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Abstract

This report presents an empirical study of the problem of ranking schools in
terms of their quality. The unadjusted ranks are compared with rankings obtained by
various adjustment schemes based on ANCOVA and random effects models. The
advantage of random coefficlent models is highlighted by the reanalysis of a 1959 data
set that contains information about 1290 children in 37 schools in the city of
Groningen, The Netherlands. The authors demonstrate that any simple ranking for the
schools would be misleading because of important interactions of student background

with school.




Introduction!

The empirical example analyzed in this report is from the field of school
effectiveness research. The analysis model is a two-level linear model. These two
choices are not accidental. In educational research there is a clear link between
substantive and methodological issues, and it is also clear that the validity of statistical
inferences Is enhanced when appropriate analytical models are used. Thus this paper is
about model building in educational research, and it is based on the knowledge we have
about this field and about the way the data are collected. More specifically, we are
interested in ways to rank schools in terms of their effectiveness to train students. The
definition of effectiveness is quite controversial (Kreft, 1987), but we shall adopt a simple
operational one for the purposes of this paper. We shall see that the rankings do not
depend only on the measured properties of the schools, but also on the model chosen
to represent the differences among the schools.

In this report we emphasize that a school effectiveness researcher has no other
way to proceed than to base the choice of her analysis mode! on the knowledge she has
about her data. In principle there are hundreds of possible ways to order schools in
terms of their success. Moreover, all these different ways of ordering are not necessarily
closely related with each other. On the contrary, as we will show, some may be
negatively correlated, some may not be correlated at ali. It is obvious that with so0 many
choices a researcher is able to satisfy whomever she wants, just by choosing the one
model that will be most pleasing to the audience from the many models that exist.
Although we are aware that school effectiveness research is more often than not policy-
oriented research (compare Kreft, 1987), pleasing criteria should not guide the choice of
the analysis model and thus the way schools are ordered. What we need are more
objective criteria—criteria that enable us to choose the best analysis method, best in the
sense of statistical and substantive adequacy or appropriateness.

In this report we give some criteria for making this choice in the field of school
effectiveness research. The arguments are based on statistical as well as theoretical
reasoning, in close interplay with each other. We argue that these two types of
considerations should be in agreement. As the starting point, we introduce some of the
well known traditional linear models, such as analysis of variance and covariance and
multiple regression techniques. These methods are often applied in situations where
they cannot take account of certain sallent features of the data. School effectiveness in
general, and the data set analysed in this paper in particular, are cases in point. Later in
the report we introduce models that are designed for the school effectiveness situation
in educational research. School effectiveness research is compiicated, and this leads to a
more complicated statistical model (see Aitkin & Longford, 1986; De Leeuw & Kreft,
1986; Raudenbush & Bryk, 1986). We will examine how these more complicated models
deal with the practical problem of ranking schools. Policy-oriented researchers often
point out that more sophisticated statistical techniques are unnecessary because they do
not give essentially different results. We shall see that rankings of schools in terms of
output can be very misleading indeed, and that correcting the rankings for input
characteristics must be done carefully because otherwise a lot of spurious variation is
introduced. The researcher diligently has to search for an optimal place on the
continuum between bad-fitting parsimoneous models, which promise spurious precision,
and good-fitting models with many parameters, which capitalize on unstable effects in
the data.

Description of the Data
For our example we use the Dutch GALO data (described by Peschar, 1983).

These data contain information about primary school leavers in 37 schools in the city of
Groningen in 1959. This is the same data we used in a previous article (De Leeuw &

lwe would like to thank Nick Longford (ETS) for many valuable comments.
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School SIZE
1 29
2 33
3 31
4 66
5 39
6 45
7 39
8 31
9 53
10 31
i1 30
12 36
13 52
14 29
15 33
16 65
17 57
18 31
19 26
20 27
21 25
22 27
23 26
24 36
25 11
26 27
27 15
28 27
29 20
30 32
31 49
32 57
33 37
34 39
35 35
36 28
37 16

Rank Correlations between Rank Orders
ADV

SIZE
SIZE 1.000
SEX -.104
IQ 383
ADV 574
SES .636

Table 1a
Ranking of Schools by Variables

1Q

SEX

Tabie 1b
SEX 1IQ
-.104 .383
1.000 .154
.154 1.000
043 .881
-.205 553

574
.043
.881
1.000
714

SES

636
-.205
553
714
1.000




mean ADYV reflects to a great extent the ranking of the means for IQ and SES (see
Table 1b).

