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PREFACE

Over the past twenty-five years, large-scale educational assessment
has grown from a small privately funded endeavor into a major ac-
tivity of federal and state governments. In the United States, the
National Assessment of Educational Progress (NAEP) has periodi-
cally surveyed student attainment in main subject-matter areas and
reported at a national and regional level since 1969. In 1990, the
NAEP sample will be supplemented to allow comparisons between
states. Concurrently, all but a few of the states have developed their
own annual testing programs to meet local and state needs for infor-
mation on learning outcomes. On the international stage, some of
the Canadian provinces and a number of other countries are planning
assessments or have them in place. England and Wales will begin
development of a national testing program in 1990. Spain and West
Germany have held conferences to explore possibilities for large-scale
testing programs for their school systems.

Surprisingly, this remarkable growth of assessment has occurred
without much systematic study of the measurement and statistical
methodology that supports these programs. Thus far, there are no
monographs, and only scattered journal articles, that address the
technical problems of assessment. From the little literature that exists
describing early plans for a national assessment, one gets the impres-
sion that the existing theories of survey sampling and educational
measurement were considered sufficient for successful implementation
of the program. A number of papers from that period inquired how
student learning could be tested using more relevant and revealing
tasks than the conventional multiple-choice items, but there was little
if any attention to the question of how the assessment could provide
consistent measurement over years and decades. The goal of obtain-
ing dependable information for guiding educational policy was clear,
but the means were not. The early advocates of assessment made
the case for a system for long-term monitoring of student attainment
and left the details to be worked out later. And indeed the details
were worked out, but mostly ad hoe, and with insufficient prior study
or subsequent evaluation. As a result, we are now in a position of
having assessment as an accomplished fact, but with little conception




of whether it is optimally designed, cost-effective, and accomplishing
its goal of guiding pre-collegiate educational policy.

‘The present report is an attempt to step back from the programs as
now constituted and to suggest how assessment instruments and pro-
cedures might look if designed as part of a comprehensive educational
information system. The work we report includes the actual construc-
tion, field testing, and statistical analysis of a prototypical “ideal”
assessment instrument. With the support of the United States De-
partment of Education Office of Educational Research and Improve-
ment (OERI), coordinated by the Center for Research on Evaluation,
Standards, and Student Testing (CRESST), we have created, con-
ducted, and documented a small-scale model assessment in 8th-grade
mathematics. In the three years of the study, we developed a 24-form .
assessment instrument, and tested it in 32 Illinois public schools; then
revised the instrument and tested it again in another 32 schools in Cal-
ifornia. All of the field work, including the reporting of results to the
school and to the state, were carried out by the National Opinion Re-
search Center (NORC) in a way that closely simulated an operational
state assessment,

The conception of assessment in this report grew out of many
experiences of the first author in educational measurement and as-
sessment projects and committees from about 1960 to the present.
These include the Emergency School Aid Study, the Textbook Com-
parison of the School Math and Study Group, the Analysis Advisory
Committee of the National Assessment of Educational Progress, the
Technical Advisory Committee of the California Assessment Program,
a similar advisory committee to the [llinois Assessment, a Committee
of the National Academy of Sciences reviewing the United States con-
tribution to the Second International Mathematics Study, a technical
resource committee for the Alexander-James report on the National
Assessment, and most recently, the Committee of the National Center
for Educational Statistics to review plans for the state-by-state NAEP

The study could not have been carried out without the generous
cooperation of the Office of Evaluation of the Illinois State Board
of Education, Tom Kerins, Director, and the California Assessment
Program, Dale Carlson, Director. The help of Ted Sanders, Super-
intendent of Education in Hlinois, and Bill Honig, Superintendent of
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Schools in California, in recruiting the schools is gratefully acknowl-
edged.

We also extend our thanks to many colleagues and co-workers, in-
cluding Tej Pandy, Mervin Brennan, John Dossey, Judy Wells, Ken
Travers, Zalman Usiskin, Joan Herman, Robert Mislevy, Richard Hill,
. Eiji Muraki, Steve Schilling, and Eve Weinberg. Special thanks is due
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new mathematics items that were required in the study. John Dossey
and Doris Redfield reviewed and suggested improvements in chap-
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Chapter 1

Assessment for Whom?

The concept of educational assessment, and the term itself, origi-
nated in the 1960’s with Ralph Tyler’s initiative to establish a system
for monitoring nation-wide outcomes of primary and secondary ed-
ucation. His efforts, and those of his colleagues, were successful in
organizing the National Assessment of Educational Progress (NAEP)
and eventually securing a Congressional mandate for its continued
existence. The program, goals, and methods of NAEP soon came to
define a new form of large-scale educational evaluation. Employing
matrix-sampling methods for the selection of schools and students to
represent national regions and the selection of tasks and exercises to
represent subject-matter domains, it was able to obtain at reasonable
cost the statistics that could have described trends in educational
outcomes over years and decades.

During this period when NAEP was becoming established as a
national institution, state and local education agencies were coming
under pressure to justify their expenditures of public funds by demon-
strating the effectiveness of their schools. The movement for account-
abslity led an increasing number of states to establish annual testing
programs as a way of measuring the outcomes of their instructional
programs. This trend has continued until, according to the most re-
cent survey of the Association of State Assessment Programs, all but
two of the fifty states have some form of state-wide standardized test-
ing of student attainment (Roeber, 1988).

Only ten of these programs are policy oriented “assessments” along
the lines of NAEP, however. The others may share some of the goals




of NAEP, but their methods are those of norm-referenced achieve-
ment testing programs or criterion-referenced, minimum competency
programs. While these more traditional programs can generate state-
level statistics, their primary role is in student guidance, placement,
certification, and remediation. They are not specifically designed as
information systems for the measurement of the long-term perfor-
mance of schools but are more responsive to local needs.

In contrast, the assessment design discussed in this report incor-
porates both the goals and methods of NAEP as they apply at the
state level, and those of providing data that more directly serve the
needs of the schools and local communities. The design is in harmony
with the premise of the accountability movement that public officials
have an obligation to expend funds in support of schools and school
programs in a way that returns fair value to society. Its purpose is
to maximize benefits of assessment to all parties to public education,
while minimizing testing time diverted from classroom instruction.

A corollary of the accountability premise is that state initiatives
to improve public education must also provide for evaluating the im-
pact of the innovation. Despite the theory and study that may have
gone into the planning of a new program or facility, there can be no
guarantee that the results will be uniformly favorable. At some point,
the state must produce tangible evidence to satisfy the cost-benefit
requirement. Rather than rely on local or ad hoc studies for this pur-
pose, many states have moved toward permanent state-wide systems
for evaluating student performance in the public schools. In some re-
spects the resulting data are just another form of social statistics (such
as rates of unemployment, incidence of communicable diseases, high-
way accident rates, etc.) that state agencies routinely monitor and
report. They have the same potential to inform policy and resource
planning but are technically more difficult to analyze and report. Ad-
ministrative statistics such as class sizes, drop-out and graduation
rates, teacher qualifications, etc., are relatively easy to assemble and
summarize, but they are only indirect symptoms of educational prob-
lems. More detailed diagnostic information is available only in direct
assessment of student attainments. The present report is concerned
with the question of how to obtain such information more effectively
than has been possible with conventional assessment or achievement




testing methods.

1.1 More favorable cost-benefit for educational
assessment

The costs of the assessment itself must, of course, be considered along
with the benefits. The costs can be considerable, depending on the ex-
tent of the program. A minimal program based on sampling schools,
sampling students within schools, and testing at perhaps three grade
levels—four, eight, and twelve—is relatively inexpensive in compar-
ison with total state expenditures for education. Increasingly, how-
ever, legislatures are mandating detailed assessment reports for every
public school in the state; they are requiring a complete census of
students in the selected grades, or in some cases, every grade. In a
large state, the cost of these more ambitious programs runs to many
millions of dollars per annum. The allocation of this money to testing
when it could otherwise directly support instruction can be justified
only if the assessment commensurately benefits the student and the
community.

On the assumption that most state agencies, including the test-
ing programs, are already under pressure to make every dollar count,
there is not much prospect of increasing the cost-benefit of educational
assessment by reductions on the cost side. The real opportunities for
improvement lie in extending the benefits of assessment to broader
constituencies within society. The theme of the present study is that,
rather than limiting its function to the political and policy uses, the
assessment can increase its utility with modest marginal cost by mak-
ing its data relevant to the planning, management, and conduct of
education at the district, school, and ultimately the classroom and
student level.

1.2 School-level reporting

A number of states have taken a first step in the direction of greater
utility of assessment data by reporting to the district and school level.
Although this step requires a census assessment and is more expen-
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sive than sampling schools, it makes the results directly meaningful
to every community in the state. Moreover, it better serves state
policy-makers because the sources of problems in public education
are more accurately identified in data for individual schools than in
aggregate results for the state. The advantages of having complete
information for schools have moved states that previously employed
sampling methods, such as Illinois and Pennsylvania, to adopt census
assessment and school-level reporting.

The cost considerations that have dictated survey assessments are
based on NAEP’s practice of sending interviewers to the sampled
schools to administer the tests. In a census assessment of all schools,
travel and personnel costs of this procedure would be all but pro-
hibitive. The only feasible approach is to use local school personnel,
specially trained for the purpose, to administer the tests and return
the test materials to the program or contractor. Of course, clear
guidelines are required to guard the security of the test forms and
to maintain uniform testing conditions, but the experience of states
such as California shows that they are understood and observed. Lo-
cal administration also has the advantage that the test administrator
is known to the students and generally able to conduct the testing
with less disruption of classroom routine.

To encourage the cooperation of the schools in a locally adminis-
tered assessment, the program should provide reports and interpreta-
tional aids that are relevant and meaningful to principals, teachers,
and counselors. For primary and secondary schools, reports at the
classroom level as well as the school level are helpful. Features of
the data analysis that make such reporting possible should therefore
be part of the assessment design. We will have more to say about
effective communication of assessment results in Chapter 7.

1.3 Student-level reporting

Assuming that the utility of assessment has been broadened by school-
level reporting, the next logical step is to expand the user-community
still further by reporting some part of the results at the student level.
In this way, the assessment reaches directly to the largest constituency
of all—the teachers, parents, and students. To accomplish this goal,
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while retaining the advantages and efficiencies of group-level assess-
ment, we propose the use of measurement methods that provide rea-
sonably reliable scores for individual students, along with efficient
measures of program outcomes at the school, district, and state level.

The approach is based on work of Bock and Mislevy (1988) re-
ported in Educetionael Evaluation and Policy Analysis; they intro-
duced a structured form of assessment instrument, called a “Duplex
Design”, which provides scores in broad content and process categories
at the student level jointly with measurement of detailed curricular
objectives at the school level. In the present study, we construct
and field-test a Duplex Design for eighth-grade mathematics. Our
objective is to appraise the potential of the design to serve a wide
community of assessment users as well as to improve the quality of
the data for present users. The Duplex Design accomplishes this in
a way quite different from traditional achlevernent -testing programs
that also report at the student level.

1.4 Assessment programs versus every-student
achievement testing

The reason that student-level reporting has not previously been part
of educational assessment programs, as inspired by NAEP, lies in the
different purposes of traditional every-student achievement testing
and policy- or accountability-oriented assessment. The latter pro-
grams were originally designed to produce high-level aggregate statis-
tics for policy purposes by using sample-survey technology. They
were necessarily top-down affairs not directed toward the needs of
classroom teachers, or of parents and students. Indeed, the students
have had no part in the process other than that of responding to the
assessment exercises. In this situation, it is generally accepted that
students must be told that their performance will have no effect on
their course grades—that nothing will be reported back to the class-
room teacher or to their parents. Students are asked to do their best
in responding to the assessment tasks, but are given no personal stake
in the results and receive no direct benefit in return for their efforts.

