yield products, than to judge the processes by which they were produced.  For what purposes,
with what kinds of student models, should we judge process, and how do we best do so?

When do we need to know context and/or intentions?  When is it necessary, to evaluate the
evidence a performance conveys, to take context into account?  Context can include student
background as to education or culture.  Context can be internal to the student as well: How does
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Table 3 (continued)

the student see the task, and how is he or she trying to accomplish it?  The ACTFL rubrics
distinguish between texts familiar and unfamiliar to the examinee, and we need to know about
the relationship between the task and the individual student in order to draw inferences from
behavior to levels on the ACTFL scales.

What are the implications of choice?  Assessing skills that develop and are evidenced only in
context becomes tricky when the context varies from student to student.  Often students
themselves possess insight into the contexts that allow them to demonstrate what they can do.
Doctoral dissertations are an example.  We miss the point if we require all students to write
dissertations on the same topic, or assign topics at random.  We need to develop inferential
models to deal with evidence from performances in which students have varying kinds and
degrees of choice about what they will do.

The observer as a filter.  Judges, as unique individuals, will see and interpret performances
in ways influenced by their own history, experiences, and values.  How do we maximize the
extent to which they agree on what to look for and how to interpret it?  How do we help them
understand their perspectives, and the impact on the judging processes?  By what statistical
methods can we detect unusual judge/performance interactions?

Characteristics of different type of rubrics.  Rubrics can be described as holistic, analytic, or
interpretive.  They can be generic—meant to be used with any of a family of tasks—or task
specific.  What kinds of rubrics are suited to different purposes and situations?  What are
trade-offs as far as consistency, ease of learning, etc.?  One might choose a generic rubric for
an assessment meant to span over time and across many tasks, for example, in preference to
more-easily-agreed-upon specific rubrics that provide evidence that is hard to connect.

Statistical machinery for analysis, summarization, and quality control.  Too many
performance/judgment interactions will take place in most systems for a single person to
observe and evaluate.  A mechanism is needed to bring together summary information for the
purposes of summarizing key aspects of the operation of the system as a whole, highlighting
aspects which might be improved by changing the system or the judge training, and flagging
anomalies in specific performance/judgment interactions that need attention.  Traditional
generalizability analyses provide some of this, but are not adequate for all needs and purposes.
Latent variable models that model individual task and judge effects (e.g., Linacre’s [1989]
FACETS analysis) are a promising route.

Linking results from different tasks.  Ties in with the aforementioned issues of
generalizability, statistical machinery, the nature of rubrics, and judge training.  If different
students respond to different tasks at different points in time, how do we interpret evidence in a
common frame of reference?  E.g., a common generally-phrased rubric, with alignment
largely through the mechanism of shared meanings, as opposed to task-specific rubrics,
linked through statistical mechanisms and overlapping data.

Implications of assessment choices for the system.  Practically all of the choices discussed
above have implications for the educational system in which the performance assessment is
taking place.  They may have more or less impact, for better or worse, on students, teachers,
administrators, parents, and society.  What are they, and how do we evaluate them?  To what
degrees and in which contexts do they weigh into cost/benefit analyses of developing a
performance assessment system?

Note .  Based on an internal memorandum by Drew Gitomer, Carol Myford, and Robert Mislevy.
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Carol Myford and I are working with the College Board’s Advanced

Placement (AP) Studio Art program to explore issues in monitoring and

improving inference in performance assessment.  Advanced Placement

assessments are meant to determine whether high school students exhibit

knowledge and skills commensurate with first-year college courses in a

content area.  AP Studio Art is one of the nation’s longest extant portfolio

rating systems.  Students develop works during the course of the year, through

which they demonstrate the knowledge and skills described in the AP Studio

Art materials.  The portfolios are rated centrally by artist/educators at the end

of the year, using standards set in general terms and monitored by the AP Art

advisory committee.  At a “standards setting session,” the chief faculty

consultant and table leaders select portfolios to exemplify the committee’s

standards.  The full team of about 25 readers spends the equivalent of one day

of the week-long scoring session examining, discussing, and practicing with

these and other examples to establish a common framework of meaning.

