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CONSTRUCT VALIDATION OF MATHEMATICS ACHIEVEMENT:

EVIDENCE FROM INTERVIEW PROCEDURES1

Haggai Kupermintz, Vi-Nhuan Le , and Richard E. Snow2

CRESST/Stanford University

Abstract

This study investigated the validity of measures derived from a large-scale multiple-
choice achievement test in mathematics, using evidence from introspective think-aloud

protocols of students as they attempted test items. In a small-scale study of 21 local high
school students, we sought to identify and describe cognitive processes underlying

performance on test items, and to examine their utility in supporting validity claims
about the achievement dimensions tapped by the test. We examined differences and

similarities in solution strategies and sources of knowledge used to solve items
representing five achievement dimensions. The results provided further evidence for the

plausibility of interpretations of the dimensions derived from a large-scale factor analysis
and support the conclusion that 12th-grade mathematics achievement is factorially and

cognitively complex. Test scores that do not capture such complexity may mask
important achievement information.

The study reported here examined the validity of measures derived from a
large-scale multiple-choice achievement test in mathematics. Messick (1989) defines
validity as Òan integrated evaluative judgment of the degree to which empirical
evidence and theoretical rationales support the adequacy and appropriateness of
inferences and actions based on test scores or other modes of assessmentÓ (p. 13). It
follows that an important goal of construct validation of test scores should be to
identify the forms of reasoning processes involved and the extent to which they can
account for test performance. In order to claim validity of test scores for a particular
measurement purpose, one must consider such evidence in an effort to refute rival
hypotheses concerning what these scores actually measure.

                                                  
1 We wish to thank Yuko Butler for assistance with the development of the coding system and coding
student transcripts, Larry Gallagher for assistance with interviewing, and Rich Shavelson for helpful
comments on an earlier draft of this report.
2 Richard Snow, the original project director for this research, passed away in December 1997.
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The investigation of construct-relevant and irrelevant sources of variance is
especially important for test items that may require students to apply a  variety of
knowledge and skills because it is often difficult to infer from a low score where a
deficiency lies (Messick, 1995). Furthermore, the complex interaction between task
demands and student characteristics affords different students the opportunity to
use different strategies in response to the same task. This necessarily complicates
validity arguments in favor of molar constructs such as Òlevel of mathematical
ability reachedÓ as the only interpretation one can attach to total scores from
conventional achievement tests. Kupermintz & Snow (1997) have recently
demonstrated the utility of using more refined distinctions in measuring
mathematics achievement in a large-scale multiple-choice test.

As suggested above, efforts to support score interpretations need to take into
account evidence pertaining to the nature of the cognitive activities students
engaged in while taking the test. However, despite recent calls for considering the
cognitive psychology of performance in a domain alongside the psychometrics of
achievement assessment (see, e.g., Frederiksen, Glaser, Lesgold, & Shafto, 1990;
Frederiksen, Mislevy, & Bejar, 1993; Snow & Lohman, 1989), there has been as yet
little construct validation research that combines the psychometric and cognitive
approaches. Both multiple-choice and constructed-response items are routinely
submitted to rigorous psychometric evaluation, and, increasingly, cognitive
psychologists are studying learning and problem-solving tasks that are closely
related to tasks used in educational tests (Snow & Lohman, 1989). But integrated, or
even concomitant, psychometric and cognitive psychological analysis of task
performance remains rare.

Several methods have been used for process analysis to advance the
investigation of cognitive aspects of test performance. This report follows MessickÕs
(1989) recommendations for analyses of think-aloud protocols, retrospective reasons
for answering in a certain way, and errors made by examinees. Strong relationships
in a large-scale psychometric analysis may suggest that certain items require a
certain type of knowledge or reasoning, but evidence that students actually use that
knowledge or process when they solve an item can best be obtained by observing
students working on the items and asking them to introspect about their
performance. Think-aloud protocols collected while students perform a task have
been used in several recent test validation studies. For example, Hamilton,
Nussbaum, and Snow (1997) have identified differential patterns of solution
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strategies in multiple-choice items representing three science achievement
dimensions (see also Magone, Cai, Silver, & Wang, 1994).