In contrast, traditional achievement-testing programs, which his-

12




torically have been an initiative of local school districts, are high-
stakes activities from the point of view of the student. The districts
routinely make available test reports, usually prepared by commercial
testing services, for the benefit of teachers, parents, students, and in
summary form, for local news media. Although some states {lowa,
for example) continue to rely on compilation of these local testing re-
sults for their state-level statistics, the advantages of matrix-sampling
assessment have moved many other states in that direction. One of
the drawbacks of achievement tests, which are designed for making
dependable decisions about student placement or promotion, is that
they are rather long and time-consuming. To produce a single score
sufficiently reliable for individual measurement, a typical achievement
test consists of 40 or more items and requires perhaps 30 minutes of
testing time. To obtain scores in four or five content areas with these
tests thus requires two or more hours of student time—time that must
be taken from instructional use.

Although achievement tests usually have good psychometric prop-
erties, other features, in addition to their length, limit their usefulness
as assessment instruments. First, they are costly to construct because
repeated field trials may be necessary to develop items with indices of
difficulty and discrimination suitable at a given grade level. For this
reason, and also because of the costs of obtaining a large enough sam-
ple for establishing national norms, commercially published achieve-
ment tests usually exist in relatively few parallel forms, typically four
to six. Because of the expense, the tests often are not revised or
their item content refreshed as often as they should be to keep them
up-to-date and uncompromised.

Second, the relatively small number of forms puts their item comn-
tent at risk of becoming known to teachers who, perhaps uncon-
sciously, may steer their students toward best strategies for responding
to the test items or toward the correct answers to specific items. The
effect is even more pronounced if a single form of the test is used over a
number of years and is repeatedly administered by the same teacher,
which is very often the case. The result is almost inevitably some
compromise at the item level that gives schools an advantage rela-
tive to the conditions under which the test was normed, before item-
exposure could operate. This is perhaps the best explanation for the

13




so-called “Lake Woebegone Effect”—the phenomenon of student per-
formance in all states exceeding the national median as indicated by
the no-longer valid norms (Cannell, 1988). A state-developed matrix-
sampled assessment instrument based on more forms and items, with
provisions for frequent updating of the item content, is far more re-
sistant to these effects.

Commercially published achievement tests can also be problem-
atic for a state testing program because their content is not arrived at
by any consensus-making process that reflects current goals of mathe-
matics education in the state. They tend to emphasize computational
and procedural skills that are easy to measure in the multiple-choice
format, to the neglect of conceptual understanding and strategies of
problem solving. For these reasons, state departments or boards
of education often prefer to develop their own testing instruments,
even though they may not have the resources to develop high-quality
achievement tests. In this situation, the scope and efficiency of assess-
ment methodology become very attractive. Because many curricular
objectives can be evaluated simultaneously, consensus on the con-
tent of the instrument requires fewer compromises and is thus easier
to obtain. Finally, as we discuss in more detail below, assessment
methods ‘also measure attainment levels in schools, districts, counties
and in the state as a whole with better generalizability than is typi-
cal of achievement testing. Moreover, because each student responds
to fewer items, the booklets of an assessment instrument can con-
tain more varied item formats. Reading passages can be longer, and
more intermediate steps in problem-solving exercises can be probed.
Considerations such as these argue persuasively for the choice of as-
sessment designs over achievement testing as the preferred method of
monitoring educational attainment in the public schools.

1.5 Matrix-sampling assessment designs

Matrix-sampling applications in education had their origin in the re-
alization that precise estimation at the individual level is not nec-
essary for accurate estimation of average attainment of groups of
students. By suitable statistical methods, it is possible to estimate
mean scores for schools, school districts, instructional programs, de-
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mographic groups, or the state as a whole, directly from the item
responses. If the group-level scores are estimated from the responses
of a large number of students, the limiting factor in the accuracy of
the result is not the reliability of individual measurement, but rather
the generalizability to the content domain. The somewhat surprising
conclusion is that the required generalizability can be obtained by
administering sufficient numbers of items from the domain, each to a
different student.

When Frederic Lord, at the suggestion of William Turnbull, ex-
amined the possibilities of this approach to group measurement, he
found that the most efficient design was one in which each student is
assigned, at random, exactly one item from the domain sample (Lord,
1962). If the students are also regarded as a sample, this technique of
conducting a survey is called “matrix sampling”. The population of
persons is represented by the rows of the matrix and the item domain
by the columns. The sample obtained by randomly selecting rows and
columns and obtaining the response of the corresponding person to the
corresponding item constitutes the matriz sample. If the persons are
assigned items in this way from several distinct content domains, the
procedure is referred to as multiple-mairiz sampling. The statistical
properties of multiple-matrix sampling have been extensively studied
from the classical point of view by Serotnik & Wellington (1977), and
from the point of view of item-response theory by Bock and Mislevy
(1981).

The application of multiple-matrix sampling to educational assess-
ment leads to assessment instruments consisting of many forms, 20 to
40, each consisting of perhaps 40 to 50 items. When the responses of
a group of students are aggregated across forms, the instrument can
measure as many distinct objectives as there are items in each form.
This is about the maximum number that teachers can profitably use.
If for some reason curricular specialists wish to evaluate a greater
number of objectives, the number can be doubled by creating two
such instruments and assigning them in alternating rotation within
classrooms.

The principal advantage of matrix-sampling designs is the high
level of generalizability they provide with relatively small demand on
classroom time. The higher the generalizability, the more dependable
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is the instrument in characterizing the average attainment levels of
the schools. Matrix-sampling designs are able to provide this depend-
ability for the following reason. Even slight variation in instructional
programs or emphasis will result in interactions between the schools
and particular items that are sensitive to such differences. Because
the items are randomly selected to make up an assessment instru-
ment, these interactions constitute errors of measurement, relative to
some other set of items randomly selected from the same domain.
The independence of the item-by-school interactions under random
item selection assures, however, that the size of the error variation in
the school score will diminish proportionally as the number of items
increases. At the same time, the variability of the school mean-score
is also affected by number of students tested; the larger the school,
the more precise is the mean score.

These effects are apparent in the year-to-year correlations for Cal-
ifornia public schools as shown in Table 1.1. The data are reading-
score school means measured in two successive years. Note that the
sizes of the correlations increase with the number of students tested,
and also with the number of items in the assessment instrument. The
latter effect is the contribution of item sampling; it would be even
greater if different items were sampled each year, because the sup-
pression of the item-by-school interaction that attenuates the corre-
lation would then be more apparent. For this reason, the number of
forms in an assessment instrument must be large in order to assure the
year-to-year stability of the school-, district-, and state-level scores.
Dependable group-level scores will result if large numbers of students
take large numbers of different items.

1.5.1 The efficiencies of matrix sampling

Although a large number of forms are required, assessment instru-
ments are in some ways not as difficult to construct as achievement
tests. This is partly because each assessment-test booklet has many
fewer items than an achievement-test booklet, and also because the
difficulty levels of the items do not have to be controlled as carefully
as in achievement tests. In assessment, the variation in difficulty of
the items and the variation in the ability of students within the school
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TABLE 1.1

Effect of sampling of students and sampling of items
on the year-to-year correlations of sixth-grade
mean reading-attainment scores of California schools

Number of items in matrix sample

83 128 400
Number of students 50 .39 .73 .79
sampled 100 87 .78 .88
per grade 200 76 .81 .93

combine to prevent the item percent-correct statistics from becoming
too extreme and thus impairing the functioning of the instrument.
Although it might be thought that wide differences between public
schools within a state could lead to situations where all or none of
the students succeed on some of the items, this seldom happens in
practice. Within-school variation is always considerably larger than
the between-school variation and guarantees variation in the observed
responses. We give some estimates of within- and between-school vari-
ances for California schools in Chapter 6.

Typically, an assessment form is about one-third the length of an
achievement test. Thus, the number of distinct items required for a
thirty-form assessment instrument would be the same as ten forms
of an achievement test. But the economies of scale in producing and
selecting items reduces the effort in constructing an assessment in-
strument to about the same order of magnitude as producing perhaps
five or six forms of an achievement test.

1.5.2 The hidden “costs” of matrix-sampling designs

Regrettably, the efficiencies of multiple-matrix sampling designs carry
with them certain less tangible costs. The greatest of these is their
failure to provide useful information about individual students. They
do not permit an individual student’s scores to be reported to class-
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room teachers, to parents, or to the students themselves. Thus, the
students have no personal stake in the outcome of the assessment test-
ing apart from their loyalty to the school, the strength of which may
vary considerably from one school to another.

We submit that the use of unmotivated testing is a questionable
practice from the point of view of both measurement and pedagogy.
Measurement of scholastic performance necessarily requires a best ef-
fort on the part of the student-—otherwise, the student’s score has
no definite meaning. This may be understood by analogy with the
measurement of the height of a mountain: unless made at the highest
point, the measurement is not a unique value—any other elevation
would be quite arbitrary. Similarly, the student not doing his or her
best work is not displaying any definite or easily reproducible level
of proficiency that a test can measure. Under conditions of variable
motivation, test scores are not comparable and stable.

This is not the case when the student is personally involved with
the outcome. For example, when students retake the SAT to improve
their chances for college admission, they seldom change their scores
by more than 10 or 15 points in a range of 600. The results tend
to be consistent because optimum performance is a more stable in-
dividual attribute than the situationally dependent performance of
less-motivated respondents.

There is evidence that poorly motivated testing can have serious
consequences when tests are developed or standardized in samples of
only marginally interested volunteers but are applied in a high-stakes
testing program. A recent example 13 the experience with the Texas
in-service teacher qualification test. Shepard and Kreitzer (1987) have
reported that, whereas 12 percent of the volunteer field-trial sample
for the test scored below the assigned passing level, only 3.3 percent
of teachers failed the test when it was administered operationally.

Similarly, Schilling and Bock (1989) found that scores on the
Degrees of Reading Power (DRP) test administered to all twelfth-
grade students in California averaged substantially below the national
DRP norm. Their performance on this test was considerably below
that of the CAP overall reading score when expressed on the NAEP
nationally-normed reading scale. The difference is that the CAP read-
ing assessment is an integral part of the annual California school eval-
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uations, whereas the DRP was administered experimentally with in-
structions that the scores do not count and will not be reported. In
contrast, the DRP national norms are based on demographically ad-
justed student scores in the State of New York where satisfactory
performance on the test is required for graduation. These examples
illustrate the fact, long accepted in the field of educational measure-
ment, that between-group comparisons of attainment-test results are
possible only when the motivational conditions are comparable.

The great danger that untoward motivational effects pose for state
statistics on attainment is that they will interact with background
variables such as race, social class, education of parents, or school
program. Academically oriented students are inclined to accept any
test as a challenge and do their best; the same performance is much
less likely from a student who takes little interest in intellectual pur-
suits. Lacking personal involvement, the latter may not respond at a
level that is indicative of his or her true capacity.

The case that unmotivated testing is poor pedagogy is even more
clear. Current research is reasserting the importance of student in-
volvement and active participation in learning, the recognition of
which goes back to Dewey and beyond (see Stodolsky, 1988). To
present the student with a test that is unrelated to classroom activ-
ity, and worse, to provide no report of the result, utterly violates this
principle. Testing under these conditions is just one more exercise
that fails to engage the student actively in a self-sustaining process of
learning. It violates the accepted motivational principle of feedback
of formative information to the student (Brophy, 1987).