Aspects of the assessment include ratings on three distinct sections of each

portfolio, multiple ratings of all sections for all students, and virtually

unbridled student choice in demonstrating their capabilities and creative

problem-solving skills, within the guidelines set forth for the sections.

Students may elect to participate in two types of portfolio assessment in

AP Studio Art, Drawing and General Art.  We address General Art.  Among

the requirements for each portfolio are four works submitted in their original

form; eight slides that focus on color and design, eight slides of drawings, and

four of three-dimensional work; and up to 20 slides, a film, or a videotape

illustrating a concentration on a student-selected theme.  These requirements

ensure that evidence about key aspects of artistic development will be evoked—

although the wide latitude of choice of medium and expression virtually

guarantees that the particular form the evidence takes will vary considerably

from one student to another.   We have focused on Section A, the four works

submitted in original form to be rated as to “overall quality,” and Section B, the

student’s “concentration,” the up-to-20 works mentioned above and a

paragraph or two describing the student’s goals, intentions, influences, and

other factors that help explain the series of works.

The AP Studio Art portfolio assessment reveals the contrast between

“standardized” and “nonstandardized” assessments as a false dichotomy, a
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hindrance as we develop broader ranges of assessment methodologies.  Any

assessment might be implemented in countless ways; there could be

differences, small or large, as to tasks, administration conditions, degree of

student choice, availability of resources, typeface, identity and number of

judges, and so on.  Standardizing an aspect of an assessment means limiting

the variation that students encounter in that aspect as a way of sharpening the

evidence about certain inferences from what is observed, while perhaps

simultaneously reducing evidence about others.  Did Duanli score higher than

Marilyn because she had more time, easier questions, or a lenient grader?

Standardizing timing, task specifications, and rating criteria reduce the

chance that this was so; it simultaneously reduces information about the

differential settings in which they might do best.  As in AP Studio Art,

assessing students’ developing competence when there is neither a single path

toward “better” nor a fixed and final definition of “best” may require different

kinds of evidence from different students (Lesh, Lamon, Lester, & Behr, 1992,

p. 407).  Questions about which aspects of an assessment to standardize to

what degrees arise under all purposes and modes of testing, and under all

views of competence.  Answers depend on the evidential value of the

observations in view of the purposes of the assessment, the conception of

competence, and the requisite resource demands.

Our study uses two distinct perspectives, “statistical” and “naturalistic,”

which we believe are required in tandem to analyze and improve a system the

size of AP Studio Art—currently some 7000 portfolios x 5 rating areas in each

portfolio x 2 or 3 ratings for each, totaling over 50,000 judgments!  The

statistical component reflects recent thinking about quality control in industry

(e.g., Deming, 1980).  One begins by establishing a statistical framework for

analyzing data, to quantify typical and expected sources of variation (in our

case, students, readers, and sections of the portfolios).  Variability is present in

any system; within a statistical framework, typical ranges can be modeled.

For a system that is “under statistical control,” sources of variability are

identified and observations tend to follow regular patterns.  Modeling these

patterns is useful first because it quantifies the uncertainty for final inferences

(in our case, students’ final ratings on a 1-5 scale) associated with steps or

aspects of the process, which can be monitored when the system is modified.

Secondly, the framework highlights observations that lie outside the usual
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ranges of variability, often due to special circumstances that can be

accommodated within the existing system or which may suggest changes to

the system.  It is simply impossible for any one individual to become intimately

familiar with all 50,000 separate rating processes.  This framework helps

focus attention where it is most needed.

