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IRT and the Question of Validity

Item response theory is probably the most important technical development in the
field of measurement in recent years. On the other hand, the most important question
regarding any measure concerns the validity of the uses and interpretations of the scores.
Relatively little attention, however, has been given to the influence that increased use of IRT
has had on the validity of test scores. The purpose of this paper is to address the question
posed in the title. Has IRT increased the validity of achievement test scores?

As will be seen, the proposed answer to the question will not be a simple "yes" or "no”.
Rather, it is argued that IRT has made some important contributions. It has opened up new
possibilities that were beyond our reach without the power of IRT. It has also raised a host of
new questions and forced us to think about a number of measurement issues in new and more
penetrating ways. Often, the new questions and issues that are posed lead to the need for
refinements and extensions of the theory and there have been some important new
developments in these regards in the past few years.

On the other hand, the IRT models for responses to test items, like any other model are
only approximations. Wainer and Thissen (1987) made this point in the introduction to their
article, "Estimating Ability with the Wrong Model" with the following quotaticn that they
attributed to John Tukey. "All theories are wrong. Its just that some are easier to disprove than
others" (quoted by Wainer & Thissen, 1987, p. 339). Thus, it should not be surprising, that
given enough data and sufficiently powerful analytical techniques, that we can find ways in
which any IRT model is wrong. More important, however, are questions such as the following.
What effects do the differences between the model and reality have on the validity of
interpretations and uses of a measure? What new insights do we gain about reality by virtue of
this comparison? Are there better alternatives available for particular purposes? If not, what
needs to be done to develop such alternatives?

In addition to questions about the adequacy of the model for particular applications
with a given set of data, it is important to also address the question by starting with a
consideration of the purposes of educational measurement, or more specifically, achievement
testing. The validity of a measure needs to be evaluated in light of the purposes of
measurement and the ways in which measures are used and interpreted. It is within this
context that we can then look at the degree to which IRT contributes to validity and enhances
or impedes the accomplishment of those purposes.

A variety of purposes for achievement tests can be identified. Commonly mentioned
are such seemingly diverse purposes as accountability, certification, and the identification of
student strengths and weaknesses. Despite the apparent diversity, however, the specific
purposes all relate in one way or another to the global goal of improving learning. Although no
attempt will be made to provide definitive conclusions about the degree to which IRT has
increased the effectiveness of achievement tests in terms of this global goal, it is useful to keep
the goal in mind.

Before moving to some specific educational measurement issues where the question of
the contribution of IRT can be addressed more concretely, it is useful to review briefly notions
of validity that will be used to evaluate the contributions in particular applications. Some of
the primary expected advantages of IRT also need to be highlighted and linked to applications
with achievement tests. After this general introduction four specific applications will be
discussed. The specific applications to be considered are (1) the construction of scales for
achievement tests, (2) the selection of items for achievement test forms, i.e, test construction,
(3) the construction of customized tests, and (4) the investigation of the influence of
instruction on achievement tests.




Validity

Messick {1988) conceives of validity as a broad, but unitary concept that encompasses
"two interconnected facets ... "One facet is the source of justification of the testing, being based
on appraisal of either evidence or consequence. The other facet is the function or outcome of
testing, being either interpretation or use” (p. 20). The function or outcome facet is the more
familiar of the two. Recommendations that evidence be accumulated concerning both test
interpretation and test use are a standard part of recent discussions of validity (e.g., American
Psychological Association, 1985).

Although Messick's concern for appraising the consequences of testing is consistent
with the views of other major theorists (e.g., Cronbach, 1980; 1989), his source-of-justification
facet is a less familiar way of classifying validity than the distinction between use and
interpretation. The need to make a judgment about the consequential basis as well as the
evidential basis of test use and interpretation greatly expands the range of validity
considerations.

A broad view of validity such as the one articulated by Messick, suggests that questions
about the degree to which IRT has increased validity of achievement tests need to take a
variety of forms. Certainly, we need to be concerned with evidence supporting inferences
that are made from the scores and the uses of the scores. In addition, however, we need to ask
about consequences. For example, are the intended purposes of achievement tests
accomplished better because of IRT? What effect, if any, has IRT had on unintended
consequences?

Some Advantages of IRT

To start, it is useful to note some of the expected advantages of IRT. Its advantages
derive largely from the promise of invariance, or as was more colorfully described by Wright
(1969), person-free item calibration and item-free person measurement. The promise of item-
free person measurement is central to the possibilities of item banking, computerized-adaptive
testing, and the development of customized tests. Person-free item parameter estimates
provide the basis for certain approaches to test equating and it is this property that is
challenged in studies of itemn bias. Questions about item parameter invariance are also central
to studies of the differentijal effects of instruction on performance on achievement test jtems.

Of course the notion of item-free ability estimates is not meant to suggest that equally
good estimates of an individual's ability can be obtained with any set of previously calibrated
items. The precision of the estimates will depend on the number of items and their
parameters. However, IRT provides the basis for estimating the amount of information, or
conversely, the magnitude of the standard error of ability estimates provided by any given set
of items at each point along the ability scale. Thus, it provides the basis for designing tests that
have desirable properties for specific purposes (e.g., reliable measurement over a wide range of
ability or measurement with maximum precision at a given point on the scale). With this
background, I'll now turn to a consideration of four specific applications of IRT, starting with
the construction of scales.