The current study extends the psychometric analysis presented by Kupermintz
and Snow (1997) that extracted five dimensions in a 12th-grade multiple-choice test
in mathematics. A small-scale study was conducted to obtain  evidence from student
think-aloud protocols to identify and describe cognitive processes underlying
performance on test items, and to examine their utility in supporting validity claims
about the achievement dimensions tapped by the test.

Method

The study pursued a cognitive analysis of multiple-choice test items
administered to a national representative sample of high school students. The
National Educational Longitudinal Study of 1988 (NELS: 88), sponsored by the
National Center for Education Statistics (NCES), is the most recent in a series of
large-scale surveys designed to provide longitudinal data about critical educational
experiences of students as they leave elementary school and progress through high
school and into postsecondary tracks. NELS:88 followed a national probability
sample of about 25,000 8th graders into the 10th and 12th grades using a series of
cognitive tests as well as questionnaires completed by students, parents, teachers,
and school administrators.

In a recent validation study, the NELS:88 multiple-choice test in mathematics
was factor analyzed to reveal several interpretable achievement dimensions
(Kupermintz & Snow, 1997). On Form HÑa 40-item test that was assigned to high-
ability 12th-grade studentsÑfive dimensions emerged from a full information factor
analysis. The original factor interpretations were as follows: Compound Mathematical

Reasoning (CMR) involves complex tasks with advanced content that require
students to set up abstract representations (algebraic expressions or equations), and
to consider multiple perspectives of the problem; Concrete Mathematical Reasoning

(NMR) requires mainly inferential reasoning, with a demand for logical argument
rather than direct computations; Applied Algebra Knowledge (AAK) consists mainly of
problems introducing algebraic expressions, using variables and functional forms in
which students are required to apply algebra knowledge in a straightforward
computation or manipulation, such as numerically solving an equation or
simplifying an algebraic expression; Spatial Visualization (SV) taps visual-spatial
ability by items that call for operations such as mental rotation and folding of two-
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dimensional shapes; Algebra Systems Comprehension (ASC) calls for conceptual
understanding of algebraic expressions where no direct calculation is required but
understanding of the algebraic system is essential.

Kupermintz and Snow (1997) further hypothesized that such complex factorial
structure arose because advanced problems demanded application of various
specialized knowledge and problem-solving skills and strategies, allowing students
to exhibit sophisticated mixes of complex abilities. In a series of regression analyses,
scores on these dimensions were shown to have differential patterns of relationships
with student, program, and instructional variables that were not captured by using
only total scores.

Small-Scale Interview Study

The current study used interview and think-aloud procedures to gain evidence
concerning the processes underlying task performance on items representing each of
the hypothesized five mathematics achievement dimensions. Twenty-one (8 males
and 13 females) local high school students (10 seniors, 9 juniors, and 2 sophomores)
participated in the study. All of the students had taken trigonometry, geometry, and
algebra I and II courses; 12 students were enrolled in calculus courses. Students
were asked to verbalize their thought processes and to identify sources of
knowledge they utilized as they attempted to solve 15 items from the original
NELS:88 test.

All interviews were conducted at Stanford University by the investigators.
After a brief introduction to the study, interviewers asked students to think  aloud
while completing test items and did not intervene except to remind students to think
aloud if a specified period of silence passed (prompting with ÒCan you tell me what
youÕre thinking about now?Ó). Students were encouraged to use the test booklets for
scratch work. After students completed each item, they responded to two interview
questions: ÒCan you tell me how you decided which answer to select?Ó and ÒWhere
have you learned to solve such problems?Ó The combination of spontaneous think-
aloud protocols and structured interview prompts was designed to allow students
to respond to items without intervention and at the same time to obtain information
not volunteered in the unstructured think-aloud format.