For the statistical component of our project, we are using Linacre’s (1989)

FACETS model, a generalization of Masters’ (1982) PARTIAL CREDIT item

response theory model.  FACETS provides a statistical model for ordered-

category scores, as functions of parameters for examinees, readers, tasks, and

other “facets” of the observation setting that may be relevant, such as reader

background and time of day.  This model extends the regularity patterns

embodied in IRT beyond the “tendency for specified behavior on specified tasks”

paradigm in the following sense:  Whereas IRT was invented to model

regularities in examinees’ overt behavior in contexts considered invariant over

people, FACETS uses similar mathematical structures to model regularities

in readers’ application of common standards to possibly quite different

behaviors in different contexts.  In 1992, one student’s concentration focused

on “angularity in ceramics,” while another’s dealt with an “application of

techniques from traditional oriental landscapes to contemporary themes.”  It

would be easier to compare students’ performances if everyone were required

to work with angularity in ceramics, but that would provide no evidence about

a crucial aspect of development as an artist, namely conceptualizing and

confronting one’s own challenges.8

Mathematically, the FACETS model is an extension of the simple Rasch

model shown in Equation 2.  The logarithm of the odds that a portfolio section

with a “true” measure of  will receive from Judge j a rating in Category k  as

opposed to Category k+1 on a scale with K ordered categories is given as

8 If we were to randomly assign multiple concentrations to each student, we could learn about
the interrelationships among them (in principle—remember that it takes a whole year to do
just one concentration!). They might well be quite modest, indicating a “low generalizability”
problem from the mental measurement perspective in which the target inference would be how
one would perform on the domain of potential concentrations as a whole.  But the point is that
how well the ceramics student would have done with oriental landscapes is irrelevant to the
inference we are really interested in.  What really matters, and what we must check the
quality of, is our inference about the more abstractly defined qualities that should be evinced in
any student’s chosen concentration.
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n P j ,k( ) P j ,k +1( )[ ] = − j + k , (4)

where k is the “harshness” parameter associated with Judge j and s , for

s=1,…,K, is a parameter indicating the relative probability of a rating in

Category s as opposed to Category s-1.  An analysis of ratings of concentrations

only would have no repeated observations of students at all, but would focus on

patterns among the ratings of different readers.  One could, by extending the

model further, explore whether students’ performances across the sections of

their portfolios did function as repeated observations of a single variable; that

is, whether students tended to score well or poorly across the board.  Then the

FACETS model would include an additional term for portfolio section, say h:

n Ph, j ,k ( ) Ph, j ,k +1( )[ ] = − j + k + h . (5)

In essence, FACETS fits a main-effects model to log-odds of ratings.

Variation among portfolios, as a main effect, is anticipated.  These are

estimates of portfolio “measures,” or estimates of values disentangled from the

effects of specific readers.  Variation among readers, as a main effect, is not

desirable.  It indicates that some readers tend to be more harsh or lenient than

others, no matter which portfolio they are rating.  The uncertainty this entails

for final ratings can be reduced by improving feedback on the application of

standards to individual readers or in training sessions, or by adjusting scores

for individual readers.  We found little variation of this type in the 1992 Studio

Art data, alleviating concerns about systematic differences between readers

from secondary and higher-education settings, with more or less experience

as an art educator, or with more or less experience as an AP reader.

Variation at the level of readers-by-portfolios, as indicated by residuals from

the main-effects model, is also undesirable but cannot be adjusted away by

statistical means when a reader rates a section only once.  It may be reduced

by such means as improving reader training, sharpening the definition of

standards, or distinguishing aspects that should be rated separately.

Presaging the “naturalistic” component of our project, FACETS highlights

particular reader/portfolio combinations that are especially unusual in view of

the main effects.
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Statistical analyses can tell us where to focus attention, but they can’t tell

us what to look for.  These cases are unusual precisely because the expected

causes of variation do not explain them.  For example, a harsh reader’s rating

of 1 on a portfolio that receives 1’s and 2’s from other readers is not surprising;

a lenient reader’s rating of 1 for a portfolio that receives mostly 3’s and 4’s is.