It is clear from our results so far that the ordering of schools from highest to
lowest mean ADV is influenced by the student characteristics of the school population.
If our goal is to see which schools are more successful than others, irrespective of the
population, we have to correct the mean ADV for the influence of IQ and SES. The
conclusion that in order for schools to have better results they need to attract high SES
and high 1Q students is a trivial one. If we want to know whether schools have an
effect on students next to and above their background characteristics, we have to
control for these differences in individual backgrounds.

Statistical Control for SES, IQ, and SEX

Our use of averages in the previous section can be formalized in terms of using
linear models. This makes it possible to talk about assumptions, and it also points out
various natural alternatives. In our models index j is used for schools, and index i is used
for students, who are nested in schools. Boldface notation is used throughout to
indicate random variables.

The first model we use is

Yij = 04 + €ij, ]

where the disturbances are normal, independent, centered, and homoscedastic (this last
assumption means that they are assumed to have a common variance o for each
individual). This is the one-way analysis of variance (ANOVA) model, in which there is a
single o; parameter for every school. From the linear model point of view, Model 1 is
the null model in which coefficients for all predictor variables are set equal to zero,
except for the intercept. Estimation of the parameters produces the ordering of schools
by way of uncorrected school means (i.e., column ADV of Table 1a).

A method to test whether schools are associated with achievement levels is to
partial out the influence of student and school characteristics (attributes). The simplest
approach is to perform an analysis of covariance (ANCOVA), where schools are the
groups and SES, SEX, and IQ are the covariates. Model 2 is the analysis of covariance
model, with the dependent variable ADV,

Yij = & + ﬁlSExij + E’ZIQij + ﬁ3SESij +€|i (2]

This is a substantial improvement over Model 1 as far as the unexplained part of
the variation is concerned; it s decreased from 0.815 to 0.346. The estimated as can be
used again to order the schools. We can use the residual variances, which are 2.07 and
0.88, respectively, to test the difference between Models 1 and 2 9i.e., we can test the
hypothesis By = B = B3 = 0 within Model 2). Normally we would use an F-test for this
purpose. Because F-tests cannot be applied in the random coefficlent models, we will
use the likelihood ratio chi square. The chi square is 1290 *(in 2.07 - In 0.88) = 1103.44.
With only three degrees of freedom, this clearly is highly significant.

If we compare the ANOVA and ANCOVA columns in Table 2a we see a different
order. The rank correlation between them is r = 0.667, indicating only a moderate
agreement between the two orderings. Our conclusion so far is that controlling for
background characteristics does make a difference. Using only the aggregated means is
misleading. In the following tables, high levels are coded with upper case | and S, low
levels with lower case I and s.




School
1 29 6
2 33 34
3 31 30
4 66 33
5 39 4
6 45 24
7 39 25
8 31 18
9 53 29
10 31 9
11 30 7
12 36 20
i3 52 23
14 29 28
15 33 16
16 65 37
17 57 31
18 31 11
19 26 12
20 27 14
21 25 5
22 27 19
23 26 21
24 36 2
25 11 1
26 27 17
27 15 26
28 27 8
29 20 22
30 32 13
31 49 32
32 57 35
33 37 27
34 39 36
35 35 15
36 28 10
37 16 3