Parents could also perceive such testing as an unwarranted di-
version of classroom time from instruction or other more constructive
use. The time demand will be an especially sensitive point if the school
also employs a commercial testing service to provide measurement of
individual-student attainment for guidance purposes and reports to
parents. Although assessment testing normally requires only one class
period while achievement testing may require two or three, the addi-
tional time may seem unwarranted considering that the item content
of the two procedures is highly similar. Many students, especially
those who are older or more perceptive, will view the assessment ex-
ercise as having no meaning or consequences for them and will take
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it as evidence of the artificiality of the instructional program. Thus,
the efficiencies of matrix sampling may be purchased at some cost to
student morale, _

Ironically, the lack of individual-student scores in the matrix-
sampling design also has unfavorable consequences for the very clien-
tele it is designed to serve. Although these designs enable public offi-
cials to point to group-level statistics such as average-percent-correct
or scale scores as indicators of the relative state of educational attain-
ment, they do not allow the kind of terminology that is most natural
to public discussion— namely, the citing of numbers or percentages of
students who are reaching a satisfactory level of attainment in pass-
fail terms. The difficulty is that these terms require information about
the distribution of levels of attainment in the population of students.
If accurate estimates of the attainment levels of individual students
are available, these percentages can be obtained simply by counting
the number of students who exceed the criterion level and dividing
by the total number of students. If the scores for the students are
measured with appreciable error, more complex statistical methods
are required to estimate the required percentage. In either case, the
required information is available only if the assessment instrument
provides scores for individual students, which the matrix designs do
not.

1.6 The Duplex Design

The Duplex Design combines in one instrument the functions of indi-
vidual-student achievement testing in broad content areas and those
of group-level assessment of detailed curricular objectives. The term
“Duplex Design” refers to the two-fold manner in which the origi-
nal data—the item responses-—are used to obtain these two types of
information from a single test administration.

Basically, the Duplex Design is a replication of a content-by-process
item arrangement in a number of test booklets. A schematic repre-
sentation of this arrangement appears in Figure 1.1.

The information extracted from the test booklets is further en-
hanced by the use of conjoint scoring to estimate the content and
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assigned to forms.




process scores from responses to the same items. Because each item
is classified by its content and process dimension, the item structure
within each booklet is formally identical to a two-factor experimental
design in which the items are arranged in a row-by-column table. In
the arrangement shown in Figure 1.1, the rows correspond to content
categories, and the columns to process categories. The scoring meth-
ods discussed in Chapter 3 are used to aggregate the item responses
across rows to obtain the content scores, and down the columns to
obtain the process-proficiency scores. :

These student-level scores can then be readily aggregated to vari-
ous group levels—the classroom, the school, the district, county, and
state. At the same time, items in each cell of the content-by-process
classification can be aggregated, by methods described in Chapter
3, across the test booklets in order to obtain a grbup-level score for
the corresponding curricular objective. In this way, as many curricu-
lar objectives as there are items on the test.can be measured at the
group level. Figure 1.2 represents these types of scoring of the Duplex
Design. Further details of the Duplex Design principles and analysis
are discussed in Chapters 2 and 3.

1.7 Uses of group-level and student-level assess-
ment data

Potential uses of state assessment results have been review by Cohen
(1988) and Bock & Mislevy (1988). Some of these uses need only
school-, district-, or state-level data; others require the scores for in-
dividual students that the Duplex Design provides.

1.7.1 Policy formulation

Supplying information to guide and justify state educational policy is
the assessment’s most visible role. If new programs affecting such fac-
tors as teacher recruitment, time and resources devoted to instruction,
changes in standards of grading and promotion, and school adminis-
tration are to be adopted and institutionalized, public officials need
evidence that these reforms are really improving student attainment.
An assessment that delivers comparable and dependable year-to-year
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data can provide such evidence in a space of two or three years if
a suitable base line has been established prior to the change in pol-
icy. Obviously, the capability of the assessment instrument to pro-
duce comparable and accurate measures of attainment in the main
areas of instruction is essential in this role. The validity of the as-
sessment as a long-term monitor of educational progress requires a
stable and conservative organizational base, which presumably will
reside in the state agency that develops and implements the assess-
ment. That agency will have the responsibility for insuring that a
consistent methodology is maintained as personnel, contractors, and
facilities change.

The assessment can also have a role in initiating and sustaining
political support of educational reform. State officials are conscious of
the impact of the quality of public schools on economic development.
Good schools make it easier to attract capable workers to the state and
thus provide the personnel for commercial and industrial development.
If the assessment results are good, they can justify existing budgets or
even the expenditure of more funds to build on strengths. If the results
are poor, they can generate support for efforts to improve facilities
and instruction. Without assessment data, political leaders have few
facts on which to make the case for educational improvement.

1.7.2 Media reporting

The news media routinely give prominent coverage to educational
assessment reports, usually with some attempt at interpretation. Re-
porters are accustomed to discussing statistical indices, such as the
Dow-Jones index of stock prices, that are on an arbitrary scale not
unlike a standardized educational attainment score. Usually they use
these indices to make some sort of comparisons, either in the form
of a graph showing gain or loss from previous years, or a bar chart
showing differences between groups. From properly prepared data,
they can also make many within-state comparisons—between school
districts, cities, regions, ethnic groups, etc.

The media will also have a great interest in comparing state re-
sults with those of other states or the nation. Unfortunately, the
necessary figures are not normally available for an assessment instru-
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ment developed by the state, and the opportunities of obtaining such
information by having such instruments administered in other states
are limited. A better scheme is to relate the state instrument to an
already existing nationally-normed test so that the main state results
can be expressed on the scale of the national test. The state as-
sessment agency can then supply accurate comparisons of state and
national results to the media.

The state assessment agency can establish the relationships be-
tween their instrument and the national test by arranging for a sample
of students who will routinely take the state test to also take the na-
tional test. Because both tests are operational, motivation effects are
consistent. The relationship between the two instruments can then be
determined statistically from the paired scores of these students. The
two instruments should, of course, be as similar in content as possible,
but they need not be identical. Nor do the two tests have to be taken
during the same school term. Provided the state test can accurately
predict scores on the national test, the results of the state assessment
are validly expressed on the nationally-normed scale. Schilling & Bock
(1989) have demonstrated such a procedure by expressing reading and
mathematics results from the California Assessment Program in terms
of the corresponding scales of the National Assessment of Educational
Progress.

1.7.3 Educational planning

State departments of education or similar agencies can benefit from
the assessment in ways more specifically related to instruction. If the
assessment measures success in attaining detailed curricular objec-
tives, and includes breakdowns by county, district, and relevant de-
mographic and economic factors, the agency will have a clear picture
of the strengths and weaknesses of the state’s educational program.
Comparison of these data with teaching practices in the schools, choice
of textbooks, student motivation, and community involvement, etc.,
may suggest new strategies for shaping and strengthening the school
system. Where problems exist, the school-level scores will provide di-
agnostic information for tracing the difficulty to such sources as cur-
ricular emphasis or timing, student-grouping policies, instructional
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strategies, teacher qualifications and preparation, etc.

Some states have used assessment data to direct additional public
funds to school districts with obvious deficiencies in attainment; oth-
ers have taken the opposite tack and provided monetary rewards for
schools with exceptionally high performance relative to what could be
expected from their community background and resources. We dis-
cuss in Chapter 7 a statistical method of accounting for background
characteristics of the school by means of so-called “comparison score
bands” devised by Cronbach for the California Assessment Program.

1.7.4 School management

At the district and school level, the wealth of detail from a matrix-
sampling design provides instructional effects specific to programs,
courses, and even units within courses. Here, the overall level of at-
tainment in the school is not as important as the profile of strengths
and weaknesses over the various process and content categories of the
design. As we show in Chapter 7, this information can be displayed in
a graphic form that serves well for group discussion among members of
the teaching staff. In this use, the great advantage of matrix-sampling
assessment at the school level is apparent. Traditional achievement-
test profiles are so general as to support only vague exhortations for a
better performance, while matrix-sampling designs can report to the
school directly in the topics and skills that appear in course outlines.
Teachers can then look for reasons for the detailed outcomes in so far
as their students influence the overall school performance. In large
secondary schools where teachers have more than one section of the
same subject, it may be possible to report the assessment groups bro-
ken out by teacher. Provided the varying input of students assigned
to classrooms is accounted for, a “between-teacher” analysis can re-
veal interesting effects of teaching styles on attainment outcomes. We
present some analyses of this kind in Chapter 7.

1.7.5 Counseling and guidance

Counseling of individual students obviously requires student data with
some degree of diagnostic detail. The Duplex Design provides this
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information in a score profile that indicates the student’s strengths
and weaknesses in main subject-matter areas and in general skills.
These profiles are useful in conferences between counselors and parents
to make clear where the student’s achievement problems may lie. In
this role, the assessment results have the advantage of objectivity and
impartiality, and they can be referred to the local and state norms
to convey how well the student is performing relative to his or her
peers. In Chapter 7 we illustrate graphical devices for presenting this
information in an easily understood form.

Classroom teachers can also benefit from such information if a
copy of the individual-score profile is provided at the time class as-
signments are made. Typically, the assessment is administered late
in the school year and results are prepared over the summer in time
for the opening of a new school term. This is an appropriate time
for computerized student reports to be supplied to the classroom or
homeroom teacher for the new term. At the same time, these reports
can be distributed to the students and passed on to parents. Although
purely advisory, they will carry the prestige of the state assessment
program and provide a useful basis for guidance conferences early in
the term. By computerized methods, the reports can include not only
a numerical and graphical presentation of the students progress in
the previous school year, but can also contain a computer-generated
verbal interpretation of the individual results. This form of reporting
involves the parent and the student in the assessment in an immedi-
ate way, and gives the student a personal stake in its outcome. More
than any other factor, it is this enhancement in motivation and per-
sonal relevance that recommends a Duplex assessment design capable
of reporting at the student level.

1.7.6 Secondary uses of assessment data

Student-level reporting also improves the cost/benefit of the assess-
ment program by producing data that is more suitable for secondary
research than are school-level or state-level reports alone. Although
it is possible for advanced workers to use both school- and individual-
level data, most of the well-known statistical techniques are designed
for use with individual-case data. Social-survey analysis as it is presently
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practiced takes the individual person as the unit of analysis. Con-
ventional matrix-sampling data is not in this form and has therefore
not been a productive source for secondary analysis (see Sebring &
Baruch, 1983). This has been true not only for state assessments,
where secondary analysis has never been emphasized, but also in the
national assessment, which was specifically intended to provide a na-
tional data base for independent analyses of educational phenomena.
Although NAEP data has regularly been made available on user-tapes,
the form of the data until recently has made it inaccessible to most
research workers. Even the present NAEP users-data consist of mul-
tiply imputed scores rather than conventional case-level scores. The
new developments in the multi-level analysis of educational data have
greatly increased interest in the data bases of the national and state
assessments (see Bock, 1989), but the potential of these methods de-
pends on the availability of student-level scores of good technical qual-
ity. We demonstrate in Chapter 5 that the Duplex Design can provide
such data.

1.8 Another view of assessment: the Assessment-
Driven Curriculum

Although assessment was originally conceived as a method of monitor-
ing educational progress, it has recently been seen as a way in which
state education agencies can influence the curricula of local schools
without directly setting the objectives of instruction. This view is an
elaboration of Popham’s (1987) concept of “Measurement Driven In-
struction”, by which teachers are influenced to include and emphasize
certain topics because they are routinely evaluated in “high-stakes”
state-wide testing.

Assessment can be viewed as a similar way of influencing local
curriculum without publishing obligate guidelines at the state level.
If the assessment program is the vehicle of accountability, then the
content of the assessment instrument defines the student attainments
for which schools will be held responsible. The local schools are thus
under pressure to teach what is tested by the assessment. The cur-
riculum, which may in principle be the responsibility of the school or
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school district, becomes “assessment-driven” even if the state provides
no curriculum guidelines whatsoever. The content of the assessment
instrument sends a clear message about what schools should be teach-
ing.