Interviews were audiotaped and transcribed, and interviewers used a
structured observation sheet to record events that could not be captured on
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audiotape, such as the use of gestures. All written notes made by interviewers were
added to the session transcripts.

Test items were taken from the NELS:88 mathematics test and were selected
from the pool of 40 Form H items to represent the five achievement dimensions.
Items showing strong loadings in the factor analysis were considered good
candidates for inclusion in the small-scale study. Additional criteria for inclusion
were the need for a range of item difficulties and the likelihood that they would
elicit rich verbalization. Table 1 describes the items representing each dimension,
together with proportion of correct responses (p-value) on each item and, over items,
on each dimension. Because of test security concerns only brief descriptions and not
actual items are presented.

Table 1

Proportion of Correct Responses

Dimension/Item p-value

Compound mathematical reasoning (CMR) Total 0.24

Radius of a cylinder within box 0.29

Algebraic expression for relations of triangle sides 0.14

Overall average based on group averages 0.29

Concrete mathematical reasoning (NMR) Total 0.89

Length of side of figure given area 0.90

Word problem involving area and dimensions 0.81

Distance between points on a line 0.95

Applied algebra knowledge (AAK) Total 0.89

Equation involving function notation 1.00

X-intersection points of a function 0.71

Equation with function notation and exponents 0.95

Spatial visualization (SV) Total 0.60

Match pattern of unfolded box 0.81

Shape of rotated line 0.57

Length of side-parallel within a triangle 0.43

Algebra system comprehension (ASC) Total 0.76

RHS multiplication in a function 0.76

Multiplicative functional form 0.81

Functional form of a graph 0.71
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Coding System

A coding scheme was developed to reflect the entire range of student responses
(see Table 2), and two raters simultaneously coded all the items, using the same
coding system and reaching agreement through discussion. Each item was coded for
all the solution strategies and sources of knowledge that were indicated in the
studentsÕ work. Sources of knowledge included courses in general math, algebra,
algebra II, geometry, trigonometry, calculus, and SAT preparation.

Table 2

Solution Strategies

Strategy Description

Trial and error This approach involved working backwards from the multiple-
choice options, substituting each of the response alternatives
into an equation usually specified in the item stem.

Manipulation of algebraic
expressions

Involved simplifying or other manipulations on an algebraic
expression or equation.

Application of advanced
algebraic properties

Necessitated consideration of advanced concepts and
procedures, for example conceptual understanding of a given
equation and its graphical representation on the Cartesian
coordinate system.

Application of basic algebraic
properties

Involved attention to basic concepts and procedures. For
example, setting up a single equation or calculating the distance
between points on a line were classified in this category.

Application of geometric
properties

Involved geometry concepts, such as the Pythagorean theorem
and similar triangles.

Application of trigonometric
properties

Involved trigonometry concepts, such as sine and cosine
expressions.

Abstract/analytic approach Characterized by abstract reasoning without assigning
numerical values or using direct calculations.

One-step formula Involved a single application of a formula, such as the area of a
rectangle or a linear equation.

Multiple-step formula Characterized by the application of more than one formula. A
response involved multiple operations; for example, using both
volume and area formulas.

Substitution This strategy involved the replacement of a variable with one
numerical value that was specified in the item stem. A solution
was subsequently determined via direct computation.

Value assignment Involved investigating the association underlying two variables
via the assignment of numerical values to the variables. This
strategy was used not to obtain a direct solution per se, but to
allow generalizations about the underlying relationship between
the two variables.
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Table 2 (continued)

Strategy Description

Elimination of responses Students who employed this strategy typically had some
knowledge of the item, which they used to evaluate the merit of
each option, rejected certain options, and subsequently chose an
answer from the remaining alternatives.

Guess Characterized by no knowledge of the item. This strategy was
used by students who did not know how to approach an item.
They often justified their selection via intuition or statements
such as Òit just sounded right.Ó

Visualization Involved using mental representation to visualize hypothetical
shapes referred to in the item.

Gestures In this strategy students used hand movements to facilitate their
visualization efforts.

Picture/graph Involved drawing graphical representations of information
specified in the item.