ANOVA ANCOVA

ANOVA
ANCOVA
is

is

Is

is

Table 2a

Ranking of Schools by Fixed Models

SIZE ANOVA ANCOVA

1.000
.669
-.036
-.062
434
383

is

5 28
32 8
35 35
29 23
17 27
36 34
30 25
31 36

9 5
16 11
12 29
23 31
13 18
33 20
22 17
37 33
24 1
19 10
28 32
20 24

1 19
10 2
18 22

4 21

2 9

7 12

8 26
11 13

6 37
27 15
26 16
25 6
21 3
34 14
15 7
14 30

3 4

Table 2b
Rank Correlations between Rank Orders

is

669 -036
1.000 257
257 1.000
226 734
.624 450
621 315

24 3
16 10
36 33
23 25
15 18
35 32
27 22
29 37

6 9
13 26
32 15
26 31
25 8
28 21
30 © 7
34 36

S 2

8 17
31 24

7 34
17 1

3 19

9 30
18 11
33 5
22 12
11 20
20 16
37 14
19 4
12 28

2 29

4 23
10 35
14 13
21 27

1 6

iS Is {5
-.062 434 .383
226 .624 621
734 .450 315
1.000 099 .563
099 1.000 .598
.563 .598 1.000

W
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However, using ANCOVA as the way to avoid a bias in the direction of the school
population characteristics has its own problems. It is based on at least one critical
assumption, which is a priori unlikely to be true. This is the homogeneity of slope (i.e., the
assumption that all regression lines are parallel in schools or that there is no interaction
effect between school and student characteristics). If heterogeneity of slopes is more
likely we can still control for student characteristics by fitting the same model as in
Model 2, but now for each school separately; the result is Model 3.

Thus, Model 3 allows each school to have its own estimates for the regression
coefficients,

Yij =0 + BljSExij + [32110_“ + ﬁSjSESif +&ij (3]

If we fit this model the residual variance is 0.78, which means that the
proportion of unexplained variance drops to 0.307. This corresponds to a likelihood
ratio statistic (for testing the homogeneity of "within-school® slopes) of 1290*(In 0.88 -
In 0.78) = 155.61, with 36 * 3 = 108 degrees of freedom. This transforms to a z-value of
3.24, which is quite small for a sample as large as this one, though significant. Although
there is some evidence of heterogeneous within-school slopes, it is not very strong.

Let us ignore this statistical information for the moment, and act as if the within-
school slopes are different. If we allow slopes to differ per school, the ordering of the
schools becomes less simple. Some schools may be successful for high-IQ students or for
females, while the same schools are not successful for low-IQ students or for males.
since we have 2 (SEX) x 7 (SES) x 85 (IQ from 60 to 144) = 1190 different conceivable
students, the number of possible comparisons is large. To illustrate this we picked,
rather arbitrarily, four different types of students by crossing high 1Q/low 1Q with high
SES/low SES. This produces four different orderings. Observe that we give model-based
rankings here,. We do not compute average ADV for all groups on all schools, but we
compute ADV predicted by the linear model for these combinations of the
independent variables. The former would be more precise but very inefficient, because
there will be very few Is or is girls in any one school.

The first group (is) are girls with an IQ of 90 who have blue-collar workers as
fathers (SES Category 2). The second group of girls (I5) have the same IQ, but their
fathers own a small business or work as businessmen (SES Category 4). The third (Is) and
fourth (1) orderings are based on girls with the same two SES backgrounds, but their IQ
is now considerably higher—it is equal to 110. The columns in Table 2a give, next to the
orderings from Models 1 and 2, the orderings by using Model 3 in the last four columns
as follows:

s predicted advice = oy + By (SEX=2) + B2jAQ=90) + P3;(SES=2)
IS predicted advice = O + [31] (SEX=2) + BZ](IQ=90) + B3j(SES=4)
Is predicted advice = o + BI] (SEX=2) + B2;(1Q=110) + B3j(SES=2)
IS predicted advice = &y + B1j (SEX=2) + B2;(1Q=110) + B3j(SES=4)

Replacing the os and Bs with the different estimated values per school produces
37 outcomes for the prediction of ADV and thus for the rank order for all schools. The
results are indeed different for different types of students, as we can see when
comparing the last four columns in Table 2a. Each row in Table 2a contains the rank
numbers for one single school over the six different methods of ordering. Table 2b has
the Spearman rank correlations between the six rank orders.