Scales

One of the uses of IRT with achievement tests is, of course, the construction of scales
that span the levels covered by the test battery. When the assumptions of the IRT model hold,
IRT scaling has a number of advantages. Unlike Thurstone scaling which has been used
frequently with achievement test batteries, IRT scaling does not require the assumption that
achievement is normally distributed within-grade. Another major advantage, as Burket {(1984)
has pointed out, "stems from the fact that IRT models the probability of the correct response of
an examinee to an item, and therefore permits the interpretation of a test score in terms of
what that score implies about the examinee's ability to perform. Given an appropriately




chosen set of calibrated benchmark items, this means that true criterion referencing of test
scores in possible” (p. 15).

The criterion referencing that Burket was referring to has been used extensively with
the IRT-based NAEP scales that have been used since the 1984 reading assessment. The
selected benchmark items show the kind of problems that students at a given scale score, say
250, have a high probability of answering correctly whereas students with a lower scale score,
say 200, are unlikely to answer correctly, Such benchmark items play an important role in
interpreting the scale.

Although there is widespread agreement that IRT offers advantages for scaling when the
mode! holds, there has been considerable debate about the use of IRT to scale achievement
tests. Hoover (1984), for example, acknowledged that IRT has advantages, "but only if some
highly restrictive conditions are met" (p. 17). He then went on to argue that the conditions are
generally not met for standardized achievement tests, noting in particular, that "the
assumption of unidimensionality is almost sure not to hold across the levels of an achievement
battery in most test areas” (p. 17).

Although concerns about unidimensionality are enough to produce debates about the
use of IRT to place the levels of an achievement test on a common scale, particular properties
of the scale that resulted when IRT scaling was first used with the CTBS probably did more than
anything else to call attention to the issue. Several reviews of the CTBS/ U (e.g., Hoover, 1984;
Linn, 1985; Shepard, 1985) noted that the scale indicated that the variability of student
achievement tended to decrease as grade level increased. This decreasing variability result
stood in sharp contrast to the more familiar Thurstone scales which tend to show some increase
in variability with grade level. The pattern also seemed to conflict with some findings from
differential psychology (e.g., Anastasi, 1958) and concepts such as Campbell's (see, for example,
Cook & Campbell, 1979) fan-spread hypothesis, a kind of rich get richer theme, which posits
that performance becomes more variable across the grades.

Hoover (1984) addressed the issue of decreasing scale variability in some detail (see also
Burket, 1984, for a response). Yen (1985, 1986) also addressed the issue and provided a
possible explanation for the tendency for the scales to shrink. Scale properties continue to be
an issue, however, as is apparent in a recent exchange of papers by Phillips and Clarizio (1988a,
1988b), Yen (1988), and Hoover (1988).

Although there is still substantial disagreement about the appropriateness of certain IRT
scales, there is general agreement on at least two points. So it is useful to set those aside at the
beginning. First, while it has sometimes been claimed that equal interval scales are produced by
both Thurstone scaling and IRT scaling, it is obvious that they can't both be equal interval when
one scale suggests that above-average students tend to develop at a faster rate than below-
average students, whereas the other scale suggests just the opposite, It is wiser to avoid a claim
of a true equal interval claim in both cases, however, than to accept the claim in one case, but
not the other. As Burket (1984) has noted, in both cases such claims "fall apart under critical
scrutiny” (p. 15}.

A second point about which there seems to be general agreement is that simply because
an IRT scale has different properties than an those of the more familiar Thurstone scales, it
does not necessarily follow that there is something wrong with the IRT scales. The fault, if
there is one, may lie with the Thurstone scales. Alternatively, they may both be useful for
particular purposes. To again quote Burket (1984), it is important to recognize that each scale
"is based on a model whose predictions depend on the metric” (p. 15),

The concern about a shrinking scale comes, in part, because it runs counter to a widely
held belief. According to Hoover (1984), for example, "One of the most widely held beliefs
regarding the educational development of students is that above-average students develop ata
faster rate than below-average students” (p. 11). Of course, a widely held belief can also be an
erroneous belief, More importantly, however, the belief may be correct for some developed




abilities but not others and this raises fundamental validity questions. What is the construct
that is being measured by a given test of an achievement battery? Is it a2 unidimensional
construct? How do students develop the ability that is being measured? What are the
consequences of choosing one scale rather than another for the use and interpretation of the
scores?

Unfortunately, we seem to have little solid basis for answering such questions. Yen
(1985, 1986) has suggested that increasing multidimensionality with test level may cause the
scale to shrink. More specifically, the idea is that the higher test levels include more complex
items that require several different abilities to solve.

Figure 1 (see Appendix A) displays the IRT-based scale scores corresponding to selected
percentile points (i.e., the 10th, 25th, 50th, 75th, and 90th) for four reading comprehension
tests across several grade levels. The plot in the upper-left-hand corner for the CTBS/U
Reading Comprehension test illustrates the shrinking scale property that led to the initial
debate. The scale score needed to be at the 90th percentile changes very little from the spring
of the Sth grade to the spring of the 8th grade. On the other hand, fairly substantial growth
would be required over that same three year period for a student to maintain a standing at the
10th percentile.

As can be seen in the upper-right-hand corner of Figure 1, the tendency for the scale to
shrink is even more marked for the CAT than for the CTBS. The remaining two reading scales
shown in Figure 1 give a rather different perspective. The scale variability of the Stanford is
fairly constant across time. The NAEP reading scale shows a small decrease in variability from
grade 3 to grade 7, followed by a slight increase in variability from grade 7 to 11. There is no
good basis for saying that one of the four plots corresponds better to how student reading
ability develops than the others. The differences between the plots do suggest that the tests
have rather different measurement properties and possibly that they are getting at rather
different underlying constructs of reading achievement and are apt to lead to rather different
inferences about student learning.