The concept of an “assessment-driven curriculum” has implica-
tions not only for how the assessment instrument is constructed and
what content it includes, but more precisely for what scores are re-
ported. School administrators and teachers only see the assessment
results in terms of the scores, but there are no broadly accepted views
on the amount of detail the assessment scores should reflect. Accord-
ing to the educational philosophy in vogue, some states may confine
their attention to broad outcome measures in the main subject-matter
areas and allow the schools to decide the kinds of objectives and in-
struction that are likely to improve scores on these broad measures.
Others may believe that local school personnel require the help of cur-
riculum experts in determining more specific content of instruction,
and so want the assessment instrument scored for many detailed cur-
ricular objectives. Omne of the attractions of matrix-sampling designs
is that they can provide this kind of detailed scoring, at least at the
school level, whereas traditional achievement tests, which report only
a small number of scores covering main subject-matter areas, are of
little value in shaping the local curriculum in detail. Even the most ex-
tensive matrix-sampling design has its limitations, however, for if too
many objectives are scored, than the number of items per objective
may be so small that generalizability will suffer. We find that per-
haps 16 items is the minimum number on which a school-level score
should be based to provide acceptable generalizability. This means
that an assessment instrument consisting of 32 forms each with, say,
45 items, can measure 90 objectives. And even this number is gained -
at the expense of having only half the students in the school respond-
ing to each objective, and in schools with fewer than 100 students the
standard error of the school score will suffer (i.e., become excessively
large.) Given an amount of testing time limited to one or two class
periods, anyone wishing to evaluate curricular objectives in detail has
no alternative but to find a middle level of generality where the num-
ber of distinct objectives to be scored does not exceed something on
the order of 50 to 100 distinct topics.
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1.9 Summary

State-wide testing programs are now established components of public
education in many states and are in advanced stages of implementa-
tion in others. To realize their full potential and to justify their costs,
these programs should serve the widest possible community of users.
In this, assessment programs that test all students at several bench-
mark grade-levels and report to every school have the advantage over
more limited programs that sample schools and report only at the
state level. To be even more beneficial, the assessment instrument
should be designed in such a way that scores in broad content areas
can be reported to students, while much more detailed evaluations of
curricular objectives can be reported to the schools and aggregated
to the district and state level.

The Duplex Design is capable of this two-fold type of reporting.
It can enhance student motivation, allow results to be discussed in
terms of percents-of-students reaching defined attainment standards,
and support reliable case-by-case data for secondary analysis. At the
student level, the design provides score profiles that can be reported
to teachers, parents, and students as aids in student counseling, place-
ment, and certification. At the school level, it provides specific mea-
sures of strengths and weaknesses of instruction relative to schools
with similar demographic characteristics.

In this report, we describe and evaluate two large-scale field trials
of a Duplex Design for eighth-grade mathematics carried out in the
states of Illinois and California, respectively. We also discuss the
concepts underlying the design and suggest how its results should be
reported.
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Chapter 2

Principles of the Duplex Design

In common with other assessment methodology, the Duplex Design
depends upon matrix sampling to provide generalizable measurement
of detailed curricular objectives at the group level without excessive
demands on student time. The matrix-sampling principle calls for
a test instrument consisting of many forms, each containing an item
randomly selected from each of the domains defined by the objectives.
Where the Duplex Design departs from standard matrix sampling is
in the structure of the item content within each of these forms and in
the method of scoring the instrument. The design invokes three fur-
ther principles to obtain, from the same item responses, within-form
score profiles for individual students and across-form measurements
of curricular objectives attained by groups or programs:

1. Replication of a content-by-process classification of items within
each form. The content and process categories, identical in each
form, define the measures represented in the individual student-
attainment profiles.

2. Assumption of a multi-level scoring model based on the de-
sign structure. The model identifies state-level, school-level,
and student-level effects; it includes components attributable
to content, to process, and to content-process interaction, plus
a residual error.

3. Two-stage testing. Testing time is minimized by an adaptive
testing procedure in which a preliminary “routing” test assigns
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each student to a second-stage test booklet tailored to his or
her general level of attainment in the subject matter. This tvpe
of test administration increases the student’s acceptance of the
test content and improves the measurement properties of the
assessment scores.

Other assumptions are implicit in the Duplex design. It is assumed
that student learning can by measured by performance on a suitable
nurnber of relatively brief tasks that are easily scored. Although these
tasks do not have to be multiple-choice items, they must be limited
to sufficiently short answers that the student can respond to some
30 to 50 distinct itemns during the test period. The presentation of
the exercise can be relatively lengthy (for example, a reading passage
occupying most of the page of a test booklet), but the items based on
the presentation must be varied enough to fill a number of content-
by-process categories.

The Duplex concept does not, however, readily extend to essay
tests or other exercises requiring complex or lengthy responses. Though
it is quite possible to matrix-sample the prompts for essay tests (the
California Assessment Program does so in its Direct Writing Assess-
ment ), some form of analytic rating of the responses must take place of
the content-by-process categories in order to define student-level score
profiles and school-level objectives. These extensions of the matrix-
sampling methodology are beyond the scope of the present report.

2.1 Principles of instrument construction: the con-
tent-by-process classification of assessment
tasks

Any scheme to evaluate student learning necessarily inherits the his-
torical lines along which subject-matters are divided for purposes of
instruction and study. Typical group-level matrix-sampling designs
may cover as many as four subject-matter areas simultaneously. But
a group-level and student-level Duplex instrument cannot cover more
than two subject-matters with enough items per area to allow con-
tent and process scoring at the student level. In the present study, for
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more scope for diagnostic scoring at the student level, we have con-
centrated on an instrument devoted exclusively to only one subject-
matter, mathematics.

2.1.1 The content

By far the most ambitious attempt to reach some agreement on the
essential content of school mathematics was the Second International
Mathematics Study (SIMS) of the International Association for the
Evaluation of Educational Achievement (IEA). In 1979, a curriculum
committee of the association with representatives from many nations,
nominated the following main content categories for mathematics suit-
able at a grade level where the modal age is 13 (grade 8 in the United
States):

1. Arithmetic
Algebra
Geometry

Descriptive Statistics

A S S

Measurement

Currently, the same five categories appear in many of the state
curricula for eighth-grade mathematics. Within these main categories,
however, the topics of instruction enjoy less universal agreement. To
the extent that the subject-matter areas coincide with an academic
discipline, as in the case of mathematics, the scholarly distinctions in
the field have historically influenced the choice of topics, even when
their importance for general education is not entirely clear. Partly
for this reason, state testing programs seek a broad consensus both
in and outside the school system when defining the detailed content
of the evaluation instrument. The SIMS took a similar approach in
asking teachers and educators from the participating countries to rate
the importance of topics in the fairly lengthy list shown in Table 2.1.

To create a prototype Duplex Design for eighth-grade mathemat-
ics, we proceeded along similar lines by first combining the relevant

33



TABLE 2.1

Content categories and topics of the
IEA Second International Mathematics Study

ATithmanc

001 Nataral pumbers and whole numbers
002 Cammon {ractions

03 Decimal fractions

004 Ratie, proportion, percantiage

D08 Number theory

pos Powaers and expanents

ooT Other numeration sysisms

oos Square rocts

s} Dimensicnal Analysis

Algebrs

101 [nsegers

102 Raticnals

103 [atager exponents

104 Formulas snd algebraic expressions

105 Palynotnisls asd raticnsl sxpressions
108 Equations and ineguations (linear aaly)
107 Relations and funcsioon

108 Systems of linear equations

109 finite sysiems

119 Finite sets

111 Flowcharis and programming

112 Resi numbers

Geomairy

291 Classification of plane dgures

202 Propersies of plane figures

203 Congruence of plane figaures

204 Similarity of plane figures

208 Geometric consiructions

208 Pythagorean triangies

207 Coordinates

08 Simpie deductions

209 Informal tramsformations in geomatry
110 Reiationships bstwean lines and planes in space
211 Solids (symmetry properties}

112 Spatial visualiaation and representation
i3 Orieniation (spatial)

214 Decamposition of figures

215 Transformaiional geomaetry

Probability and statistics

01 Daia collection

ler ] Crganization of data

303 Representstion of data

04 {ararpretation of dats (mean, medisn, mode)
305 Combinatorics

306 Quicomes, sample spaces and evenis
307 Counting of sats, P{A U B), P{A N D), independent events
308 Mutuaally exclusive events

309 Complementary svents

Messurement

101 Standard units of measure

403 Estimation

403 Approximation

404 Determination of measures: areas, voiumes, etc,
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curricular guidelines from the assessment programs of the two partic-
ipating states, [llinois and California. We then turned to a committee
of mathematics education specialists to decide on the composition of
a common list. The committee consisted of Mervin Brennan, from
the Illinois assessment, John Dossey, Professor of Mathematics at the
Dlinois State University at Normal, Tej Pandy from the California
Assessment Program, and Zalman Usiskin, Professor of Education at
the University of Chicago. The content categories arrived at by this
process appear in Table 2.2.

The main content categories of Table 2.2 agree with those of the
SIMS in Table 2.1, except the term “numbers” takes the place of
“arithmetic”. The subcategories in Table 2.2 are less detailed than
those of the SIMS, although in most cases they merely collapse the
finer distinctions of that study. The greater detail is, in fact, rep-
resented in the item domains from which we selected our items, but
none of the finer distinctions appear in the analysis or scoring of the
data because the amount of testing time available and the number of
forms in the instrument did not permit reporting at so great a level of
detail. In addition, we had to omit four of the nineteen subcategories
in Table 2.2 from the prototype because we did not have suitable
items available for evaluating them (see Table 2.3).

2.1.2 The processes

Recognition of the process dimension in educational evaluation has a
much shorter history than that of content. It is linked rather directly
to the concept of behavioral objectives of instruction introduced by
Ralph Tyler in the early 1950's (Tyler, 1956). According to Tyler,
it 1s not sufficient to define objectives of education merely in terms
of knowing a topic; rather, the kinds of behavior in which knowledge
of the topic content is expressed must be made explicit in order to
guide instruction. This concept, when applied to educational evalua-
tion, requires a definition of test items that incorporates a behavioral
specification as well as a content definition. The result is a schema
for evaluation that is in effect a logical product of content and be-
havior categories. It is conveniently represented by a two-way table
in which the rows are the content categories and the columns are the
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TABLE 2.2
A grade 8 mathematics Duplex Design

Proficiencies
Content Categories a. Procedural b. Knowledge «¢. Higher
Skills? of Facts & Level
Concepts *  Thinking®

10. Numbers

Integers 1la 11b 1lc

Fractions 12a 12b 12¢

Percent 13a 13b 13c

Decimals 14a 14b 14¢

Irrationals 15a 15b 15¢
20. Algedra

Expressions 21a 21b 21¢

Equations 22a 22b 22¢

Inequalities 23a 23b 23¢

Functions 24a 24b 24¢
30. Geomeiry

Figures 3la 31b 3lc

Relations & Transformations 32a 32b 32

Coordinates 33a 33b 33c
40. Measurement

English & metric units 4la 41b 4le

Length, area & volume 42a 42b 42¢

Angular measure 43a 43b 43c

Other systems (time, etc.) 44a 44b 44c¢
50. Probability & Statistics

Probability 5la 51b 5lc

Experiments & surveys 52a 52b 52¢

Descriptive Statistics 53a 53b 53¢

®Calculating, rewriting, constructing, estimating, executing algorithms.
*Terms, definitions, concepts, principles.

“Proof, reasoning, problem solving, real-world applications.
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behavioral categories.