Some examples of the different rankings that a school receives when we
compare different types students in those schools are illustrated by Schools 1, 21 and 23
(see Table 2a). School 1 scores high for the I1Q-110 students (columns Is and IS) by
occupying a third place, but does poorly (28th and 24th place) for IQ-90 girls (columns
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is and iS). The same is true for School 21, which scores high for IQ-110 students but does
much worse for 90-1Q students, It drops from being the best school in the last two
columns to being an average school (number 19 and 17, respectively) in the i columns.
School 23 also jumps around: It does rather poorly on most scales but is up to 9th and
13th place for higher SES gizls (see columns IS and 15). This shows an interaction effect
between student characteristics and the school.

The correlations between the orderings, with different students in Model 3 as
the ranking criterla, are moderate to low. The highest correlation is only 0.734. This is
the one between is and 1S, the low-IQ girls only differing in the occupation of their
fathers. The association between ANOVA and ANCOVA is also somewhat higher than
the others, 1 = 0.669. The correlation between orderings for low-SES girls that differ
only in IQ (orderings is and Is} is r = 0.450. The largest discrepancy is between girls with
different IQs and fathers with different occupations (orderings IS and Is); this :
correlation is as low as 1 = 0.099. The correlations between ANCOVA and the last four
orderings is moderately high between the two groups with high-IQ girls (r = 0.624 and r
= 0.621), and low for the low-1Q girls (r=0.257 and r = 0.226). It is not surprising that
ANOVA, the uncorrected means, has in general the lowest carrelation with the other
five.

Especially different are the conclusions based on low-1Q students when
compared with the other orderings. Partly this {s related to the size of the school. For
low-IQ students the average predicted ADV is negatively correlated with the size of the
school, while for high-IQ students there is a fairly strong positive correlation. This
seems to indicate that small schools give relatively high advice to low-IQ students, while
large schools give relatively low advice (that is, low-IQ students in small schools are given
greater encouragement to go to prestigious secondary schools than are low-IQ students
in large schools). The orderings given by ANOVA and ANCOVA agree more with the
high-IQ orderings Is and IS. This is unfortunate, since often research in school
effectiveness is interested in the success of schools with underprivileged students. In
our case, and probably in a great deal of school effectiveness research, it is clear that
neglecting this potential interaction effect, as the ANOVA and ANCOVA orderings do,
can lead to different and biased conclusions about which schools are more successful.

The orderings based on Model 3, taken together, will generally produce a more
complete picture. In comparison, the uncorrected means ANOVA seems to be the most
biased and least informative way to order schools (of course, its fit is also bad when
compared with the ANCOVA model). Here we must consider the indirectness of the
methods used, estimate the school effect, and then rank it. On the one hand, the
school effects may be heavily biased, but the ranking may still turn out without bias. On
the other hand, it is important to note that in some cases estimated rankings are
obtained where no ranking is really appropriate because of the extremely poor fit of
the model.

However, we still encounter problems in using Model 3. This is already clear
from the fact that the differences between the slopes are not very significant (compare
the likelihood ratio test earlier), while ordering the schools by the various types of
individuals (as we have above) produces wildly different results. If, in our ordering of
schools, we estimate different models for different schools and then compare outcomes,
we take the coefficients at face value. In doing so, we ignore the fact that some
estimates are more efficient than others (small versus large standard errors) and that
some may even be bilased as a result of small non-random groups and/or outliers. In our
case the number of students per school differs markedly, which causes some schools to
have more reliable estimates than others. School 25, for instance, only has 11 students.
It is ranked lowest on IQ, ADV, and SES. If we use ANCOVA to correct for background it
moves up one place, but if we let the school determine its own regression coefficients,
strange things happen. For high SES students this school turns out to be one of the best
there s, but high SES students actually do not attend this school. Taking such things
into account prompts the search for a better way to analyze the data.