Figure 2 presents results for four mathematics tests in parallel fashion to the Figure 1
resuits for reading. In addition to the points made in reference to Figure 1 that might be
repeated in reference to Figure 2, the contrast between the CTBS and the CAT is particularly
worthy of note. The CAT displays considerably less scale shrinkage in math than is shown by
the CTBS, whereas the converse is true in reading.

There are potentially severe limitations in using percentile points of observed score
distributions which in this case are the scale scores based on IRT theta estimates. Yen (1983;
1986) has clearly described the pitfalls. As she has demonstrated, tau-equivalent tests that
differ in difficulty can produce different observed score distributions "due to the tests having
different amounts of error variance at different parts of the scale” (1986, p. 315). Yen's (1986)
simulation also demonstrated that the average difference between true and estimated growth
when a single test is used as both a pretest and a posttest fluctuates by percentile level as a
consequence of the shift in the size of the standard error of measurement at different points
along the scale. Depending on the choice of the test information function, the use of fixed
percentiles might make it appear that low scoring examinees were growing slower, faster, or
about the same as their counterparts with middle or high scores. Thus, it is important to
consider the relative magnitude of the standard errors of measurement at different scale score
levels.

Before considering the possible influence of different matches between standard error
curves and the distributions of examinee achievement level it is worth noting another feature
of Figure 2. In addition to the obvious difference in the amount of scale shrinkage on the CTBS
and CAT math tests, another contrasting feature of those two graphs can be seen with careful
study. This is the tendency for the within-grade variability to shrink from fall to spring on the
CTBS while it tends to increase on the CAT. The latter point can be seen more clearly in Figure




3 where the differences between the 90th and 10th percentiles are plotted for the those two
tests.

The within-grade scale shrinkage has recently been addressed in a study by Camilli
(1988). Camilli simulated tests that might be used in both fall and spring and demonstrated that
with maximum likelihood estimation of abilities the shrinkage could be predicted by the degree
of match between the item difficulties and the examinee abilities at the two points in time. In
particular, if the item difficulties are well matched to the student abilities in the fall and there
is substantial growth between fall and spring the difficulties will match the spring abilities less
well. As a consequence, the variability of the gstimated abilities will shrink even though the
true abilities were equally variable at both points in time.

One way of considering the match of items to abilities is through the use of the
information function or the magnitude of the standard errors of measurement at different scale
points. Based on Camilli's simulation it seems reasonable to expect that the standard error of
measurement curve would suggest that the CTBS tests are pitched to provide better
measurement across the student score range in the fall than in the spring, while the converse
would be true for the CAT.

Since the contrast between the apparent decrease in the within-grade variability for the
CTBS and the Increase in the within-grade variability on the CAT is greatest for Grades 2 and 3,
I will focus on those two grades in considering the standard errors of the tests. Table 1 (see
Appendix B) shows the relative size of the standard errors of the CAT and CTBS Math Concepts
and Applications tests for fall and spring of Grades 2 and 3 for scale scores corresponding to
selected percentile ranks between 5 and 93.

As would be expected, both tests show smaller standard errors of measurement for scale
scores corresponding to the 90th or 95th percentile in the fall than for the scale scores with
equally high percentile ranks in the spring. Also as expected, the converse is true for low
percentile ranks, where the standard error of measurement is smaller in the spring. It is not
obvious, however, that overall there is a relatively better match of the CTBS to the student
distribution of performance in the fall than the spring. Nor is it obvious that the CAT is better
matched to the spring than the fall. If anything, just the opposite would seem to be the case at
Grade 2.

The most apparent difference between the ratios of standard errors in Table 1 is that
the CAT maintains a more nearly constant standard error over a wider range of the observed
scale score distribution at Grades 2 and 3 than does the CTBS. This is most notable at Grade 3
where the standard error of measurement is no more than one and a half times its minimum
value throughout the range of scale scores ranging from the Sth percentile in the fall to the
95th percentile in the spring. In contrast, the ratios for the CTBS are much more U shaped.

Clearly, we need to learn more about the factors that affect IRT scale properties on
achievement tests. The match of difficulty or the shape of information functions in
comparison to examinee distributions is worthy of additional investigation. More exploration
with alternate estimation procedures also seems desirable. In the case of Camilli's simulation,
he found that the within-grade scale shrinkage could be avoided by the use of empirical Bayes
estimates. Since empirical Bayes estimates have been used for NAEP, perhaps that helps
explain why the NAEP scale does not shrink.

As Yen (1986) concluded, "IRT does not offer a simple answer to the question of what is
the best method of scaling educational achievement tests" (p. 322). What it has done,
however, is to bring some ignored assumptions about all approaches to scaling achievement
tests into the open for more careful examination. The debate about scale properties has called
into question the validity of widely accepted inferences about the growth in student
achievement that are dependent on the particular properties of scales. Increased awareness of
the scale dependent nature of certain interpretations is itself a contribution that IRT has made
to validity of inferences about achievement that are made from test scores regardless of




whether one uses scores based on Thurstone scaling, IRT scaling, grade equivalent scores, or
some other scale.

Test Construction

The second application of IRT that to be considered is its use in the selection of items
for achievement tests. Lord (1977) described a four-step procedure that was first suggested by
Birnbaum to use IRT in the selection of items for a test. The procedure starts with the selection
of a target information curve for the test. Items with information curves that "will fill the hard-
to-fill areas under the target information curve" (p. 120) are then selected. Part-test
information curves are computed for already selected items. The process of selecting items and
computing part-test information functions is continued until a satisfactory approximation to the
target information function is achieved.