No Answer This category was assigned when students chose not to select a
multiple-choice alternative.

Results

In this section we present findings on the relative prominence of the various
solution strategies and sources of knowledge observed across the five achievement
dimensions. Table entries are the proportion of responses in a particular category
across the three items representing each dimension given by the 21 students (that is,
the proportion from the 3x21 = 63 responses representing each dimension). Results
are presented for total responses (across correct and incorrect answers), and
separately for correct and incorrect solutions. For example, 15 correct answers
(15/63 = .24) were given for CMR items. Overall, 8 out of 63 responses to CMR items
employed a multiple-step formula (15/63=.13; the entry in the ÒTotalÓ column). Out
of the 15 correct answers, 6 used multiple-step formula (6/15 = .40; the entry in the
ÒCorrectÓ column), whereas only 2 of the incorrect answers used multiple-step
formula (2/48 = .04; the entry in the ÒIncorrectÓ column). The comparison of
distributions of strategies and sources of knowledge in correct versus incorrect
solutions allowed us to consider their efficiency for answering the items. To reduce
clutter, only categories that were observed in more than 10% of the responses (total,
correct, or incorrect) are presented.
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Compound Mathematical Reasoning (CMR)

Not surprisingly, CMR items, the most difficult items on Form H, elicited the
highest proportion of ÒguessÓ or Òno answerÓ responses (see Table 3). In fact, many
students expressed uncertainty about how to start CMR problems. Correct solutions
were likely to apply compound procedures (multiple-step formula) and advanced
algebraic properties, whereas incorrect solutions employed basic algebraic
properties.

One item, for example, required the application of both volume and area
formulas. Students who answered correctly accurately remembered and used both
formulas, whereas unsuccessful students did not recognize the complex nature of
the problem and instead tried to find a one-step formula that would yield a direct
solution: ÒIÕd probably need the formula for it . . . IÕm not sure I ever memorized it.Ó
Another item required students to take into account the effect of the different group
sizes on the overall average. Unsuccessful students used a basic algebraic approach

Table 3

Solution Strategies and Sources of Knowledge Used in Compound
Mathematical Reasoning (CMR) Items

Strategy/Source of knowledge Total Correct Incorrect

Algebraic manipulation .11 .13 .10

Advanced algebraic properties .13 .33 .06

Basic algebraic properties .22  .00 .29

Geometric properties .22 .20 .23

One-step formula .08 .00 .10

Multiple-step formula .13 .40 .04

Value assignment .06 .13 .04

Guess .25 .13 .29

Picture/graph .25 .27 .25

No answer .22 .00 .29

General math .24 .33 .21

Algebra .30 .20 .33

Geometry .46 .33 .50

SAT/SAT prep .10 .20 .06

Note. Total: 63 responses; Correct: 15 responses; Incorrect: 48 responses.



9

that resulted in an unweighted average. In contrast, successful students explicitly
indicated the need to take into account the multiple conditions of the problem.

An interesting and somewhat surprising result was that both correct and
incorrect solutions were equally likely to use graphical representations and employ
geometric properties. Closer inspection revealed that the unsuccessful students were
more inclined to draw two-dimensional pictures, whereas successful studentsÕ
pictures were three-dimensional representations that depicted the problem more
accurately.

Geometry, algebra, and general math were the most common knowledge
sources, which was consistent with the fact that students were most likely to
approach such items by applying both geometric and algebraic properties. Students
who answered correctly referred more often to general math while students who
answered incorrectly mentioned more frequently algebra and geometry.

These findings are consistent with the hypothesis that CMR task demands
called for a complex strategy rather than simple application of domain knowledge
and support the original dimension interpretation based on the factor analysis. That
is, an efficient solution strategy required attention to the complex nature of the
problem, but placed relatively small computational or algorithmic demands in
processing its constituent components. It is also interesting to note that successful
students were likely to encounter similar problems while preparing for the SAT.