Further insight requires information outside the statistical framework, to seek

new hypotheses for previously unrecognized factors.  Such investigations

constitute the “naturalistic” aspect of our project.  We identified 9 portfolios

each for Section A and Section B that received highly discrepant ratings from

two readers.  (Currently, all such occurrences are identified and rectified by a

final rating from the chief faculty consultant.)  We discussed each of these

portfolios with two experienced readers to gain insights into the judging

process in general, and into the features that made rating these particular

portfolios difficult.  Table 4 samples excerpts from these discussions.  Several

avenues for possible exploration were suggested, including the following:

continued development of verbal rubrics, particularly as a learning tool for

new readers; having students write statements for color and design sections,

as for concentrations, to help readers understand the challenges the students

were attacking; and refining directives and providing additional examples for

Section B to clarify to both students and readers the interplay between the

written and productive aspects of a concentration.

The attractive features of performance assessment include the potential

for instructional value and the elicitation of direct evidence about constructive

aspects of knowledge.  Outstanding concerns include the weight of evidence it

provides and the question of accountability.  The approach described above

addresses aspects of both concerns, for only by working back and forth between

statistical and naturalistic analyses can a common framework of meaning be

established, monitored, and refined over time.  This study illustrates one

approach, using ideas originally developed under the mental measurement

paradigm but extended to a cognitive/developmental paradigm, to characterize

the weight of evidence about target inferences and to provide information to

increase the weight of evidence.  By making the materials and results of such

a process public, one can assure parents and legislators of the meaning and

value of the work such assessments evoke, and of the quality of the processes by

which evidence about students’ competence is inferred.
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Table 4

Excerpts From Discussions With AP Studio Art Judges

A hypothesis for discrepant ratings for a concentration about angularity in ceramics

R:  What we’ve done is selected portfolios that are problematic, and this is one of them.  What do you
guess is problematic about this?

J:  I think it’s problematic . . . looking at something three dimensional in a two-dimensional format and not
being able to see any of the original work coming in that is three dimensional.  Especially, with some of
them, you’re not seeing more than one angle. . . . Now, we did have a problem with one today in the
gymnasium where there were photographs of three dimensional of four pots—they weren’t any of
these.  They were beautiful pots—the photographs weren’t—but that could have been a 1 and a 4.

On the nature of the task of rating AP portfolios

R: See, the portfolio doesn’t work unless you have the criteria set before, because otherwise you just
become judges.  And a judge goes on, if it’s an open show, he picks the things he likes with only his
criteria.  But if the criteria are set for the portfolio ahead of time, we have to subjugate that—our
criteria.  And come in, and the criteria for this is this:  By the end of a college freshman year in a college
entrance program, is this the work that would come out?  And it wouldn’t be high level if it were to
come out.  There would be statements like this.  This one I don’t think would come out.  I think the
drawing in here is too weak to come out. . . .

S:  . . . When there’s a discrepancy, when we’re reviewing like openly here at the table, and once in a while
someone will say, “Well, gee, I gave that a 2,” and someone else will say, “It’s a 4,” and we’ll talk it out,
and then one or the other person begins to see that their own maybe personal opinion has pervaded
their judgment in such a way that they’ve been persuaded by something other than this kind of
ultimate sense of . . .

R: It isn’t like voting.

S: It isn’t like voting, but then suddenly the light has been shined on that part of themselves that might be
slightly tainted or biased by their preference for or against something, and that’s when you see
someone sort of become persuaded that they may have been biased in their opinion.  Not that they’ve
changed all they felt about it, but they can now raise themselves up to less self-involved—step back
and see it more clearly having heard other people’s verbalization. . . .

R: And it’s usually bringing back.  And it isn’t making them change their mind about the way they feel,
but it’s usually bringing them back to focus on what this . . .

Dealing with “uneven” sections

E: It’s always troublesome, I think, when there’s weak pieces and then some very, very strong pieces, you
know.  I just really sort of sort them out and try to get an overall idea of what the student’s doing.  I sort
of wonder why some of them are in there.  It’s a perennial question.