This schema appeared in Tyler (1956) and later became a rubric
for the Tazonomy of Educational Objectives, edited by Bloom (1956).
Constructed by a committee of college examiners, the Taxonomy iden-
tified behavioral objectives suitable for undergraduate courses and
considered in detail how to evaluate such objectives using, wher-
ever possible, multiple-choice and short-answer items. Robert Wood
(1968) adapted this approach to the school mathematics curriculum
in order to classify items for an item-banking project. His behavioral
categories were

1. Knowledge and information: recall of definitions, notations, and
concepts

2. Techniques and skill: computation, manipulation of symbols

3. Comprehension: capacity to understand problems, to translate
symbolic forms, to follow and extend reasoning

4. Application of appropriate concepts in unfamiliar mathematical
situations

5. Inventiveness: reasoning creatively in mathematics

The SIMS evaluators used a similar cross-classification of content
topics and behavioral categories (the “International Grid") to spec-
ify items for the cognitive instrument in the study. Their choice of
behavioral categories was,

1. Computation
2. Comprehension
3. Application

4. Analysis

The School Math Study Group (SMSG) used the same categories
in its textbook evaluation {Begle and Wilson, 1970).
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More recently, with the growing influence of cognitive psychology,
evaluation theory has shifted emphasis from the behavioral outcomes
to the latent processes involved in task performance—processes that
might be inferred from more than one type of overt behavior (see
Resnick & Ford, 1981). According to this view, evaluation needs a
psychological theory that identifies objective features of tasks that
depend on these processes. With such a theory, the test constructor
can generate items that manifest these features.

In the field of mathematics education, a number of such theories
have begun to appear in the research literature. Skemp (1987), for
example, draws a major distinction between algorithmic processes of
and conceptual processes of task solution. He identifies the former
with “instrumental” mathematics—a collection of strict, rule-driven
procedures for solving standard classes of problems. The latter he
calls “relational” mathematics—the creation of procedures for solu-
tions from more general concepts guided by an appropriate schema.
A simple example of the distinction is knowing the rule 7 x 9 = 63 as
opposed to knowing that one can also get the answer by subtracting
7 from 70. Another is knowing that the area of a triangle equals one-
half the base times the altitude instead of knowing that the areas of
triangles, parallelograms and trapeziums can all be found by inscrib-
ing them in rectangles. The latter type of knowledge is adaptable to
wider situations and is more robust in that errors are more obvious
and easily corrected.

Most mathematicians would assert that relational mathematics is
better than instrumental mathematics because it gives much more in-
formation in return for the time invested in learning the relationships.
But Skemp and others have observed that a great deal of teaching in
elementary and secondary school mathematics is confined to the in-
strumental level. Teachers report that students feel more secure in
learning procedural rules and have an immediate sense of accomplish-
ment when they apply the rule and obtain the correct answer. Rela-
tional understandings and larger schema are less well-defined and not
guaranteed to lead to the correct solution in every case. At the same
time, teachers feel more secure in meeting instrumental goals, where -
they can measure student progress by simple exercises, than stressing
relational understanding, which requires more subtle evaluation.
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Nevertheless, the student who will ultimately master mathemat-
ics must go beyond these purely algorithmic procedures; it is essen-
tial therefore that the assessment of school mathematics be able to
gauge the relative numbers of students who are attaining both of
these modes of understanding the content. This is the justification of
the Computation and Comprehension categories of the SIMS Inter-
national Grid, and many other assessment schemes. The California
Model Curriculum Guide, for example, refers to Number Facts and
Arithmetic Operations in instrumental terms and to Mathematical
Thinking in relational terms. Similarly, the Mlinois assessment labels
the instrumental processes as “Computation” and the relational as
“Understanding”, but it also distinguishes a third category referred
to as “Recall”, which is defined as a perceptual process of rapid recog-
nition of facts, definitions, and symbols.

Bock & Mislevy (1988) express the instrumental and relational
distinction as Procedural Skills versus Knowledge of Facts & Con-
cepts, where facts are understood to mean relational facts, and the
terms in which they are expressed, and to exclude purely algorith-
mic rules. They consider procedural skills to include: calculating,
rewriting, constructing, estimating, and executing algorithms. They
include in Knowledge of Facts and Concepts, the understanding of
terms, definitions, concepts, and principles. We have characterized
this category as Conceptual Understanding.

The third main category that appears in almost all lists of behav-
ioral objectives for school mathematics is Problem Solving. In some
lists this category is subsumed under “applications”; in others, under
“higher order thinking”. It is also a prominent topic in the mathemat-
ics education literature of many different countries ( Lester & Garofalo,
1982; Schoenfeld, 1985; Kilpatrick & Wirszup, 1969, 1970).

The SMSG and SIMS classify various types of problem solving
under both Applications and Analysis. The Ilinois and California
assessments both use the term “Problem Solving”. Bock & Mislevy
{1988) include problem solving in Higher Order Thinking, along with
Proof, Reasoning, and Real-World Applications.

For the test constructor, the category of problem solving presents
difficulties because mathematics educators apply it to at least three
different types of tasks. Some assume that it means a mathematician’s
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kind of problem: a proof or a mathematical recreation, a problem
that is concise, possibly puzzling, and admits of a clever and elegant
solution. Schoenfeld (1985) studies cognitive processes in such prob-
lems drawn from plane geometry, while other investigators use simple
number-theoretic problems in the same way. There are anecdotal re-
ports suggesting that problems of this type are important in attract-
ing talented young people to careers in mathematics. But there are
equally many reports from classroom teachers that other children, tal-
ented in their own ways, have no interest in such problems and never
gain any skill in solving them.

The second type of problem-solving task is the “story problem”—
part of the stock-in-trade of the commercial arithmetic textbook. Af-
ter procedures have been explained and drilled in the familiar rubrics
of arithmetic operations, these textbooks present a story problem re-
quiring their use. The student has to identify the procedure that
applies to the situation and insert the numbers in the right places.
Many texts teach the “key-word” method of solving these problems:
the student is instructed to look for certain words that signal the op-
eration. If the problem asks, “what fraction of a whole pie is one-third
of half a pie?”, then the word “of” between the fractions indicates that
multiplication is required. If the problem asks, “how many eggs are
left in a one-dozen box after seven have been used?” the word “left”
signals subtraction. The attempt is again to reduce the mathematics
to a set procedure. Skemp characterizes it as a very fragile approach
that is likely to breakdown as problem complexity increases.

Other educators, including H. Q. Pollak (1970) and Max Bell
(1972}, fault the conventional story problem for its typical triviality.
They want to see problems that touch on important real-world appli-
cations, have historical antecedents, and relate to a larger domain of
ideas. To some extent, this point of view is beginning to change the
exercises in texts and workbooks. More realistic and better-motivated
examples are appearing in experimental and commercial instructional
materials for mathematics; they can, of course, easily be adapted for
assessment. Potentially, they could make the assessment tasks more
interesting to the students and more relevant to practical works. Many
examples of such problems appear in Usiskin and Bell (1983).

An interesting aspect of story problems is that they often involve
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quantities, directions, measurement and other physical descriptors
that are concretely visualizable in space. Many mathematics educa-
tors emphasize the facilitating role of spatial visualizing in arithmetic
reasoning. Analyzing the role of verbal and visual symbols in mathe-
matics, Skemp (1987) concludes that visual symbols best convey inte-
grative problem structure, while verbal symbols are best for analytical
detail. He also observes that, because verbal symbols, in the form of
speech, are more efficient for the social exchange of ideas, they have
a necessary priority in instruction. But he considers presentations in
which both symbol systems interact, as in analytic geometry, to be
among the most effective instructional modes.

Bock and Zimowski (1989) present evidence based on the arith-
metic items from the California assessment in grade 8 that scores for
story problems involving quantity, direction and physical relationships
are associated with the overtly spatial items in the assessment. Pre-
sumably, the students who benefit from spatial reasoning are those
who take a more relational approach to mathematics and do not de-
pend on procedural skills alone. Inasmuch as cognitive studies show
spatial ability to be an important source of individual differences, the
inclusion of problem solving as a reporting category in the mathemat-
ics assessment is further justified on psychological grounds.

Gadanidis (1988) refers to problem solving as the “third dimen-
sion of mathematics teaching”. His labels for the first and second
dimensions are respectively, Facts and Skills, and Understanding. Ac-
cording to his description, the former consists of “routine practice of
narrow skills”, which would include the procedural skills of Skemp’s
“instrumental mathematics”. The latter corresponds to the relational
or conceptual mathematics category identified above. Gadanidis’ sug-
gestions for the teaching of problem solving, like those of Schoenfeld
(1985), echo Polya's advice on the teaching of heuristic: locate the
facts, analyze the problem, keep an open mind, and check frequently
one’s progress toward the solution. By clever writing of items, the
test constructor should be able to tap these processes to some degree.
It is relatively easy, for example, to devise geometric problems that
have difficult, obvious solutions and easy, subtle solutions. The obvi-
ous solutions lead to hidden difficulties, whereas the subtle solutions
quickly make the problem transparent. Such items could distinguish
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the students who perseverate with unproductive ideas from those who
realize that progress is slow and that they should try other approaches
to the problem solution. See Pandy, 1989, for examples of this more
diagnostic style of item writing. Many good examples also appear in
the Tazonomy of Educational Objectives (Bloom, 1956).

Our final choice of process categories is essentially the same as that
of Gadanidis (1988), but we prefer the terms Procedural Skills, Con-
ceptual Understanding, and Problem Solving. The first two correspond
to Skemp’s (1987) categories of Instrumental Understanding and Re-
lational Understanding, where we include accurate knowledge of terms
and definitions in Conceptual Understanding. The third category is
problem solving, embracing proofs, story problems, real-world prob-
lems, and heuristics. With these elaborations, our content-by-process
classification of tasks for the eighth-grade mathematics assessment
takes the form shown in Table 2.3.

In summary we mean by “Procedural Skills™ the ability to perform
any of those operations in mathematics that begin from unambigu-
ous givens and lead by a set path to a unique result. This includes
the arithmetic operations on given numbers, algebraic manipulation
of expressions and equations, constructions with ruler and compass,
measuring objects on conventional scales, averaging quantities, etc.
We detiberately limit this category to the execution of procedures
and not the larger understanding of them (which is part of Concep-
tual Understanding) or the ability to adapt or invent them (which is
part of Problem Solving). Our reason for doing so is based partly on
factor analytic studies that show fluency of routine symbol process-
ing to be a distinct dimension of individual differences (see Bock &
Zimowski, 1989). In addition, we want the scores to be sensitive to in-
structional emphasis on execution of procedures versus understanding
and adaptation of them.

“Conceptual Understanding” means to us comprehension of the
origin and significance of the essential results of mathematics. This
includes definitions and factual knowledge, not simply as rote recall,
but, as conceived by Skemp (1987), as relational knowledge organized
in an appropriate schema.

Finally, for “Problem Solving”, we have accepted for the Duplex
instrument all three classes of tasks that go by that name in math-
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TABLE 2.3

Content by classification of tasks for the
8th-grade mathematics assessment instrument

Proficiencies

Content Categories a. Procedural b. Conceptual c¢. Problem
Skills Understanding Solving

10.  Numbers

Integers 1la 11b llc

Fractions 12a 12b 12¢

Percent 13a 13b 13¢

Decimals 14a 14b l4c
20. Algedra

Expressions 2la 21b 21c

Equations 22a 22b 22

Functions 24a 24b 24¢
30.  Geometry

Figures 3la 31b 3le

Relations & Transformations 32a 32b 32

Coordinates 33a 33b 33c
40. Measuremeni

English & metric units 4la 41b 4lc

Length, area & volume 42a 42b 42¢

Angular measure 43a 43b 43¢
50. Probability & Statistics

Probability 51a 5lb 51¢

Descriptive Statistics 53a 53b 53¢
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ematics instruction—proofs, story problems, and realistically moti-
vated applications. Although problem solving is not always well rep-
resented in multiple-choice achievement tests, there are now many
sources of suitable items in the mathematics education literature.

Despite the importance we attach to the difference between pro-
cedural Skills and Conceptual Understanding, we appreciate that for
purposes of classifying items in the categories in Table 2.3, the distine-
tion is often hard to make. If a task elicits an overlearned operation, so
that a successful result is merely a matter of speed and accuracy, then
it 1s measuring a procedural skill. But if the task depends on knowl-
edge of a principle that has not yet become essentially an automatic
rule, then conceptual understanding is involved. An example would
be knowing that azaaa = a*: for some students at the eighth-grade
level, this would be an absolutely routine algebraic manipulation; for
many others, it might require a more searching understanding of the
relationship between multiplication and exponentiation. Readers of
this report can check our understanding of this distinction by inspect-
ing the items of the instrument, classified by content and process in
Appendix B.