Concrete Mathematical Reasoning (NMR)

Items on the NMR dimension were fairly easy, and most students correctly
responded to each question (see Table 4). Application of a one-step formula was the
dominant strategy, and correct responses typically used basic algebraic properties.
The few conceptual errors, leading to incorrect responses, usually involved
procedural knowledge: ÒI donÕt really see how I can find the area of the square if I
donÕt even have one side of it.Ó Incorrect solutions were more likely to result from
unnecessary graphical representations for items that asked students to calculate
areas. Incorrect solutions were also more likely to use an analytic approach.

These findings suggest that our initial interpretation of this dimension
(partially based on different test forms taken by low- and medium-ability students)
was not supported. Although the low computational demand was correctly
identified, this dimension appears to be characterized by a straightforward
application of domain knowledge, declarative and procedural, as opposed to more
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Table 4

Solution Strategies and Sources of Knowledge Used in Concrete
Mathematical Reasoning (NMR) items

Strategy/Source of knowledge Total Correct Incorrect

Basic algebraic properties .33 .36 .14

Analytic approach .05 .02 .29

One-step formula .51 .50 .57

Elimination .02 .00 .14

Guess .03 .00 .29

Guess part .02 .00 .14

Picture/graph .17 .13 .57

No answer .02 .00 .14

General math .29 .32 .00

Algebra .33 .32 .43

Algebra II .08 .07 .14

Geometry .32 .32 .29

SAT/SAT prep .10 .11 .00

CanÕt remember .03 .02 .14

Note. Total: 63 responses; Correct: 56 responses; Incorrect: 7 responses.

general reasoning abilities. To answer NMR items, students reported drawing upon
general math, algebra, and geometry almost equally. As in CMR, algebra was
mentioned more frequently for incorrect answers. It is also worthwhile noticing here
that in the large-scale regression analysis (Kupermintz & Snow, 1997) a strong
predictor of performance on NMR was the number of units taken in geometry. It is,
therefore, reasonable to describe this dimension as tapping the application of basic
concepts and procedures from geometry.

Applied Algebra Knowledge (AAK)

AAK items were also relatively easy, involving substitution and direct
computation as dominant strategies, evident in nearly three quarters of the correct
answers (see Table 5). Erroneous responses (due mainly to a somewhat more
sophisticated item asking students to find the roots of a function) were characterized
by unnecessary manipulation of an algebraic expression or an attempt to graph a
function in order to determine its X-intersection points. Some students even
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Table 5

Solution Strategies and Sources of Knowledge Used in Applied
Algebra Knowledge (AAK) Items

Strategy/Source of knowledge Total Correct Incorrect

Trial and error .06 .04 .29

Algebraic manipulation .08 .04 .43

Advanced algebraic properties .25 .27 .14

Substitution .70 .73 .43

Elimination .02 .00 .14

Guess .05 .00 .43

Picture/graph .03 .00 .29

No answer .05 .00 .43

General math .14 .16 .00

Algebra .41 .38 .71

Algebra II .37 .39 .14

Geometry .08 .07 .14

Trigonometry .27 .27 .29

Calculus .11 .13 .00

Note. Total: 63 responses; Correct: 56 responses; Incorrect: 7 responses.

expressed a need for a graphing calculator to provide visual representation: ÒSo
what I would probably do if I had a [TI82] calculator is plug this equation in and
then look and see where y intersects the x axis.Ó Correct responses, on the other
hand, identified the relationship between the algebraic expression and the Cartesian
coordinate system, arriving at a solution using minimal computation or
manipulation. Unsuccessful strategies also employed the less direct approaches of
trial and error and elimination instead of using direct computation.