R: But then you have to weigh the other body of work, and if it warrants consideration against the weak
pieces, then it can negate the effect of the weak pieces.
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Table 4 (continued)

On rating works on topics or media one personally reacts to negatively

B:  Something that you’re, in a sense, sick of seeing, or something that you maybe have been taught is not
proper subject matter or style, or whatever.  With the kind of open arena that we have for art today, a
true artistic statement can be made in any number of ways, so I try to let myself be open and aware of
what this person might be trying to do.  And if they are doing it well within that certain style, whether
it’s something I quote “approve of” or not.  And, well for instance, one of the styles that comes up
frequently in these ratings is a comic book, a cartoon style, because the males in this age bracket are
really infatuated with drawing super heroes or metal mania, or something like that.  So you see a lot of
it.  I tend to spend more time looking at those than I do at some of the other portfolios.  Not most of
them, but then some of the others are kind of questionable.

J:  You try to bring all your aesthetics.

B:  And I say, “Are they using the space well?  Are they being inventive with how they’re doing this, or are
they merely mimicking somebody and not doing a very good job of it?”

J:  You almost go down a whole checklist of descriptors—line, space, color, texture.

B:  I kind of drill myself.  I put myself under the spot light.

J:  And how do those apply to the rhythm, the balance, the content?  Is there harmony, unity here?

R: So we’re back to the formal stuff again?

J:  Right, but I think that’s what we have to rely on are those formal elements and principles.

Dealing with “uneven” sections

E: . . . If half of them are excellent and the other half are not, how come?  If they did four pieces of art
work, how can two be so great and the other two they selected.  We don’t know.  Did the teacher give
them some bad advice?  Did the teacher let the student just do it on his own?  I mean, I’ve had
experiences where the student just loved this piece of work, and it was not that good.  But they just
loved it, loved it.  And when push came to shove, you know, I said my advice is this but you’re the one
that’s paying $65.00, and you’re the one that’s going to put those four in there.  And I want it to be, you
know, you feel that whatever your grade was is the one that you really earned because that’s what you
wanted in there.  And that’s the way the final decision needs to go.

P: I think when you have four pieces and one of them is truly bad, it’s easy not to see that piece.  The other
three carry the four.  I think it’s hard when you’ve got two and two, and sometimes even harder where
you have one that just really knocks your socks off, and then you have three that you think, “I don’t
think this same person did this.”

E: That’s when you want that phone again.

P: Yeah, you want to say, “Who?  What?  Who?  How?”  . . . [But] I go with the benefit of the doubt
towards the student.  Say I have one that’s outstanding and three that are really, really horrible.  To
me, that is a good, strong, high 2.  Other people might disagree, but we are here for the kids.  That’s
that teacher behind me.  I go for the student.  I tend to think that he got poor advice somewhere along
the line.
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Example 3:  Mixed Number Subtraction

The form of the data in this final example is familiar—right/wrong

responses to open-ended mixed-number subtraction problems—but inferences

are carried out in terms of a more complex student model suggested by

cognitive analyses.  The model is aimed at the level of short-term instructional

guidance.  It concerns which of two strategies students apply to problems, and

whether they can carry out the procedures that problems require under those

strategies.  While competence in domains like this can be modeled at a much

finer grain-size (e.g., VanLehn’s 1990 analysis of whole-number subtraction),

the model in this example does incorporate the fact that the “difficulty” of an

item depends on the strategy a student employs.  Rather than discarding this

interaction as noise, as CTT or IRT would, our model exploits it as a source of

evidence about a student’s strategy usage.

The data and the cognitive analysis upon which the student model is

grounded are due to Kikumi Tatsuoka (1987, 1990).  The middle school students

she studied characteristically solved mixed-number subtraction problems

using one of two strategies:

Method A: Convert mixed numbers to improper fractions, subtract, then
reduce if necessary.

Method B: Separate mixed numbers into whole number and fractional parts,
subtract as two subproblems, borrowing one from minuend whole
number if necessary, then reduce if necessary.