This procedure is quite reasonable if the assumptions of the IRT model are satisfied. It is
quite efficlent, for example, for selecting a set of items that will yield a test with minimal
standard errors of measurement over a range of ability that is of particular interest for the test.
As was previously indicated, however, an IRT model is only an approximation and potentiaily
important assumptions such as the assumption of undimensionality will not be perfectly
satisfied in practice. Thus a reasonable question is how well an IRT test construction procedure
such as the one outlined by Lord works for the purpose of constructing achievement tests?

Notably absent in description of the item selection procedure is any mention of the
content of the items to be selected. Yet, for achievement tests the content specifications are
generally considered to be of primary importance. The primacy of content has been
emphasized by a number of authors as have concerns about a possible distortion of the
measurement that may result from an over-reliance on statistics.

Anderson (1972), for example, argued forcefully against the use of item difficulty and
item discrimination in the selection of items for an achievement test. Although Anderson's
comments were made in the context of classical item analysis statistics, his concerns apply
equally to an IRT test construction approach. In his view, the use of discrimination indices to
select items not only redefines the achievement domain that the test is intended to measure in
unspecified ways but is apt to result in more of an aptitude measure than an achievement
measure. According to Anderson, "manipulating tests to control difficulty level and
discriminating power tortures validity ...” (1972, p. 82).

Several other authors have expressed concerns similar to those raised by Anderson.
Oscar Buros (1948, 1977), for example, argued on several occasfons for the need to attend more
carefully to content and rely less on item statistics in constructing tests. Anderson's concern
that standardized achievement tests are more measures of aptitude than achievement is also
shared by others. Willingham (1980), for example, concluded that "standardized achievement
tests are probably too often saturated with aptitude® (p. 78) and Jones (1988) has recently
identified this confounding as a key educational measurement problem.

In practice, of course, items for standardized achievement tests are not selected solely
on the basis of item statistics. The IRT item parameters are used along with other information.
Yen (1983), for example, noted that Automatic Test Selection computer program that was used
to help select items for the CTBS forms U and V included "requirements for a minimum number
of items for each category objective” (p. 131), The program aiso maximized an index of overall
item quality that included ratings of model fit and item bias as well as item discrimination. In
addition, editors "refined the selected test, focusing on content considerations in particular® (p.
131). Thus, to some extent the specter of purely statistical construction of achievement tests
may be something of a strawperson. The extreme form of the practice is useful, however, in
highlighting the criticality of content considerations for achievement tests.




Traub and Wolfe (1981) noted that there is a disparity between the goals of
achievement testing and the concept of a unidimensional trait. They cautioned that efforts to
satisfy the undimensionality assumption "will almost certainly restrict the range of achievement
tested" (p. 383). However, defenders of the use of IRT for achievement tests counter with at
least three arguments. First, it is noted that classical test development procedures treat
achievement areas as essentially unidimensional when only a single score is reported for a set
of items and by the procedures used to equate test forms. Zwick (1987), for example, has
pointed out that "when less sophisticated methods, such as the summation of item scores, are
applied, it is implicitly assumed that the items are measures of a single attribute. IRT merely
formalizes this assumption" (p. 293). Thus it i{s not obvious that IRT restricts the range of
achievement tested to a greater extent than the reliance on classical item discrimination
indices. On the other hand, as has already been noted, the criticisms such as those made by
Anderson apply to classical procedures as well as IRT-based procedures.

A second rejoinder to critics of the use of IRT in the construction of achievement tests
is that IRT models are falsifiable. As Lord (1980) has noted, “it is possible to make various
tangible predictions from the model and then check with observed data to see if these
predictions are approximately correct® (p. 15). Improved procedures for assessing
dimensionality such as Bock, Gibbons, and Muraki's (1985) full-information factor analysis are
especially useful in this regard. Considerable room for debate remains, however, on issues of
just how dominant the first major dimension needs to be and whether dimensionality is
something that changes as a function of instruction.

Snow and Lowman (1988) argue, for example, that "a test might be unidimensional for
novices because all problems are relatively novel for them and, thus, require the same general
problem-solving skills, whereas experts might show different patterns of skill development on
different types of problems" (p. 267). Snow and Lowman's suggestion goes beyond Yen's (1985)
hypothesis that more difficult items are more complex and therefore more likely to lead to
multidimensionality. Snow and Lowman's suggestion is concerned with the dimensionality of a
single set of items administered to groups that are at different stages of development, or, for
that matter, the same group of students before and after a period of learning. This issue of
possible changes in dimensionality as the result of learning will be considered in greater detail
below, for it seems to be a particularly critical issue for achievement testing. ‘

A third response to the undimensionality concern is to work with increasingly
homogeneous content domains. Although undimensionality may not hold for a relatively broad
domain such as mathematical concepts and applications, that domain can be further and further
subdivided until the assumption is satisfied. Relatively narrowly defined skill domains of the
type described by Bock, Mislevy, and Woodson (1982) and Pandey and Carlson (1983) do much
to reduce the concerns about dimensionality. The goal, as Mislevy (1983) described it is to
identify *item domains sufficiently homogeneous with respect to content that all the items in a
given domain would be similarly affected by changes in curricular emphasis” (p. 273). The
scaling is then carried out within those item domains. Summary scores can be obtained by
various combinations of the "indivisible curricular element scores” if desired, but that would be
accomplished after the scaling.