Because we are aiming here for an instrument that can be ad-
ministered in 45 minutes, we do not include enough items to score
students on the content subcategories (topics). For purposes of scor-
ing the forms at the student level, we therefore group the cells of
the content-by-process array shown in Table 2.4. (At the group level,
every cell of the table can be scored.) The score profiles for the stu-
dent reports thus consist of the five main content categories (Num-
bers, Algebra, Geometry, Measurement, and Probability and Statis-
tics} and the three process proficiencies (Procedural Skills, Concep-
tual Understanding, and Problem Solving). For reporting purposes,
we will shorten the term Probability and Statistics to “Statistics”,
Procedural Skills to “Procedures”, and Conceptual Understanding to
“Concepts”. Examples of reporting forms containing these labels ap-
pear in Chapter 7.

Like other investigators, we have chosen the content and process
categories on formal and theoretical grounds, and because they are
widely recognized by mathematics education. But it remains an open
question whether these distinctions correspond to empirically demon-
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TABLE 2.4
The content by process array for grade 8 mathematics field trials

Proficiencies
Content Categories a. Procedural b. Conceptual ~ c¢. Problem
Skills Understanding Solving

10. Numbers

Integers 1la 11b 11e

Fractions 12a 12b 12¢

Percent 13a 13b 13¢

Decimals i4a 14b l4c
20.  Algebra

Expressions 21a 21b 21¢

Equations 22a 22b 22¢

Functions 23a 23b 23¢
30. Geometry

Figures 3la 31b 3le

Relations & Transformations 32a 32b 32¢

Coordinates 33a 33b 33e
40. Measurement

English & metric units 4la 41b 4lc

Length, area & volume 42a 42h 42¢

Angular measure 43a 43b 43¢
50. Probability & Statistics

Probability 5la 51b jle

Descriptive statistics 52a 52b 52¢




strable dimensions of mathematics performance. Conceivably, con-
trasts among them make no useful distinctions between students, or
between schools or programs. Obvious examples lead us to think oth-
erwise, however. Certainly, profile differences with respect to content
should appear between schools that do or do not include algebra or
pre-algebra among their mathematics classes. Similarly, we might ex-
pect geometry and statistics to be depressed in states where neither
are consistent parts of eighth-grade math curricula or instruction.

As for process differences, studies in the literature have contrasted
traditional tests that emphasize procedural skills with those that tap
conceptual understanding. In one of the few randomized studies of
mathematics-instruction programs, Milton Maier found that relative
performance on these types of tests strongly discriminated between
traditional instruction and that based on the School Math Study
Group materials (see Bock, 1975, p. 236). Similar evidence of ef-
fects involving problem solving versus the other process proficiencies
should become apparent as the movement for greater emphasis on
realistically motivated exercises and applications begins to influence
teaching practices.

We also report in Chapter 7 some results from California schools
showing that classrooms taught by different teachers have discernibly
different content and process profiles, possibly reflecting different teach-
ing styles or emphases. Findings of this kind reinforce a conception of
school mathematics attainment as multidimensional—something that
cannot be described as a single score, but only as a set of scores re-
flecting the lines along which the subject divides in instruction and
in learning. The Duplex Design is structured to provide this multidi-
mensional account in less and greater detail in the student-level and
school-level reports, respectively.

2.2 Principles of scoring the Duplex Design

To provide diagnostic scoring at more than one level, we have ap-
plied to the Duplex Design a scoring scheme based on a hierarchical
model for variation in the observed responses. Except for the state
mean, each term in the model is considered an independent source of
variation expressed as a deviation from the term at the next higher
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level. Listed from the highest to lowest levels, the terms in the model
for a student response in a particular cell of the content-by-process
classification are as follows:

1. The state overall mean-score for mathematics
The state profile-score for the content-by-process combination

The school overall mean-score for mathematics

Ll

The school profile-score for the content-by-process combination

The student’s overall mathematics score

(]

The student’s profile-score for the main content category

The student’s profile-score for the process category

© ~N o

The student-by-content-by-process interaction

Level 8 of this hierarchy is the source of error varation in the
student-level scores. The corresponding error standard deviation is
estimated along with the profile scores and enters into the calcu-
lation of the standard errors of measurement for the scores. The
size of these standard errors depends upon the number of student-by-
content-by-process interaction terms that are aggregated in comput-
ing the student’s scores. In the design shown in Table 2.3, there are
more content-by-process subcategories within the main process cat-
egories than within the main content categories. Consequently, the
measurement errors for the process scores will be smaller than those
for content. This will be apparent in Chapter 5 when we examine the
student-level scores from the California field study.

At the school level (Levels 3 and 4), we estimate scores for each of
the content-by-process combinations that define the cells of the Du-
plex Design. As discussed in Chapter 1, these estimates aggregate
responses across the multiple forms that make up the assessment in-
strument. At this level, all lower-level sources involving the students
are sources of sampling variation. Thus. the standard errors of mea-
surement of the school scores depend upon the number of students
tested in the school as well as on the number of forms. The number
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of forms determines the number of independent student-by-content-
by-process interaction terms that are aggregated in the school-level
scores, which in turn affects the generalizability of the scores.

In respect to census assessments at the selected grade-level, it may
seem strange that we considered the students a sample for purposes of
computing an error estimate for the school-level scores. But the state-
wide annual cohort is indeed a sample of the population of successive
cohorts of students from the school’s catchment area, and this is the
relevant population for purposes of defining trends. The scores that
are estimated for the school are intended to characterize typical per-
formance, not just in the current year, but as a trend extending over
a number of years. With respect to this longer-range tendency, the
students in any particular year are merely a sample from the larger
population over time. Any given student can reasonably be regarded
as independently sampled from that population if minor sources of
correlation such as the presence of siblings in the school are ignored.

The effect of school size on the accuracy of estimating the school-
level scores can be a problem for assessment in states, such as Califor-
nia, that have numerous schools with very small numbers of students
per grade. In some cases the scores for the detailed content-by-process
subcategories for these schools are not determined accurately enough
to warrant reporting. In those cases, the school-level reports have to
be limited to main categories and overall scores. Fortunately, student-
level reports are not affected by small school size.

At the state level, all lower levels of the scoring hierarchy are con-
sidered sources of sampling variation. But in a census assessment,
the numbers of students is typically so large that sampling variability
from that source can be virtually ignored. It remains possible, how-
ever, that in a small state the variability of school effects over years
could be a source of instability in the estimated state mean-scores.
At present, the types of multilevel analysis required to estimate the
relevant variance components are not available, but recent progress
in multilevel analysis of educational data should soon show whether
variation from these sources is appreciable (see Bock, 1989).

As we discuss in Chapter 3, the scales in terms of which we will
report the assessment results have neither a natural origin nor unit of
measurement. They must be assigned arbitrarily in the first year of
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of the testing indicated that the opportunity to explain the purpose
and nature of the test on the first day; and to allow the students to
try a sample of items in the pretest, made the second-stage testing
less stressful for the students than is typical of other external testing.
If the test had been given in one stage, the forms would have to have
been much longer in order to include items suitable for all levels of
ability. From the point of view of both the teachers and the students,
working with two relatively short test forms on two different days was
much to be preferred to a longer test, comparable to a traditional
achievement test, on one day.

In the design for eighth-grade mathematics studied here, the second-
stage test consisted of 24 test booklets organized into eight forms of
three booklets each, one pitched at an egsy level of difficulty, one at
a medium level, and one at a difficult level. The two-stage structure
is represented schematically in Figure 2.1. The main advantage of
two-stage testing is the almost total elimination of floor and ceiling
effects (students scoring all incorrect or all correct). These effects,
especially troublesome in short scales such as those in the Duplex in-
strument, can lead to U-shaped distributions of student-level scores,
making data analysis very difficult. Even a two-stage test with only
three second-stage forms is a marked improvement over a one-stage
test in this respect (see Lord, 1980).

Toward the center of the score distribution, the gains in efficiency
(as measured by the ratio of the error variance of the two-stage test
to that of the one-stage test) is smaller, but it still favors the two-
stage procedure. We present an analysis of the efficiencies of the
California version of the two-stage Duplex instrument as a function
of the student-level scores in Chapter 3.

It has been suggested that teacher judgments could be substituted
for the first-stage test; that is, the teacher would assign the second-
stage test booklet on the basis of the student’s previous grades and
classroom performance. Because it would introduce an element of
subjectivity in the scoring procedure, however, we did not consider

procedure resulted in useful gains in efficiency over one-stage testing, but it proved
too complicated for the sixth-grade students on whom it was tested. Because it also
had the disadvantage of added printing costs due to including all the items in every
second-stage test booklet, it was not pursued further.




Test Booklet

Easy Medium Difficult

12345678 9101112131415161718192021222324252627728
Items ordered by difficulty

Figure 2.1. Schematic representation of item assignment to the
second-stage test booklets for one of the scales of the
Duplex instrument. The bars cover the items included
in the three test booklets of one of the eight forms of
the instrument.

the use of teacher judgments advisable in the heterogeneous popula-
tion of schools found in Illinois and California. But if objective test
scores relevant to the subject-matter were available for the students,
there would be no objection to equating them to the first-stage test
scores for purposes of making the second-stage assignments without
administering the first-stage test.

2.4 Summary

The main measurement innovation in the Duplex Design is the provi-
sion for separately evaluating the contributions of content knowledge
and process skills to individual student performance of the assess-
ment tasks. The evaluation depends upon a cross-classification of each
item in the Duplex instrument into a content and process category.
In the context of eighth-grade mathematics, mathematics educators
are broadly in agreement that the relevant content categories are 1)
Numbers, 2) Algebra, 3) Geometry, 4) Measurement, and 5) Probabil-
ity and Statistics. Although terminology differs, there is comparable
agreement that the main process categories for school mathematics
should be 1) Procedural Skills, 2) Conceptual Understanding, and 3)
Problem Solving. In the Duplex Design, the content categories are
subdivided into topics, each represented by suitable items, but the
process categories are not further divided. In the design prototype of
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the present study, items representing all combinations of the content
topics and the processes appear. It is not essential in a Duplex De-
sign that items exist for all such combinations, some may be logically
impossible, but the analysis is simplified if the cross-classification is
essentially complete.

Scoring of the prototype instrument occurs at two levels—the stu-
dent level and the school level. At the student level, the scores mea-
sure performance in the five main-content categories and in the three
process categories. Content scores aggregate over processes, and pro-
cess scores aggregate over content. Aggregation over both content
and process gives an overall mathematics score for the student.

At the school level, attainment in classrooms and for the school
as a whole is measured in each of the content topic-by-process sub-
categories. These scores measure attainment of detailed curricular
objectives, including effects of the interaction of content and process,
and can also be combined into scores for the district or higher level
of score aggregation, including the state.

To provide reliable scores at the student level, the Duplex Design
requires more student time for testing than a pure matrix-sampling
design reporting only at the school level and higher. The amount of
time per student can be reduced, however, through the use of two-
stage testing. Students take a short pretest that routes them to a
second-stage test adapted to their general levels of proficiency in the
subject-matter. The second-stage form can be shorter, and still be
reliable, because nearly every item is informative for the particular
student. Because the pretest provides an introduction to the test
content, and the second-stage items are better suited to the student’s
capacities, students are better motivated and more accepting of a two-
stage test than a one-stage test. Two-stage testing was a feature in
both the field trials of the present study; an evaluation of the operating
characteristics of the procedure appears in Chapter 5.




Chapter 3

Analyzing the Duplex Design

Considering the large number of items that comprise an assessment in-
strument, it 1s not practical to think of reporting results for individual
itemns except in the form of detailed item statistics intended for spe-
cialists in test construction and psychometrics. All other uses of the
data necessarily depend upon summary statistics, which we generally
call “scores”, that express the item information in more manageable
form.