We analyzed 530 students’ responses to 15 items.  As shown in Table 5,

each item was characterized in terms of which of seven subprocedures were

required to solve it with Method A and which were required to solve it with

Method B.  The student model consists of a variable for which strategy a

student uses, and which of the seven subprocedures he is able to apply.  The

structure connecting the unobservable parameters of the student model and

the observable responses is that ideally, a student using Method X (A or B, as

appropriate to that student) would correctly answer items that under that

strategy require only subprocedures the student has at his disposal (see

Falmagne, 1989; Haertel & Wiley, 1993; Tatsuoka, 1990).  However, sometimes

students miss items even under these conditions (false negatives), and
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Table 5

Skill Requirements for Fractions Items

If Method A used If Method B used

Item # Text 1 2 5 6 7 2 3 4 5

4 31
2 – 23

2 =
x x x x x

6 6
7 – 47 =

x

7 3 – 21
5 =

x x x x x x x

8 3
4 – 38 =

x

9 37
8 – 2 = x x x x x x

10 4 4
12 – 2 7

12 =
x x x x x x

11 41
3 – 24

3 =
x x x x x x

12 11
8  – 18 =

x x x

14 34
5 – 32

5 =
x x x

15 2 – 13 =
x x x x x x

16 45
7 – 14

7 =
x x x x

17 73
5 – 45 =

x x x x x

18 4 1
10 – 2 8

10 =
x x x x x x x

19 7 – 14
3 =

x x x x x x x x x

20 41
3 – 15

3 =
x x x x x x x

Skills:
1. Basic fraction subtraction
2. Simplify/Reduce
3. Separate whole number from fraction
4. Borrow one from whole number to fraction
5. Convert whole number to fraction
6. Convert mixed number to fraction
7. Column borrow in subtraction



sometimes they answer items correctly when they don’t possess the requisite

subprocedures by other, possibly faulty, strategies (false positives).  The

connection between observations and student-model variables is thus

probabilistic rather than deterministic.

Inference in complex networks of interdependent variables is a

burgeoning topic in statistical research, spurred by applications in such

diverse areas as forecasting, pedigree analysis, troubleshooting, and medical

diagnosis (e.g., Lauritzen & Spiegelhalter, 1988; Pearl, 1988).  Inference

networks exploit conditional independence relationships.  Current interest

centers on obtaining the distributions of selected variables conditional on

observed values of other variables, such as likely characteristics of children of

selected animals given characteristics of their ancestors, or probabilities of

disease states given symptoms and test results.  If the topology of the

interconnections is favorable, such calculations can be carried out in real time

in large systems by means of strictly local operations on small subsets of

interrelated variables (“cliques”) and their intersections.  Lauritzen and

Spiegelhalter (1988), Pearl (1988), and Shafer and Shenoy (1988) discuss

updating strategies, a kind of generalization of Bayes theorem.9  Béland and

Mislevy (1992), Martin and VanLehn (in press), Mislevy (in press), and

Mislevy, Yamamoto, and Anacker (1992) show how inference networks can be

applied to problems in cognitive diagnosis.

Figure 2 depicts the structural relationships in an inference network for

Method B only.  Nodes represent variables, and arrows represent dependence

relationships.  The joint probability distribution of all variables can be

represented as the product of conditional probabilities, with a factor for each

variable’s conditional probability density given its “parents.”  Five nodes

represent basic subprocedures that a student who uses Method B needs to solve

various kinds of items. Conjunctive nodes, such as “Skills 1 & 2,” represent, for

example, either having or not having both Skill 1 and Skill 2.  Each subtraction

item is the “child” of a node representing the minimal conjunction of skills

9 Calculations for the present example were carried out with Andersen, Jensen, Olesen, and
Jensen’s (1989) HUGIN program and Noetic System’s (1991) ERGO.
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Simplify/reduce
(Skill 2)

Mixed number
skills

Borrow from
whole number

(Skill 4)

Separate whole
number from

fraction
(Skill 3)