Choosing a Better Model

We start our search for a better model with an examination of the assumptions
behind the traditional linear models. One of the assumptions of the fixed linear model
is simple random sampling. This assumption often is violated in educational research,
and the violation has an impact on the analysis. This {s shown in the equation of all
fixed models where it is stated that the individual errors g;j; are uncorrelated, and have a

mean of zero and a constant variance o2. However, in our case, as well as in educational
research in general, we know that students are sampled from within a well-defined
population: a particular school. In fact, usually it is not students that are sampled, but
schools, and students are nested within them. This gives us a good reason to assume that
individual (student) error terms of students in the same group are correlated. The error
term contains, in addition to random measurement error, various influences that are not
measured, that is, the influence of the variables not in the model (Kreft 1987). Since
students in the same class share many hours of common experiences each day, it is
somewhat unrealistic to assume (as is done in the fixed models) that unmeasured
influences are unsystematic. In a more appropriate model the random terms associated
with the students in the same school should be correlated, or, equivalently, should share
a common component.

Another problematic aspect is the use of fixed effects models such as AN(C)OVA.
ANOVA and ANCOVA are analysis methods designed for the analysis of a fixed number
of experiments. But schools are better thought of as a random sample from the
population of possible schools, and not as a fixed number of treatments. What we need
here is a random effects model. When we compare the traditional random effects
model and with the fixed effects model, we find that the main difference is that we are
no longer dealing with means or point estimators, but with variance components,
Rather than estimating effects directly by taking differences of treatment means from
the grand mean, the variance due to treatment is estimated. In random coefficient
models it is assumed that the model deviations within the same schools are correlated,
and that schools are a random sample from the population of schools. The last
assumption allows us to make inferences to other schools not in the sample, while the
first assumption provides more reliable estimates. The estimates are no longer based
solely on individuals independent of each other, but upon individuals in relation to
each other when in the same group. The model as a whole is more reliable, since the
coefficients are weighted in relation to their reliability, the size of the group, and the
correlations between the individuals within the group. This also makes the chance for
Type I errors in the random model smaller than in the fixed models (see De Leeuw &
Kreft, 1986; Raudenbush & Bryk, 1988).

Since in the analyses of (co)variance, fixed or random, all analyses have slopes
that are parallel between groups, by assuming no interaction between individual student
and school characteristics we have to adjust the traditional random effects model to
incorporate the possibility of different slopes per school. As shown before when
comparing the four orderings of schools for high- and low-IQ girls and for girls with blue
collar workers and businessmen as fathers, the actual slopes for IQ and SES are very
different for different schools. Therefore, allowing for the possibility that schools have
different slopes is a necessary first step.

The random coefficlent model is a special variance components model. Again
there are several sources of varlance in the dependent variable that are decomposed in
a pupil varlance component and a school varlance component. This way the total
variance is split into sampling variance and school-level variance. The researcher will
eventually try to tie this last variance to a school characteristic. We do not do that here
since we merely try to order schools by their outcomes. Because the error structure in
this model is much more complicated as a resuit of the weighting procedure used to
estimate the different sources of varlance, estimation of the residual variance is less
straightforward than in the fixed model. The usual Least Squares (LS) procedures are
replaced by Maximum Likelihood (ML) methods, closely related to Bayesian and
empirical Bayes methods for linear models (see for details: Aitkin & Longford, 1986; De
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Leeuw & Kreft, 1986; Jennrich & Schluchter, 1986; and Longford, 1988a). This results in
more efficient and reliable estimates, an outcome due to the application of a shrinkage
factor to schools that are far away from the grand mean. The improvement over LS
estimates is especially large when samples are small, because a Bayes shrinkage to the
grand mean offsets the instability in coefficients that is a result of the presence of small
groups (see Raudenbush, 1988). Each LS estimate Bj is weighted in proportion to its
precision. This improvement is greatest when much heterogeneity among micro
parameters exists and least when sample sizes are large. If groups are large, LS estimators
are more or less equal to ML estimators. In summary, we can state that very small
schools can be left in the analysis because the estimation method makes the outlier
problem and chance factors less disturbing. This is not the same as saying that the
presence of small schools in the data set is an optimal condition. Small schools will be
more subject to shrinkage to the mean (or shrinkage to a macro level variable, if this is
in the model) than large schools. :