Consistent with the relatively advanced algebraic material, algebra II was often
drawn upon in correct solutions, while algebra was mentioned as a source of
knowledge in the majority of incorrect solutions. In the large-scale regression
analysis (Kupermintz & Snow, 1997), performance on AAK was positively related to
the number of algebra II units, and negatively related to the number of algebra I
units.  Students also cited trigonometry as a knowledge source, often in conjunction
with algebra. A typical statement was: ÒI used trigonometry for the notation, but
algebra to solve the problem.Ó
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Spatial Visualization (SV)

Items representing the SV dimension were markedly distinguished from the
other dimensions by the use of visualization and gestures as efficient solution
strategies (see Table 6). For example, when asked to match patterns of an unfolded
box, students frequently commented that they Òtried to picture how it would lookÓ
and also used their hands to make folding movements. On an item that called for
inferring three-dimensional shape from the rotation of a two-dimensional figure,
successful students were more likely to use their hands to simulate the rotation
patterns around an imaginary axis. Furthermore, successful students drew the
geometric shapes that they mentally envisioned and traced out the axis of revolution
on the figure. Students who did not augment their visualization with a picture often
expressed confusion while considering different alternatives: ÒI donÕt understand
how they want me to rotate it . . . By keeping this plane, that makes a cone. And this
around like that . . . can make a sphere.Ó

Students were likely to identify geometry as a source of knowledge, but were
also likely to report that the items were unfamiliar, and that such problems were not
formally taught in their classes. This is consistent with results of Hamilton,
Nussbaum, and Snow (1997), who concluded that the knowledge necessary to

Table 6

Solution Strategies and Sources of Knowledge Used in Spatial
Visualization (SV) Items

Strategy/Source of knowledge Total Correct Incorrect

Analytic approach .10 .11 .08

Elimination .08 .05 .12

Guess .13 .05 .24

Visualization .59 .71 .40

Gestures .21 .32 .04

Picture/graph .21 .24 .16

No answer .06 .00 .16

Geometry .41 .39 .44

SAT/SAT prep .08 .11 .04

Not familiar .24 .24 .24

Note. Total: 63 responses; Correct: 38 responses; Incorrect: 25 responses.
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answer SV items in science was not confined to classroom instruction. The large-
scale regression analysis (Kupermintz & Snow, 1997) also indicated no relationship
between performance on SV and number of geometry units.

Algebra Systems Comprehension (ASC)

ASC items elicited more use of multiple strategies in a single solution
compared to other dimensions (see Table 7). Straightforward application of basic
algebraic or geometric properties were likely to result in an incorrect solution. These
items were associated with analytic reasoning and value assignment, often using
both for the purpose of verifying the correctness of the solution. Incorrect responses
that depended solely on an analytic approach, for example, and did not assign
numerical values to the variables could not benefit from a confirmation of the
hypothesized relationship.

A successful approach was characterized by statements such as: ÒSince x is
squared, I would say because x is doubled that would raise [the other variable] to
the fourth. But then I always check my answer with numbers.Ó Unsuccessful
students were more likely to assume their logic or intuition was sufficient to yield a

Table 7

Solution Strategies and Sources of Knowledge Used in Algebra
Systems Comprehension (ASC) Items

Strategy/Source of knowledge Total Correct Incorrect

Basic algebraic properties .03 .00 .13

Geometric properties .05 .00 .20

Analytic approach .35 .33 .40

One-step formula .17 .17 .20

Value assignment .41 .48 .20

Elimination .24 .19 .40

Visualization .11 .10 .13

General math .16 .17 .13

Algebra .48 .46 .53

Algebra II .17 .19 .13

Geometry .16 .17 .13

Note. Total: 63 responses; Correct: 48 responses; Incorrect: 15 responses.
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correct answer and did not pursue the problem further: ÒI looked at the graph, tried
to figure out the slope . . . itÕs close enough, the only [option] here that fits the
formula.Ó Thus, successful students were not only able to reason about an
underlying algebraic relationship, but also demonstrated that they could employ an
efficient hypothesis testing strategy. The hypothesis testing component was not
identified in the initial dimension interpretation.

Algebra was clearly the major source of knowledge for ASC items, equally
represented among correct and incorrect solutions, consistent with the context in
which such domain knowledge was employed.