There is considerable diversity in the definitions of domains that are treated as
unidimensional in applications of IRT. In reading, for example, NAEP used a single scale for
ages 9, 13, and 17. On the other hand, the California Assessment Program (CAP) has defined
narrow scales for each grade and subject area. In reading, for example, there are 17 skills at
grade 3 (Mislevy, 1988).

Mislevy (1988) has suggested that the choice of level of aggregation should depend, In
part, on the purposes. Many, narrowly-defined scales provide a means of detecting small shifts
in curricular emphasis, but may be more than are needed for other purposes. Mislevy goes on
to conclude that "one scale per subject area is probably too few, but twenty is probably too
many" {p. 179). Exactly when content differences can be safely ignored and when they




require detailed attention is difficult to determine. It is clear, however, that content
considerations need careful attention regardless of the level of aggregation.

Customized Tests

The issues of content representation and how nearly unidimensional an item pool
needs to be have been made more salient in the last few years by the development of
customized tests. Customized tests may be constructed by allowing a state or district to select
items from a previously calibrated ftem bank rather than administering a complete off-the-shelf,
norm-referenced test. In theory, it should be possible to estimate achievement levels on the
same scale that would be provided by the off-the-shelf test no matter what subset of items was
selected. If the model is correct and enough items with appropriate item parameters are
selected to provide reliable measurement, then the norms presumably would be applicable.

But the model is just an approximation. In practice, it is clear that it is unwise to
construct customized achievement tests without carefully controlling the content covered so
that the customized and norm-referenced tests have what Yen, Green, and Burket (1987)
referred to as content equivalence. The importance of content representation to the results of
- a customized test has been demonstrated in studies by Allen, Ansley, and Forsyth (1987) and by
Way, Forsyth, and Ansley (1989). In these studies simulated customized tests were constructed
from off-the shelf standardized tests by deleting items in some of the content areas covered by
the shelf test. For example, Way, Forsyth, and Ansley started with the 40 items on the sixth
grade level of the Language Usage and Expression test of the ITBS and constructed a 22-item
content-customized test by selecting the items in the four item content categories concerned
with usage and deleting the 18 items concerned with expression. Similar content related
deletions of items were made by Allen, Ansley, and Forsyth for the Quantitative Thinking
subtest of the ITED and by Way, Forsyth, and Ansley for three other ITBS tests (Vocabulary,
Visual Materials, and Mathematics Concepts).

To evaluate the impact of the use of content to select items for a customized test
schools that had high proportion right scores in the content categories covered by the
customized test relative to their overall proportion right scores were selected. These schools
were intended to simulate what might happen if schools selected content categories that
corresponded most closely to objectives that they emphasized while eliminating content
categories deemed less important and given less emphasis. Based on their analyses, Way,
Forsyth, and Ansley concluded "that if schools in this study were to use the ability estimates
based on the respective content-customized tests instead of the full-length, tests, the
significant majority of examinees would receive higher normative scores than they would if the
full test were used® (p. 34). They went on to say that "apparently it would not be valid for the
school to refer ability estimates based on the content-customized test to norms that were
established on the basis of the full test" (p. 34).

Yen, Green, and Burket (1987) provided compelling evidence that content
considerations are essential if valid normative information is to be obtained from a customized
test. They compared the IRT b values obtained for the national norm group with those
obtained for a local educational agency for a grade S Mathematics Concepts and Applications
test. The scatterplot of the LEA and norm group b values clearly indicated that the item
parameters were not sample-free. More importantly the plot showed that the content of the
items was related to the shifts in the b values. In general, measurement items were relatively
more difficult for the LEA students than for the national sample, whereas the converse was true
of numeration items. As Yen, Green, and Burket noted, this calibration group by item content
interaction could result in invalid normative estimates on a customized test "if the content of
the customized test did not proportionally represent the content of the normed test” (p. 9).

Yen, Green, and Burket's resuits are of considerable importance for anyone considering
the use of customized tests to obtain normative estimates. As they concluded, "if an LEA wants
to customize a test with respect to content, it is likely that local instruction could differentially




affect performance on the customized test and the normed test, invalidating normative
information based on trait estimates from the customized test” (p. 13).

The magnitude of the effect of using a content-customized test to obtain normative
estimates can be dramatic. This is illustrated by the results shown in Figure 4 for a state that
switched from an off-the-shelf, norm-referenced test to a customized test. Figure 4 shows the
percentage of students by stanine score on a Grade § mathematics test for each of 4 years. For
Years 1, 2, and 3, the results are based on the administration of a norm-referenced test. In year
4 a customized test which did not proportionally represent the content of the normed test was
administered. As can be seen there was gradual improvement in the test scores in Years 2 and
3. The apparent increase in performance in Year 4, however, is extraordinary. The percentage
of students with stanine scores of 8 or 9, for example, sky-rocketed from 13% in Year 3 to 36%
in Year 4. These results suggest that the conclusions of Way, Forsyth, and Ansley, and of Yen,
Green, and Burket about the likely invalidity of normative {nformation based on content-
customized tests need to be carefully heeded.

A major question that needs more attention is the degree to which proportional
representation of content and the selection of items with appropriate item parameters are
adequate safeguards for insuring the validity of normative information based on the trait
estimates from a customized test. Matching as closely as possible in terms of content is clearly
desirable for customized tests just as it is for the construction of alternate forms of norm-
referenced test. But it may not be sufficient. Unlike an alternate form of a test, a customized
test may differ from a normed test in other ways that could influence results. Test length, the
context provided by criterion-referenced test items that may be included in the customized
test but not used to obtain norms, and item position effects are issues that seem worthy of more

study in this regard.