Basic fraction
subtraction
(Skill 1)

Skills 1 & 3

Skills 1, 3,
 & 4

Skills
1, 2, 3, & 4

6/7 - 4/7

2/3 - 2/3

3 7/8 -  2

3 4/5 -  3 2/5

4 5/7 -  1  4/7

3 1/2 -  2 3/2

4 4/12 -  2 7/12

4 1/3 -  2 4/3

4 1/10 -  2 8/10

4 - 3  4/3

4 1/3 -  1 5/3 2  - 1/3

7  3/5 - 4/5

3 - 2 1/5

Skills 1 & 2

11/8 - 1/8
Skills 1, 3, 4,

& 5

Skills 1, 2, 3,
4, & 5

Convert whole
number to

fraction
(Skill 5)

Item 12

Item 4

Item 10

Item 11

Item 18

Item 20

Item 7 Item 19

Item 15

Item 17

Item 9 Item 16

Item 6

Item 8

Item 14

Figure 2.  Structure of inference network for Method B.



needed to solve it with Method B.  The relationship between such a node and an

item incorporates false positive and false negative probabilities.  Cognitive

theory inspired the structure of this network; the numerical values of

conditional probability relationships were approximated with results from

Tatsuoka’s (1983) “rule space” analysis of the data, with only students

classified as Method B users.  (Duanli Yan and I are working on estimating

conditional probabilities in this network with the EM algorithm.)

Figure 3 depicts base rate probabilities of skill possession and item

percents-correct, or the state of knowledge one would have about a student we

know uses Method B before observing any item responses.  Figure 4 shows how

beliefs change after observing mostly correct answers to items that don’t

require Skill 2, but incorrect answers to most of those that do.  The updated

probabilities for the five skills shown in Table 6 show substantial shifts away

from the base-rate, toward the belief that the student commands Skills 1, 3, 4,

and possibly 5, but almost certainly not Skill 2.

We built a similar network for Method A.  Figure 5 incorporates it and the

Method B network into a single network that is appropriate if we don’t know

which strategy a student uses.  Each item now has three parents: minimally

sufficient sets of subprocedures under Method A and under Method B, and the

new node “Is the student using Method A or Method B?”  An item like 7 2

3
− 5 1

3
 is

hard under Method A but easy under Method B; an item like 2 1

3
−12

3
 is just the

opposite.  A response vector with most of the first kind of items right and those

of the second kind wrong shifts belief toward Method B.  The opposite pattern

shifts belief toward the use of Method A.  A pattern with mostly wrong

answers gives posterior probabilities for Method A and Method B that are about

the same as the base rates, but low probabilities for possessing any of the skills.

We haven’t learned much about which strategy such a student is using, but we

do have evidence that he isn’t employing subprocedure skills effectively.

Similarly, a pattern with mostly right answers again gives posterior

probabilities for Method A and Method B that are about the same as the base

rates, but high probabilities for possessing all of the skills.  Results such as

these could be used to guide instructional decisions.
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Table 6

Prior and Posterior Probabilities of Subprocedure Profile

Skill(s) Prior probability Posterior probability

1 .883 .999

2 .618 .056

3 .937 .995

4 .406 .702

5 .355 .561

1 & 2 .585 .056

1 & 3 .853 .994

1, 3, & 4 .392 .702

1, 2, 3, & 4 .335 .007

1, 3, 4, & 5 .223 .492

1, 2, 3, 4, & 5 .200 .003

To connect this example with the criterion-referenced testing (CRT)

movement of the 1960s mentioned above, the groups of items with a common

skill-set parent in Figure 2 could be viewed as a sample of tasks from a

narrowly-defined behavioral domain, and probabilities of possessing the skill-

set might be viewed as a tendency to perform well in that domain.  The present

model goes beyond the CRT framework in two ways.  First, the

interrelationships among such mini-domains through the delineations of

procedure requirements within and across strategies provide the formerly

missing connection between competence in the mini-domains and how

competence develops: It develops as students learn skills and strategies that

cut across mini-domains in determinable ways.  Secondly, the groupings of

items that are equivalent under Method A are different from the groupings

based on Method B.  Recognizing that the salient features of an item depend on

how a student is approaching it takes a step toward addressing Thompson’s

(1982) question, “What can this person be thinking so that his actions make

sense from his perspective?”
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This example could be extended in many ways, both as to the nature of the