Most statistical software packages provide techniques to analyze random
treatment designs (see for instance the SAS module VARCOMP for random analysis of
variance model), but these are often not useful in educational data analysis. The reasons
are the limitations that are caused by the usual assumptions of equal slopes and equal
error variances (or equal n) between schools and uncorrelated error terms within
schools. The new 5V module of BMDP can handle the data structures we have in mind
(Schluchter, 1988), but for really large data sets the input handling is not very efficient.
For our analyses we have used a Macintosh version of the VARCL program of Longford
(1988b), which has been designed specifically to handle these random coefficient
models.

The estimates produced by the random coefficient models are more reliable and
also more efficient. The standard error of the estimates are smaller than the errors
around the estimates based on the other models. Standard errors are not only related to
sample size and sampling variations, but also to the mean of the group and the deviation
of the group parameters compared to the overall mean. Therefore, the number of
parameters to be estimated is much smaller than in the separate models for separate
schools method. In the latter method the schools are considered independent of each
other, and separate and independent parameters are estimated for each school. In our
example of 37 schools, using Model 3, this leads to 37 * 4 = 148 parameters (one
intercept and three slopes for each school). With the error variance o2 this produces
149 parameters. In the next paragraph, in the examples with random coefficient
models, we do not estimate parameters but distributions around a mean with a certain
variance. In the random coefficient model, with ail four coefficients random, this
produces, in our case, the estimation of only four means and four variances (for the
intercept and the three slopes) plus an individual error variance: ten estimates
altogether, many fewer than those in the fixed model. Some models specify extra
estimates for the covariance between the slope and intercept, which adds a maximum
total of 6 covariances to our model and brings the number of parameters to 16, still
many fewer than those in the fixed model. The random coefficient model is more
parsimoneous than the fixed model in this sense.

More Rankings

If a researcher has reasons to believe—or, iIf one insists, if she has a theory—(a)
that schools are Just a sample from a well-defined population and (b) that slopes may be
different between schools and error terms within schools are correlated, then the
random coefficient model applies. For instance, when a researcher wants to evaluate
policy measures that are intended to benefit specific groups of minority students, a
random coefficlent model may have to be used in order to measure the effect of the
school policy on the slope of SES. In order to estimate the effectiveness of the schools
in our own data, we choose three models from the class of random coefficient models.
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We study the random coefficient versions of Models 1, 2, and 3. The ANOVA
model (Model 1) becomes

Yij = & + €jj- [4]

Observe that we now use bold face for aj, because it is random. It can be decomposed as

&=+ Y [5]

The assumption is that the disturbances yj, which are the same for all individuals in the
same school, are normally distributed with expectation zero and constant variance w2

for all schools. It is also independent of the error term €;5, and of the school level
disturbances of other schools. If we substitute Model 5 in Mode! 4 we find

yij = (@ + ¥)) +€jj. (6]

This implies that y;; is normally distributed with mean o, and with variance o2 + 2.
Outcomes for individuals in different schools are independent, but for individuals in the
same school they have a covariance of w2, and thus a correlation of p = @2/(c? + w?),

The mode! has only three free parameters (&, @2, s2), in contrast to the 37 + 1 = 38 free
parameters in ANOVA (Model 1). If we fit the model we find estimates of the two
variances equal to 2.13 and 0.39, and thus a correlation of 0.39/(2.13 + 0.39) = 0.15.

This deviates significantly from zero.

We also fitted the random intercept (fixed slope) model, which makes a
comparison possible with the fixed effect model ANCOVA. This is

Yij = (o + ‘rj) + BlsEXii + ﬁzIQij + [33SESij +€ii. (71

Only the intercept (the overall effect) is random in Model 7. This model only
needs six parameters to be estimated. For the estimates of 62 and w? we now find 0.91
and 0.04, which is a correlation between errors of children in the same school of only
0.04 (stil! significant, though). For the fixed ANCOVA model the estimate of the
individual level error variance was 0.88. Testing the random ANOVA within the random
ANCOVA model (i.e., testing that B, = B, = B3 = 0 in Model 7), produces a chi square of
4706.54 - 3572.24 = 1134.30, which is highly significant with three degrees of freedom
(compare the chi square of 1103.44 when comparing the fixed ANOVA and ANCOVA
models).