Instruction and Achievement

The concemns for content representation and the effects of content on performance by
a state or district on a customized test provide a natural lead into my final topic, the degree to
which variation in curricula and in instruction differentially affect performance of items
assumed to measure a common dimension according to the IRT model. Questions regarding the
sensitivity of achievement tests to differences in curricula and instruction, the importance of
alignment between tests and curricula, and about the importance of the degree of match
between what is taught and what is tested are, of course, not limited to achievement tests that
rely on IRT. They are just as relevant for tests relying on different technologies. As is true of a
number of other general measurement issues, however, IRT makes some of the issues more
apparent because the assumptions of the models are more explicit. IRT also provides a
framework for addressing the issues in more illuminating ways.

According to Lord (1980), "The invariance of item parameters across groups is one of the
most important characteristics of item response theory" (p. 35). Thus the evaluation of the
extent to which item parameter invariance is realized In practice is itself an important concern.
Of particular interest in this regard is the degree to which item parameters on achievement
tests are invariant for groups with different instructional experiences.

It is intuitively reasonable that achievement test items should be sensitive to
differences in instructional experiences. As stated by Masters (1988), "If the content of an
itemn has been emphasized in an instructional program but either not taught or treated only
superficially in another program, then that item is likely to be differentially difficult for
students in those two instructional groups” (p. 18). In a similar vein, one might expect that
those items that correspond to content emphasized in an instructional program would be
differentially difficult before and after the instruction for the same group of students.

The Second International Mathematics Study (SIMS) provides a rich data source for
investigating both of these possibilities. The opportunity to learn measures provide a means of




studying the differential effects of instructional exposure. Research reported by Miller and
Linn (1988), Muthen (1988, 1989) and by Muthen, Kao, and Burstein (1988), indicates that
differences in opportunity to learn can affect item parameters.

In addition to the opportunity to learn measures, the SIMS data for 8th grade students
in the U.S. can be used to study the effects of differences in the types of math courses students
take. The study identified four class types for 8th graders: remedial math classes, typical math
classes, enriched math classes and algebra. The relatively difficuity of items has been found to
vary as a function of class type.

Another feture of SIMS that makes it useful for investigaing instructional effects on
items is its longitudinal design. Students in the eighth grade were administered a common core
of items as a pretest in the fall and a posttest the following spring. Thus, the study also
provides a basis for judging differential effects of instruction on the core math test items for a
single group of students at two points in time,

A simple illustration of the latter type of comparison is presented in Figure 5. The
letters in the figure correspond to the classification of the items by the content categories of
measurement, arithmetic, geometry, and algebra. As can be seen, the ordering of most items in
terms of difficulty is similar for most of the items when based on the results of the fall pretest
or the spring posttest. There are two obvious outliers in the figure, however. Those two items
are two of the seven items that were classified as algebra items by SIMS. The fact that they are
below the main diagonal of the plot indicates that the items were relatively much easier in the
spring than they were in the fall.

Since the students had received instruction in algebra during the interval between the
pretest and the posttest it seems quite reasonable that algebra items should become relatively
easler in the spring. Thus the question may not be so much why these two items appear as
outliers as why the other five algebra items do not. To get some sense of this it may help to
look at the specific items.

The seven algebra items are shown in Table 2 along with the simple proportion of
students who answered each ftem correctly in the fall and in the spring. The first two {tems are
the outliers, that is the ones that were much easier relatively in the fall than the spring.
Though all seven items are classified as algebra items, it is evident that they vary a good deal
both in the likelihood that students knew how to solve them before taking algebra and in the
degree to which they are standard problems that students would be expected to learn how to
solve in an eighth grade algebra class. Item number 3 is the only item that students are very
unlikely to be able to answer correctly in the fall and which is a clear part of any reasonable
instruction in first year algebra.

Item 16 is really a signed-number arithmetic problem rather than an algebra problem
and presumably is classified with the algebra problems because it does not belong with the
other three categories and because signed-number arithmetic is typically taught in eighth grade
algebra classes. Although the remaining items obviously can be solved using algebraic psinciples
can also be solved in other ways. Based on my little post hoc analyses, it seems reasonable the
only items 3 and 16 are clear outliers.

It obviously would be unwise to generalize from this small example of instruction having
a differential impact on the difficulty of 2 of 35 mathematics items. It illustrates three points
that I want to make, however. First, effects may appear to be highly specific and limited to a
relatively small fraction of the items. Second, and closely related, a general test of achievement
may contain very few items that fall into a narrowly defined content category such as the
multiplication of negative numbers, or even a somewhat broader category such as signed
number arithmetic. Third, rather large differences in instructional experience may be needed
to identify major effects. ! think these three points are relevant not only to the small example
in Figure 5, but to gaining an understanding of the results of a number of more substantial
analyses of the differential impact of curricula and instruction on item parameters.
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In is not hard to find examples such as the one in Figure 5. The important question,
however, is not whether there are situations in which differences in instructional experiences
lead to violations of IRT assumptions. Rather. the question is whether differences that are
likely to be encountered in practice are sufficient to invalidate particular applications and
interpretations. The results of several empirical studies that have been conducted in the past
few years yield apparently conflicting results in this regard. Some studies suggest that
differences in instructional experience can have substantial differentlal effects on some subsets
of items, while other studies suggest that variations in curricula and instruction have little effect
on tests or subsets of items.