observations and the nature of the student model.  With the present student

model, one might explore additional sources of evidence about strategy use:

monitoring response times, tracing solution steps, or simply asking the

students to describe their solutions!  Each has trade-offs in terms of cost and

evidential value, and each could be sensible in some applications but not

others.  An important extension of the student model would be to allow for

strategy switching (Kyllonen, Lohman, & Snow, 1984).  Adults often decide

whether to use Method A or Method B for a given item only after gauging

which strategy would be easier to apply.  The variables in this more complex

student model would express the tendencies of a student to employ different

strategies under different conditions.  Students would then be mixtures in and

of themselves, with “always use Method A” and “always use Method B” as

extreme cases.  Mixture problems are notoriously hard statistical problems;

carrying out inference in the context of this more ambitious student model

would certainly require the richer information mentioned above.  Anne Béland

and I (Béland & Mislevy, 1992) tackled this problem in the domain of

proportional reasoning balance-beam tasks.  We modeled students in terms of

neo-Piagetian developmental stages based on the availability of certain

concepts that could be fashioned into strategies for different kinds of tasks.

The data for inferring students’ stages were their explanations of the

strategies they employed on tasks with various structures.

Inference network models can play at least two important roles in

educational assessment.  First is the use exemplified above, short-term

instructional guidance, as in an intelligent tutoring system.  Drew Gitomer

and I are implementing probability-based inference to update the student

model in an ITS for troubleshooting an aircraft hydraulics system (Gitomer,

Steinberg, & Mislevy, in press).  Second is mapping the evidential structure of

observations and student knowledge structures (Haertel, 1989; Haertel &

Wiley, 1993).  As both models and observational contexts become more

complex, we must carefully sort out the informational qualities of assessment

tasks to use them effectively.
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Conclusion

Civil engineers designed bridges in 1893 using Euclid’s geometry and

Newton’s laws of mechanics, in the prevailing belief that the patterns they

embodied were the “true” description the universe.  The variables were “the

universe’s” variables, with applications departing from truth only in terms of

simplifications and measurement errors.  The quantum and relativistic

revolutions shattered this view.  Yet engineers today design bridges using

essentially the same formulas.  Has anything changed?

The equations may be the same, but the conceptual framework within

which they are comprehended is decidedly not.   Today they are now viewed as

engineering tools, justified to the extent that they capture patterns in nature

well enough to solve the problem at hand, even as judged by the standards of

the new paradigm.  And while some engineers continue to attack problems

that first arose in previous paradigms with a toolkit that includes methods

developed under those paradigms, others attack problems that could not even

be conceived last century—superconductivity, microchip design, and fusion,

as examples.  These problems demand a toolkit founded upon the concepts,

variables, and relationships of new paradigms; some familiar tools, albeit

reconceived, others totally new.

I see the analogous multiple paths of progress for educational test theory,

to support inference and decision making from the perspective of

contemporary psychology.  Those of us in test theory must work with educators

and researchers in learning areas to develop models that express key aspects

of developing competence, and inferential methodologies that support

defensible and cost-effective data-gathering and interpretation in practical

problems.  As the bridge-building analogy suggests, methodological tools

developed under the trait and behavioral paradigms, properly reconceived, will

serve this purposes in some applications; new tools will be needed for others.

Clearly there is a lot of work to do.  There are many directions to move beyond

the simple psychological models and data types of familiar test theory, each

presenting its own challenges.  If we view ourselves as specialists in evidence

and inference in school learning problems, as cast in psychological

frameworks that suit those problems, clearly we can help.
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