The most general model is the random coefficient analogue of the
heterogeneous regression Model 3. It is :

Yij= 9 "'leSExii + Blle,l + ﬂ}3SES§i + Gii. (8]

All regression parameters are now random. The random intercept and the random
slopes consist of a fixed part and disturbances. These disturbances are again at the group

level with expectation zero and independent of the individual error variances €jj. This
decomposition is shown in Model 5.

o =0 + Y [9a]
Bik = Bx + Mjk- [0l
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If we substitute these terms in Model 8 we get the equation

Yij= @+ +
+ (B1 + MDSEX;j + Bz + Mj1Q; + (B3 + Mj3)SES;j + €jj [10]

The number of parameters in this model is 4 {mean regression parameters) + 4 (variance
regression parameters) + 6 (covariance regression parameters) + 1 (individual level error
variance) = 15. Fitting this model produces an estimate of o? of 0.89, which is not much
smaller than the value of 0.91 for the random ANCOVA model. The likelihood ratio chi
square for testing the random ANCOVA within the random heterogeneous slopes model
is 5.85, which is clearly nonsignificant with 15 - 6 = 9 degrees of freedom. Again, this
indicates that there is no significant variation in the slopes in these data. The
heterogeneous slopes model basically fits the same structure as the random ANCOVA
model, but, because of the additional parameters, it does this with much less stability.
Actually, the estimated random slopes (the posterior means of the random effects) show
very little variation around the origin, and this seems to have a detrimental effect on
the estimation of random intercepts as well.

In Table 3a we show the new orderings obtained with the random coefficient
models. The columns are defined in the same way as those in Table 2a. Thus the first
two columns are school number and school size, the third one is the random ANOVA
(Model 4), the fourth one the random ANCOVA (Model 7), and the last four columns
are for the general heterogeneous random slopes (Model 8), with ordering for s, 15, Is,
and 1 girls. Table 3b gives the correlations between the seven rank orders.
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Table 3a
Ranking of Schools by Random Models

Number SIZE ANOVA ANCOVA

1 29

1 29

2 33

3 31

4 66

5 39

6 45

7 39

8 31

9 53
10 31
11 30
12 36
13 s2
14 29
15 33
16 65
17 57
18 31
19 26
20 27
21 25
22 27
23 26
24 36
25 11
26 27
27 15
28 27
29 20
30 32
31 49
32 57
33 37
34 39
35 35
36 28
37 16

is is
6 4 3 3
6 4 3 3
33 31 31 31
30 35 23 25
34 32 26 26
4 17 6 6
24 36 17 17
25 29 18 19
18 30 27 27
29 6 21 20
9 16 30 29
7 12 7 7
20 25 15 i6
23 13 5 5
28 33 29 30
16 22 12 12
37 37 37 37
31 23 22 23
11 19 14 15
13 28 10 10
14 20 24 22
S 1 2 2
19 9 32 32
“21 18 20 21
2 2 4 4
1 5 25 24
17 7 8 8
26 10 9 9
8 11 13 13
22 8 1 1
12 27 11 11
32 26 33 33
35 24 36 36
27 21 34 34
335 34 35 35
15 14 28 28
10 15 16 14
3 3

Table 3b
Rank Correlations between Rank Orders

ANOVA ANCOVA is

ANOVA
ANCOVA
is

is

Is

IS

1.000
.661
587
612
.549
591

661 .587
1.000 532
532 1.000
.560 997
454 .990
491 .992

is s
612 .549
.560 .454
997 .990
1.000 986
.986 1.000
.990 .996

591
.491
992
.990
.996
1.000

e e
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In Table 4 we compare the six rankings of the fixed model with the six rankings
of the random model.