Mehrens and Phillips (1986; 1987, also Phillips & Mehrens, 1987) have conducted
several recent studies that have focused on traditional curricuta and textbooks that are widely
used throughout the country. Those studies suggest that textbook differences and differences
in curricula that occur within schoot districts have little effect on the measurement
characteristics of standardized tests. For example, Mehrens and Phillips (1987) found that,
whether measured by ordinary p-values or Rasch item parameter estimates, there was a
relatively close agreement between item difficulties on the Stanford Achievement Test for
three groups of students using different textbooks,

Although the Mehrens and Phillips studies suggest that there is little reason to be
concerned about differential instructional effects for the tests and textbooks they have
investigated, some other studies suggest that the effects are sometimes more substantial. As was
previously indicated, analyses of the SIMS data using the opportunity to learn measure Miller
and Linn (1988), by Muthen (1989), and by Muthen, Kao, and Burstein (1988), suggest that
differences in opportunity to learn can have important differential effects on item
performance. A recent study reported by Masters (1988) indicated that the item response
functions for a few items are quite different for groups of students who were enrolled in
different high school math courses. Cook, Eignor, and Taft (1988) found that item parameters
estimates on a biology test were quite sensitive to the recency with which students had taken a
biology course. They concluded that a set of common items "clearly measured different
attributes when given to a spring and fall sample and very similar attributes when given to two
fail samples" (Cook, Eignor, & Taft, 1988, p. 43).

The conflict between results obtained by the latter authors and those that were
obtained in studies conducted by Mehrens and Phillips may be more apparent than real. The
series of studies conducted by Mehrens and Phillips have focused on reading and mathematics
in the elementary grades and on widely used textbooks. On the other hand, the studies where
more substantial differential effects have been found generally have focused on students at
higher grade levels and have involved qualitatively greater differences in the nature of
instructional experiences (e.g., different courses of study, or item and student specific ratings of
opportunity to learn).

Also, even in studies with quite substantial differences in experiences, the effects are
often limited to a relatively small fraction of the items in most of the studies. Muthen, Kao,
and Burstein (1988), for example, found substantial sensitivity to exposure to instruction on
only about 10 to 15% of the items in their analyses. Masters (1988) found only a slightly
higher fraction of the items to be differentially affected by exposure to markedly different
courses of instruction.

The implications of these results for the validity of IRT-based measures of achievement
depend heavily on the use that is made of the information, the purposes of the tests, and the
interpretations that are to be made of the scores. If items that are found to be most sensitive
to instruction are eliminated so that the IRT assumptions are better satisfied, then there is a
real danger that IRT will do more te decrease than to increase the validity of achievement test
scores. Elimination of such items redefines the achievement domain in unknown ways and is
likely to exacerbate the previously mentioned tendency to produce achievement tests that are
overly saturated with aptitude. Such an outcome could have very negative consequences for
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the educational uses of achievement tests. As Traub and Wolfe (1981) said several years ago: "It
{s bad enough that educators equate achievement with what can be captured In a test item. To
limit our conception of achievement even further to only those items that fit a unidimensional
latent trait model is to narrow our emphasis too much” (p. 383).

Elimination of items is, of course, only on way of responding to information regarding
the lack of item invariance, or for that matter, the original item parameter estimates. There are
other uses that can be made of the information, which can, in fact, enhance the validity of
achievement test scores. Three such possibilities are briefly mentioned in closing.

First, and probably most important, the information can be useful in considerations of
the construct validity of the achievement test scores and in decisions about what is being and
what should be measured by the test. The Cook, Eignor, and Taft (1988) results illustrate the
point. Their finding that the recency of instruction in biology had a marked effect on what was
being measured by the biology achievement test has important implications for decisions about
what such a test should measure and therefore for the content specifications of the test. As
they suggest the results should force serious consideration of the importance of measuring
"immediate end-of-course outcomes" versus "perhaps more enduring concepts” (p. 44).

A second potentially important use of information about the degree of item parameter
invariance is illustrated by the recent work of Bock, Muraki, and Pfeiffenberger (1988) on item
parameter drift. Differential change in item parameters over time poses a problem for the
maintenance of a common scale that can be used for tracking achievement over time.
However, as Bock, Muraki, and Pfeiffenberger have shown, differential drift was relatively
steady, at least for the test they analyzed, and changes in item difficulties can be reasonably
modeled by linear functions. Thus the differential drift can be taken into account. In addition,
however, study of the content characteristics of items that show relatively steady increases in
difficulty over a number of years, versus those that show relatively steady decreases in difficulty
and those that have relatively constant difficulty can provide potentially useful information
about the changing nature of the curriculum and of student achievement.

Finally, differential item sensitivity to Instructional experiences could be used to help
expand the nature of measured achievement domains in ways that will provide measures that
are more useful for instruction. Rather than using such information to eliminate items, it can
be used to identify content categories that may need to be expanded if we are to have
achievement measures that are sensitive to differences in instruction. Together with more
powerful analytical techniques such as those being developed by Muthen (1985, 1988) and by
Tatsuoka (in press), expanded content categories may make it possible to understand
instructional effects on achievement better and, possibly provide more diagnostically useful
information about student achievement.

Conclusion

Has item response theory increased the validity of achievement test scores? As was
indicated at the beginning, the question seems to defy a simple yes or no answer. Indeed, it
probably is not even the right question. Better questions should deal with the ways in which
IRT has and can contribute to increased validity and the ways in which it may decrease validity.