In the field of educational measurement there are at present two
quite different approaches to computing such scores. One is called
“domain-sampling theory”, and the other, “item response theory”, or
“IRT”. Both have been used in reporting assessment data. In this
chapter, we explain the essential differences between these two theo-
ries and give reasons why we have adopted IRT methods to analyze
data from the Duplex Design.

3.1 Domain-sampling theory versus IRT theory

In domain-sampling theory, any given educational objective is as-
sumed to specify a domain of tasks or items by which mastery of
the objective can be assessed. A particular test of the objective is
assumed to be a sample from the population of all possible items
composing the domain. This purely conceptual population is referred
to as the “item universe”. If the items of the test are considered a
probability sample of this universe, the student’s percent-correct score
on the test is a best estimate of the percentage of items in the universe
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to which the student could respond correctly. Thus, to the extent that
the item content of the domain is well-defined, the quantity estimated
by the student’s percent-correct score has a clear meaning.

Domain-sampling theory does not necessarily require the content
of the domain to be homogeneous; the scope of the domain is purely
a matter of definition. Thus, the entire content of eighth-grade math-
ematics specified in Table 2.2 might be assumed the domain for esti-
mating the universe percent-correct score in the subject matter. Con-
currently, the marginal content or process categories might define the
domains for a report of a student’s strengths and weaknesses in areas
within the subject matter. Even the individual cells of the content-
by-process classification could be domains for purposes of a detailed
evaluation of instruction. Domain-sampling concepts apply at any of
these levels.

A simple example of a well-defined domain in another area is a
list of words that a person should be able to spell correctly. The word
books compiled for secretaries are examples of such lists. Because
the universe is exhaustively defined, a spelling test consisting of a
random sample of words from such a book has a clearly interpretable
domain percent-correct score. If the book is assumed to contain all
the words that a secretary will have to transcribe from dictation, a
score of 98 percent on the test is an estimate that, out of every 100
different words dictated, the secretary is expected to misspell 2. Thus,
a score of 98 percent on the test might be a reasonable requirement
for employment.

The domains representing most educational tests are not as clearly
defined, but in principle they can be understood as a large set of objec-
tively defined tasks, possibly structured in some logical system (items
are often hierarchically organized.) To the extent that two indepen-
dent test constructors are working from the same domain definition,
they should be able to construct tests that estimate the same domain
percent-correct score, just as two independent sample-survey experts
should be able to reach the same estimate of, for example, the num-
ber of persons older than age 30 who have never married. This sam-
pling conception of an estimated percent-correct score is represented
schematically in Figure 3.1.

In item response theory, in addition to an assumed domain of
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Figure 3.1. Representation of a domain percent-correct score. The
score is the area of the smaller box relative to that of the
larger.



items, a population of respondents (in the present context, the stu-
dents) is also assumed. The items in the domain are assumed to be
structured, not only by logical categories, but also by their location
along a linear continuum related to their average difficulty for the re-
spondents in the population. Statistical procedures are available to
estimate the precise location of any item on the continuum from the
responses of a large sample of respondents. These locations are very
nearly in the same order as the so-called “item p-values”, i.e., the
percent of correct responses to the item as observed in the sample of
respondents. They are one of several characteristics of items (others
are discriminating power and probability of chance correct responses)
referred to as “item parameters”. The procedure for estimating them
is called “item calibration”. A review of the essentials of item response
theory may be found in Lord (1980).

The concept of an examinee’s score is quite different in item re-
sponse theory than in domain-sampling theory. In IRT, a score is ex-
pressed by the location on the continuum from easy to difficult items
where the examinee’s probability of answering correctly the items is
near 50 percent. The point that locates the examinee on the contin-
uum is referred to as an “ability” or “proficiency”. The estimate of
this point is called a “scale score”. This conception of a scale score is
illustrated in Figure 3.2.

If the test items are a representative (probability) sample from
a specified universe as assumed in domain-sampling theory, the item
parameters will have a distribution in the domain universe. From
this distribution, item response theory makes it possible to calculate
from the scale score the percentage of items in the domain that the
examinee could be expected to answer correctly. Thus, item response
theory can include the concept of the domain percent-correct score.

When used in this way to serve the purpose of domain-sampling
theory, IRT requires only one additional assumption beyond those
of domain-sampling theory. It assumes a statistical model that accu-
rately predicts the probability of a correct response as a function of the
item parameters and the examinee’s position on the ability continuum.
These so-called “item response models” (IRM’s), or “item response
theoretic” (IRT) models, constitute the central and distinctive feature
of item response theory. Models are available for most common types
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Figure 3.2. Representation of a scale score. The score is the location
of the examinee with respect to a linear ordering of the
domain content. The probability that the examinee has
mastered each item in the domain is the height of each
item response function at the examinee’s scale-score lo-
cation. The sum of the probabilities gives the examinee’s
domain percent-correct score.

of test items, including short-answer and multiple-choice items scored
right, wrong, or omitted; graded items used in ratings of essays and
other performance tasks; and items with multiple nominal-response
categories (see Thissen & Steinberg, 1986). Well-developed computer
procedures now exist for item analysis and test scoring based on these
models. The models we employ in the present study are described in
Chapters 5 and 6.

One might well ask why IRT methods should be used to esti-
mate a domain percent-correct score when the sampling approach is
so much simpler. The reason is that it is easier to obtain compa-
rable measures when alternative forms of a test are scored by IRT
methods rather than number-right scoring. In principle, comparable
scores can be obtained under domain-sampling assumptions simply
by randomly sampling items from the universe for each of the forms.
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Unless the forms have many items, however, there will be variability
in the difficulty of the forms due to item-sampling variation. Again in
principle, this can be avoided by very carefully stratifying the items
with respect to their population percent-correct values (p-values) and
reliability indices. But in practice, this stratification is very diff-
cult; there are seldom enough items in an item pool to obtain enough
good matches, especially in the Duplex application where we require
a large number of forms. Situations can also arise in which between-
form variability is increased because new items are added to the pool
after some of the forms have been prepared. The classical method of
handling these problems is to allow the difficulties of the forms to vary
but to construct tables for converting the scores to common values by
so-called “equipercentile” equating,

But the IRT approach is even simpler: the forms are constructed
by sampling from the item pool (with stratification by content and
process in the case of the Duplex Design); then the sampling vari-
ation between forms is accounted for by the scaling procedure that
adjusts for the empirically determined characteristics of the items.
There is no necessity of matching items during test construction or
of constructing equating tables. The forms are simply administered
randomly to members of the respondent population (in school settings
this is done by assigning the forms to the students in rotation), and
the item characteristics are estimated from the responses. The IRT
scoring procedure then makes use of the estimated item-characteristics
to compute scores on the same scale from all forms.

The logic of this IRT procedure is analogous to that of survey
sampling when statistics from an allocation sample are converted to
those for a probability sample by use of case weights based on demo-
graphic characteristics of each respondent. Although these statistics
could also be obtained by matching cases to population values for the
demographic categories, the case-weighting method, like IRT scoring,
makes use of all the data and is a simpler procedure.

Another advantage of IRT scoring under domain-sampling assump-
tions is that the scale scores for two different tests are more likely to
be linearly related, than are percent-correct scores. The reason is that
the particular distribution of item difficulties in each test distorts the
underlying bivariate relationships between the attainment variable in
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a complex way. These “typical distortions” of cognitive measurement
have been extensively investigated by Frederic Lord (see Lord and
Novick, 1968). Because they are largely eliminated from the relation-
ships between IRT scale-scores, the statistical analysis and graphical
representation of test or assessment results are simplified and easier
to interpret.

Moreover, the IRT treatment of the data allows us to take ad-
vantage of adaptive testing, such as two-stage testing, to improve
the efficiency of assessments. Results of the two-stage testing can be
expressed on a common scale regardless of whether the student has
been assigned the Easy, Medium, or Difficult second-stage test book-
let. We discuss the scoring of the two-stage Duplex instrument by
this method in Section 3.4. Finally, only IRT permits the items and
the respondents to be located on the same scale for purposes of a
content reference interpretation. In Chapter 7, we make use of this
felicitous property of IRT scale-scores in our proposals for reporting
Duplex results.

3.2 Student-level scale scores

For the student-level content and process scores of forms constructed
according to the design in Table 2.4, strict unidimensionality of the
item responses probably can not be assumed. In each content area, the
items belonging to the same proficiency probably would be somewhat
more highly associated than those belonging to different proficiencies;
similarly, in the proficiencies, items belonging to the same content
would be somewhat more highly associated. (Those effects can be
examined empirically by item factor analysis; see Bock, Gibbons, &
Muraki 1988). This is the reason for maintaining exactly the same
content and process structure in all the forms. It provides the strat-
ified sampling design that permits the content and process domains
to be defined by domain-sampling theory. IRT methods of scoring
merely make the scores comparable from form to form.

If standard IRT procedures are employed in calculating the student-
level scores, however, the standard errors of the scores will be under-
estimated if there is greater association among item responses within
the content or process categories than between categories. Thissen,

60




Steinberg & Mooney (1988) have shown that this problem can be
avoided by treating the items within each category as a “testlet”, as
defined by Wainer & Kiely (1987). For example, the procedural items
within Numbers would constitute one testlet, those within Algebra
another, etc. The IRT analysis would then assume unidimensional-
ity between testlets, but not between items within testlets. The IRT
model for multiple categorical responses would directly express the
probability of each pattern of correct and incorrect item responses
within the testlet. The student-level scores for Procedures, or any of
the content or process categories, computed in this way would then
have the correct standard errors (see Thissen, Steinberg & Mooney,
1988).

The IRT model for multiple nominal categorical-responses intro-
duced by Bock (1972) is suitable for this type of testlet. Each possible
pattern of correct and incorrect responses within the testlet is treated
as a nominal category; then parameters of a linear model are estimated
so as to best account for the observed frequencies of patterns in the
data from a large sample of respondents. The marginal maximum
likelihood method of Bock & Aitkin (1981) is used for this purpose.

At present, the computer programming for the testlet method of
scoring is not available. We have therefore used conventional IRT
methods both in fitting the response models for the items and in com-
puting scores for students. As a result, the standard errors for these
scores may be somewhat underestimated, but the results of studies
by Gibbons, Bock & Hedeker (1988) suggest that the effect of these
failures of unidimensionality is rather small.

3.3 School-level scale scores

In school-level scoring, the domains defined by each of the content-
topic and process cells of the Duplex Design are sufficiently narrow to
justify the assumption that the corresponding item universe is unidi-
mensional. That the assumptions of IRT can also hold in group-level
assessment was first pointed out by Bock, Mislevy & Woodson (1982)
and investigated in detail by Mislevy (1983). A necessary condition
for group-level application of IRT is that each item of any given scale
appears on a different form of the instrument. In this way, each item
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response comes from a different student, and the responses are exper-
imentally independent. The data are then amenable to standard IRT
estimation methods that assume independence.

The chief difference is that the data for the school-level analysis
take the form of the numbers of students attempting and respond-
ing correctly to each item, while the data at the student-level are
the binary item scores (1 if correct, 0 if incorrect). Technically, and
under the corresponding independence assumptions, the school-level
data are dinomial variables and the student-level data are Bernoulli
variables. IRT models are easily formulated for either of these types
of data (see Mislevy, 1983).