Discussion

Scores on standardized multiple-choice tests (but also on tests using other
formats) are typically taken as measures of a generalized construct using labels such
as Òmathematics achievement.Ó Kupermintz and Snow (1997) have demonstrated
that achievement on the NELS:88 mathematics test is not represented adequately by
a unidimensional construct, and that several distinct performance dimensions can be
identified and measured. The analyses presented here extend that work by
exploring, through probing studentsÕ work as they attempt test items, the cognitive
factors that underlie performance on different dimensions.

The combination of results from large-scale statistical analyses and small-scale
interview studies sharpens the distinctions among clusters of items appearing on a
single test form, and thus offers an alternative interpretation of mathematics
achievement measures. As mentioned before, large-scale psychometric analysis may
suggest plausible hypotheses about the type of knowledge or reasoning involved in
test performance; such hypotheses are summarized in the initial interpretations of
achievement dimensions and are based on reasoning about common features of
items grouped together in a dimension. These hypotheses, however, should not be
taken as a definitive or sufficient validity argument for the interpretation of scores
based on empirically derived dimensions. More appropriately, they should be
considered as a useful starting point to guide further theoretical and empirical
investigation, in an iterative process that will support, refine, or challenge score
interpretations. Further insight can be gained by examining the relationships of the
achievement dimension with student, program, and  instructional variables, as in
Kupermintz and Snow (1997).
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Cognitive analyses of student performance subject construct interpretation to
additional inquiry that may yield further support or suggest the plausibility of rival
hypotheses. For example, our think-aloud data provided clear support for the initial
interpretation of the CMR dimension, but led to qualifying the NMR interpretation
as application of domain knowledge rather than abstract reasoning. Further
investigations can now target more focused hypotheses about content and process in
test performance on specific dimensions. Examples of other relevant strategies may
include using general reference construct measures (such as fluid intelligence) and
experimental manipulation of item content and format.

This study highlights the need to consider the design and development of
methods for item construct validation more directly and fully. The design and
evaluation of assessment tools typically rely on expert judgment rather than
empirical analysis to determine what they measure. However, test specification
tables, routinely a part of psychometric reports, often fail to reflect important
psychological distinctions that emerge from a more rigorous process analysis. A rich
empirical investigation of task performance can detect cognitive and other task
demands, resulting in a better understanding of the constructs being measured, and,
consequently, better score interpretation and use. Clearly, such analysis, using
methods reported here but also other procedures, could be useful in test
development by providing evidence to support and clarify differences among items,
identify sources of construct-irrelevant variance, and guide scoring.

Students bring different combinations of abilities and experiences to a testing
situation, and these influence their responses to particular tasks. Thus, as
demonstrated in the current study, items may elicit different response processes
from different test takers (see also Haertel, 1985). This makes the validation process
even more complex because it suggests that the degree to which a test is considered
valid for a particular purpose may vary across examinees. It is worthwhile,
therefore, to consider various student characteristics, cognitive and others, and the
ways in which each relates to test validity. As pointed out by Snow (1993), affective
and conative variables should be brought to bear on test performance as they
interact with the repertoire of knowledge and skills that students employ in the
testing situation. Motivation, for example, is likely to play an important role in
determining which solution strategies are invoked and in regulating or sustaining
commitment to execute the strategy. The incorporation of noncognitive factors is
needed to further our appreciation of the complexity of test performance and to
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advance the development of appropriate theories that aim to bridge the
psychometric and cognitive psychological perspectives.

Test validation requires a series of empirical investigations and analyses.
Theoretical considerations are needed to ground test performance in a broader
perspective of thinking about knowledge and skill in a domain. Evidence obtained
by observing students working on test items and asking them to introspect about
their performance is an important method to ÒthickenÓ the necessary empirical base
but is of limited use without an adequate theoretical framework. Empirical findings
about solution strategies and other processes exhibited by students in task
performance should ultimately be understood within the context of a coherent
model linking student characteristics, task demands, and testing purposes. With the
growing demands on assessment systems and the proliferation of test formats, a
unifying theoretical framework of academic achievement is greatly needed to guide
progress in test development, scoring, and use.
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