By raising fundamental questions about issues such as those illustrated by the
controversy over scale properties or the content representation required for valid normative
comparisons based on customized tests, IRT has increased the likelihood that more valid
interpretations will be made of achievement test scores. It also has the potential of
contributing to validity by forcing more careful consideration of content specifications and
pointing to situations where better coverage of sparsely sampled content areas is needed. Asis
true of other technology, however, IRT can have negative consequences if misused. Assuming
that content can be ignored on a customized test because the items have been calibrated is one
clear example of such misuse. Limiting our definition of achievement to items that fit a
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unidimensional IRT model for a relatively broad content domain such as mathematics concepts
and applications or achievement in a subject area such as biclogy would be a more serious
mistake, one that would damage rather than enhance the measurement of achievement.
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Figure 1

Plots of Scale Scores for Selected Percentiles by Grade on Four IRT Scaled Reading Tests

CTBS-U READING COMP
SCALE SCORES

300 T N T NN R T S U T

21 31 41 51 &1 7! a8l

STANFORD READING COMP.
SCALE SCORES

800
750
700

650

450 .
28 3B 48 58 68 7.8 8.8

GRADE

C 90th o 75th o 50th 4 25th ¢ [oth

80

70

60

S0

40

30

CAT -E READING COMP.
SCALE SCORES

31 4.1 51 61 7! 8.

NAEP 1986 READING
SCALE SCORES

(d)




Figure 2
Plots of Scale Scores for Selected Percentiles by Grade on

Four IRT Scaled Mathematics Tests
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Figure 3
Fall and Spring Differences in Scaled Scores Between the 90th and 10th Percentiles on

Two Mathematics Tests for Grades 2 through 8
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Figure 4

Distributions of Grade 5 Mathematics Test Scores for Four Years
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Figure 5
Scatterplot of Posttest Item Difficulties with Pretest Ttem Difficulties for Students
Enrolled in Eighth Grade Algebra Classes (M = Measurement, R = Arithmetic, A =
Algebra, G = Geometry, $ = Multiple Occurrence)
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Appendix B



Table 1
Ratios of Standard Errors of Measurement at Scale Scores

Corresponding to Selected Percentile Points to the Minimum
Standard Error of Measurement

-——--——————--—————--—-—--—————m-—————--——-—--———-—--.—---l—-p————-—--.

-—-—-c——-pu-—--.——-——--._---.———--u-———n—--—-—--——”--————-——--——-———

Grade 2 Grade 3
(Level D) (Level E)
Percentile Fall Spring Fall Spring
85 2.1 3.1 2.9 3.0
90 1.6 2.2 1.8 2.0
75 l.0 1.2 1.2 1.3
50 1.2 1.0 1.1 1.1
25 1.7 1.2 1.6 1.1
10 4.4 1.6 4.1 2.0
5 8.0 2.9 7.4 3.6
CAT/E Math Concepts and Applications?
Grade 2 Grade 3
(Level 12) (Level 13)
Percentile Fall Spring Fall Spring
95 1.3 4.2 1.1 1.4
90 1.1 2.6 1.1 1.4
75 1.1 1.5 1.0 1.1
50 1.1 1.1 1.0 1.0
25 1.2 1.0 1.0 1.0
10 1.6 1.1 1.2 1.1
5 2.1 1.2 1.5 1.2

——-———-.--.-——-_—--—--—-—-————--———--——-—.——q—-c——-——-—----—-———-

1. Standard errors of meaurement estimated from Table 72 of
CTBS Forms U and V Technical repert using linear
interpolation (CTB/McGraw-Hill, 1984),

2. Standard errors of meaurement estimated from Tables 5 and
6 of CAT Forms E and F Norms book using linear
interpolation(CTB/McGraw—Hill, 1986).




Table 2
"Algebra items" classifieq by changes in difficulty from fall to
spring for students in eighth grade algebra classes (Fp=fall
proportion correct, Sp=spring proportion correct)

A. Items that are much easier in the spring than the fall.

Item #3: If 5% + 4 = 4x - 31 then x is equal to
Fp=.16 a. =35 b. -27 c. 3

Sp=.64 d. 27 e. 35
Item #16: (-2) % (-3) is equal to

Fp=.53 a. -6 b. -5 c. -1

Sp=.89 d. 5 e. 6

B. Items that are easier in the spring than the fall.

Item #27: A shopkeeper has x kg of tea in stock. He sells 15 kg

Fp=.69 and then receives a new lot weighing 2y kg. What
Sp=.82 weight of tea does he now have?
a. x - 15 -~ 2y b, x + 15 + 2y C. x - 15 + 2y
4. x + 15 - 2y €. none of these

C. Items that are slightly easier in the spring than the fall.

ITtem §#13: If P=1W and if P = 12 and L = 3, then W is equal to

Fp=.87 a. 3/4 b, 3 c. 4
Sp=.89 d. 12 e. 36
Item $18: If 4x/12 = 0, then x is equal to
Fp=.71 a. 0 b, 3 c. 8
Sp=.78 d. 12 e. 16
Item #30: The table below compares the height from which a ball
Fp=.50 is dropped (d) and the height it bounces (b).
SP=.57 s a2

d 50 80 100 150

b 25 40 50 75

Which formgla describes this relationship?
. b=4d b. b = 2d cC. b =4d/2
d. b=4d + 25 e. b=d -~ 25

D. Items that are slightly harder in the spring than the fall.

Item #25: The air temperature at the foot of a mountain is 31

Fp=.69 degrees. On top of the mountain the temperature
Sp=.67 is -7 degrees. How much warmer is the air at the
foot of the mountain?
a. =38 degrees b. -24 degrees c. 7 degrees

d. 24 degrees e. 38 degrees