W

Table 4
Rank Correlations between Rank Orders
Fixed Models in Rows, Random Models in Columns

ANOVA ANCOVA is i$ Is IS

ANOVA 999 .663 588 613 551 .592
ANCOVA 667 994 541 569 464 502

is -031 291 -371 -.361 -.462 -.442
is -.060 265 -317 -.301 -.388 .390
Is 441 .639 514 518 436 .458
IS 384 .650 527 537 461 .457

W

It is very clear from Table 3b that the random coefficient model beautifully takes
care of the variability of the school level regression coefficients, which caused the low
correlations in Table 2b. Slopes really do not make a difference any more, and thus the
rank order for our four categories of girls is almost completely identical. We also see the
remarkable fact that the four random slope rank orders now correspond more closely
with the random ANOVA than with the random ANCOVA solution (which is a far better
solution in terms of fit and interpretability). This may be because allowing the slopes to
vary forces the estimating procedure to shrink them towards zero, which makes Model 8
like Model 4, and not like Model 7.

Comparing the correlations between some of these "same" models leads to
interesting conclusions. Comparing the fixed effect ANOVA with the random effect
ANOVA shows a correlation of 0.999. The posterior means are virtually equal to the
school means. The same thing is true for the fixed and random ANCOVA models, in
which the correlation is 0.994. In Table 4 we once again see the serious defects of the
heterogeneous slopes model in the case of fixed effects, and the reasonable
performance in the case of random effects (although we then seem to fit the random
ANCOVA model in a very inefficient way, making the resulting rank orders closer to
random ANOVA, i.e., to the uncorrected means). From the point of view of fit and
interpretability, it is clear that the ANCOVA models, both fixed and random, are much
preferred. Moreover, they both seem to give basically the same information in a
somewhat different form. We will not answer the question of whether either of the
two ANOVA models has a better fit, because it is clear that fit measures cannot be
compared directly. There is no simpie residual variance in the random intercept model,
and a direct comparison of likelihoods is also not quite appropriate (because the models
are not nested).

Conclusion

There are two important outcomes of our analysis. In the first place we find
(again) that variation in the slopes In school effectiveness models is not systematic, and
only marginally significant (if at all) in the statistical sense. As De Leeuw and Kreft
(1986), Aitkin and Longford (1986), and Raudenbush and Bryk (1986) have found, the
random intercept or random ANCOVA model is a better way to present our data. When
coefficients are fixed, the application of models in which slopes are allowed to vary ¢an
be very misleading because the betas bounce all over the place and lead to wildly
different conclusions about the ranking of schools. In the random slopes model the
variation in the betas is suitably depressed, but the complicated estimation problems
encountered here do not seem to be solved completely. The likelihood surface is
presumably very flat. The different ways in which the fixed and random slopes models
handle the bouncing beta problem is another important outcome of our analysis.
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There are two alternatives that remalin if we want to rank schools. The obvious
one, using school means, is very stable. It gives virtually the same results for random
and fixed models. If we do not interpret it in a purely descriptive way and do think of
it as a model-based ranking, then the corresponding model is thoroughly discredited (chi
squares near 1100 with three degrees of freedom). If we rank schools in terms of output
only, we do not measure their effectiveness, because if we want to measure
effectiveness we also have to take input into account. After correcting for input we
have a rank order that is quite different, although still moderately correlated with the
output rank order.

We have discussed the differences between the random and fixed models and
we have given rational arguments for why the random model is a good alternative. The
model is built on more realistic assumptions: random effects and random slopes and
correlated error terms within groups. Because the random coefficlent model is based
upon the knowledge of the sampling of schools and the shared history of the students
within the same school, the stability of the estimates is increased. Although we cannot
show statistically that the random model is preferable to the fixed model, on the basls of
appropriateness and parsimony arguments, we think it is preferable to think in terms of
random coefficient models. Of course, it stifl is the responsibility of every individual
researcher to consider the choice of her tool. She is the one who is supposed to know
if certain assumptions are realistic and if they apply to her situation. She has to choose
the tool, as discussed by De Leeuw (1989). In this report we have shown that the
choice of the tool can really make a difference.
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