In student-level data, the IRT model describes variation under-
lying the item response that arises out of the interaction between a
specific respondent and a specific item at a specific time. This vari-
ation can reasonably be assumed to be the additive result of many
finite, more or less independent, influences and, thus, to be normally
distributed. This is the justification of the cumulative normal distri-
bution function {or its almost identical proxy, the logistic function) as
the IRT model for individual-level data. To use the same models at
the group-level, a further assumption is required—namely, that the
proficiency measured on the underlying scale is normally distributed
within the group. This is also a reasonable assumption if the group
is more or less homogeneous, which is generally the case within class-
roorns or schools. The assumption should, of course, be tested empiri-
cally in the course of fitting the IRT model. We have carried out such
tests extensively in data from the California assessment and found
only scattered instances of significantly poor fit. Of the few cases of
model failure that have been detected in very large samples and among
many items, almost all could be attributed to ambiguous alternatives
of multiple-choice items (Schilling & Bock, 1989). Rewriting of such
items will generally lead to acceptable fit. In the data of the present
study, only a few instances of marginal fit were found, but the sample
size per item was not large enough to permit a sensitive test of the
group-level model (see Chapter 6). If a three-parameter logistic model
is assumed for the group-level analysis, as in this study, the marginal
maximum likelihood method of estimating item parameters (in the
population of schools) and the Bayes methods of estimating school
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scale-scores are identical to those of the more familiar student-level
analysis, except that a binomial frequency function is substituted for
the Bernoulli frequency function of that analysis. The BILOG com-
puter programs gives the user the option of this substitution.

As in student-level IRT analysis, the origin and unit of the scales
for the school-level scores are arbitrary. In the California assessment.
which does not include student-level scores, origin and unit are set so
that the distribution of school-scores, weighted by the number of stu-
dents in the school, have mean 250 and standard deviation 50. Rather
than adopt this convention, we have chosen to allow the scales of the
respective student-level scores to determine the scales of the school-
level scores. Mislevy & Bock (1989) have proposed an IRT model
integrating both of these levels of scoring into a single analysis on a
common scale, but it is not yet implemented for practical use. We
have chosen instead to determine a between-school interaction com-
ponent of variance for the student-level scores and set the unit of the
school-level scores so that their between-school interaction component
is the same value. The origin of the school-level scores is then set so
that the estimated weighted mean of the school-level scores is equal to
the state mean of the studeni-level overall mathematics score (details
of these conventions are presented in Chapter 6.)

3.4 Scoring two-stage tests

Adaptive testing, including two-stage testing, has no counterpart in
classical test theory. It is possible only because IRT scale-scores of the
respondents can be computed from arbitrary subsets of items from the
test. These computations require that the parameters of the items be
estimated with respect to the full test, but this is readily accomplished
if the item subsets that make up the second-stage tests are connected
by common “link” items (see Figure 2.2).

When the MML method is used, the procedure for estimating
the item parameters of the second-stage test is essentially as follows.
Initially, the parameters are estimated separately in each of the groups
of respondents who were administered a distinct second-stage test
booklet. In the present study, these groups corresponded to the Easy,
Medium, and Difficult booklets. Because the proficiency distributions
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for these groups are arbitrary and unknown, each is estimated along
with the item parameters of the respective group. But since the origin
and unit of scale of the separate analyses is indeterminate, a basis
must be found for adjusting the separate sets of parameter estimates
so that they are expressed on a scale with common origin and unit.

This is where the link items come in. We first set the scale of
the three distributions to the same value by constraining the slopes
of the link items in the corresponding MML analyses to be equal. At
the same time, we also constrain the lower asymptotes, or “guessing”
parameters of these items to be equal. Under these restrictions, the
average of the differences between the estimated location parameters,
or “thresholds”, of the link items that are common to two of the groups
provides an estimator of the difference between the corresponding
distributions. When the locations of all the items, both link and non-
link, are adjusted by an amount equal to half this difference, their
response functions are all brought onto the same scale. They are then
in a form suitable for computing comparable scores for the respondent,
regardless which second-stage test they were administered. We give
the details of this procedure, modified somewhat to allow for specific
features of the pretest applications, in Chapter 5. A similar procedure
for estimating parameters of the school-level IRT model is discussed
in Chapter 6.

Once the items are calibrated in this way, the calculation of scale
scores for the respondents is a straight forward application of IRT
scale-score estimation. As we explain in Chapter 5, we use Bayes es-
timation procedures for this purpose because they have better prop-
erties than other methods when the scores are based on relatively
small numbers of items, as is the case in the Duplex Design. Similar
methods apply to the estimation of school-level scores for curricular
objectives (see Chapter 6).

3.5 Modeling item-parameter drift

The IRT scoring of assessment data normally makes use of an item
calibration in the first fully operational year of the assessment instru-
ment. Thereafter, the scores refer to the scale definition established
in the base year. Any interpretation of the scale scores in subsequent
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years is relative to the status of the population in that year. In this
respect, the IRT calibration is similar to establishing percentile norms
for test scores in a given year. Like test norms, however, IRT cali-
brations can become out of date over extended periods of time. For
the test as a whole to change in difficulty is not a problem; these ef-
fects are absorbed in the mean score for the population. Such overall
tendencies are in fact the changes that the assessment is designed to
monitor. .

But it may also happen that some of the item parameters, espe-
cially those reflecting item difficulty, change differentially as empha-
sis on different subject matter topics change. This phenomenon is
referred to as “item-parameter drift” (Goldstein, 1983). That such
effects actually exist, and can be described and modeled, has been
demonstrated in data from the College Board Physics Achievement
test by Bock, Muraki & Pfiffenberger (1988). These authors exam-
ined data from a form of this test that Educational Testing Service
administered to large national samples on five occasions between 1973
and 1982. Working with the longest homogeneous topic within the
test (Mechanics), they fitted and tested a time-trend IRT model to
items from this content. Their analysis showed appreciable differen-
tial drift in the location parameters of these items, but no significant
drift in the item validities (discriminating powers) or the random suc-
cess probabilities (guessing parameters). Changes in the location pa-
rameters were essentially linear, and the relative directions of change
were interpretable in terms of trends in the teaching of secondary
school physics in the United States over this period. The authors also
suggested how their time-dependent IRT model implemented by the
BIMAIN computer program of Muraki, Mislevy & Bock (1987) could
be used to monitor differential drift in item locations and to adjust
from year to year for its influence on the scale scores so affected.

In the context of the Duplex Design, item-parameter drift is most
likely to occur in student-level scores where the item content is rela-
tively heterogeneous. It would not be expected to any extent ir the
school-level scores for the extremely homogeneous content-topic-by-
process subcategories. Differential change of instructional emphasis
within these narrow subcategories is unlikely because, while the topic
as a whole might receive relatively more or less attention, individ-
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ual items would not. Bock, Mislevy & Woodson (1982) have referred
to such subcategories as “indivisible curricular elements”. Comput-
ing scale scores for the schools from these homogeneous elements is a
source of great robustness and stability in IRT scaling of school-level
assessments. No evidence of differential item-parameter drift has been
found in the California assessment instruments, which are scaled in
similar narrow elements (Mislevy & Bock, 1983).

3.6 Summary

Large-scale educational assessment as presently practiced relies heav-
ily on the responses of students to brief tasks that can be quickly
scored. Ratings of more extensive productions of the students are con-
fined almost entirely to written essays in direct writing assessments.
Measurement of curricular objectives by means of multiple-item tests
is based on the assumption that the subsets of items within the test
are representative samples from specified content domains. The stu-
dent’s responses to the items provide an estimate of the percentage
of the domain content that the student can be considered to have
mastered. We argue here that the estimation of such percentages is
better accomplished by item response theoretic (IRT) methods than
by the item percent-correct score of classical test theory. Qur reasons
are that IRT procedures provide: 1) more stable estimation of the
domain scores through the intermediate calculation of scale scores,
2) easier student-level equating of the multiple forms that make up
the Duplex instrument, 3) easier updating of the instrument without
loss of temporal continuity of the assessment scales, 4) the availabil-
ity of two-stage or other adaptive testing, and 5) locating of items
and students on the same scales for purposes of content-referenced
interpretation of the scores.

Straightforward extension of the response models to group-level
data make IRT scoring at the school level available for the matrix-
sampling component of the Duplex Design. These models assume
one item per form for each of the scales reported at the school or
higher level. This assumption is buiit into the Duplex Design and
allows the reporting of progress in as many curricular objectives as
the forms have items, typically, 20 to 50. A number of new develop-
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ments in IRT are promising for assessment applications. One of these
is the modeling of responses to small subsets of related items called
“testlets”. If the items for topics within the main content categories
were considered a testlet, the assumption of overall unidimension-
ality for the student-level scoring could be relaxed. More accurate
estimates of standard errors of the student scores would result (see
Wainer & Kiely, 1987; Thissen, Steinberg, & Mooney, 1987).

Finally, new procedures for detecting and accounting for differen-
tial item-parameter drift aid in maintaining assessment instruments
over extended periods of time while retaining full comparability of
scores.
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Chapter 4 -

Overview of the Illinois and California
field trials

The feasibility study of the Duplex Design in eighth-grade mathemat-
ics was based on two field trials, one in Illinois in the autumn of 1986
and the other a year later in California. We took advantage of the
year between the trials to revise the instrument on the basis of the
item analysis of the Illinois data, and we improved the training and
reporting procedures for the field work. In this chapter, we present
an overview of the fleld trials, focusing on the California version of
the instrument, which was the source of the final data reported here,

4.1 The sample design

Samples of 32 schools were selected in each of the states by the NORC
field-study director, who worked from school rosters and background
data supplied by the state assessment programs. A stratified random
sampling procedure was used to select the sample of schools in the fol-
lowing way. All public schools in the state with eighth-grade classes
were classified according to a 2° design of demographic and socioeco-
nomic background variables. In Illinois the background variables were
1) enrollment size, 2) northern or southern location in the state, 3)
percent minority enrollment, 4) urban or rural location, and 3) me-
dian income of the school district. In California, median income was
replaced with a more general index of socioeconomic status (SES). In
each state, one school was randomly selected from each nonempty cell
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of the respective design. In Illinois, the design yielded eight empty
cells; in California, four empty cells. In both cases, schools were ran-
domly selected from adjacent cells to complete the samples.

4.2 Creating the Duplex Design instrument for
eighth-grade mathematics -

In constructing the assessment instrument for the trials, we conformed
to the requirements of the Duplex Design discussed in Chapter 2. The
design relies on a multiple-matrix sampling procedure to assess with
good generalizability the detailed curricular objectives at the school
or higher level of aggregation, while employing two-stage testing to
provide reliable measurement at the student level. Implementation of
the former requires many distinct forms of the test instrument; that
of the latter requires a pretest that routes a pupil to a second-stage
booklet matched to his or her level of ability, and within the second-
stage forms, to test booklets that vary in their level of difficulty.
Within the constraints of the Duplex Design, we generated the
assessment instrument from the content-by-process specification de-
scribed in Table 2.3 by the following steps. Math items were pooled
from the Illinois 8-th grade and 11-th grade assessments, and from
the California 8-th and 6-th grade assessments. In addition, Ken-
neth Travers, of the University of Illinois, Urbana, kindly supplied
the items of the Second International Mathematics Study. All of these
items had either p-values or IRT item-statistics for the corresponding
populations. A committee consisting of John Dossey, Tej Pandey, and
Darrell Bock then assigned each item to a content topic and process
category. In cases of disagreement, majority ruled or the classification
was revised. The goal was to obtain sufficient items for 24 replicate
booklets (eight distinct forms, each with three booklets at different
levels of difficulty). Although the pool of items was large, there were
very few items representing Irrationals, Inequalities, Other Systems
of Measurement, and Ezperiments and Surveys. As a result, these
topics were omitted from the instrument. To enlarge the item pools
of other curricular objectives with too few items, John Dossey and
his colleagues in Mathematics Education at the University of Illinois,
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Normal, wrote new items using the items from the other sources as
guides.

On the basis of the item-statistics from the Illinois, California, and
[EA programs, and by judgment in the case of the new items, the item
pools for each curricular objective were stratified into three levels of
difficulty—easy, medium, and difficult. At each level of difficulty, one
item was selected from the item pools representing each of the 45 cells
of the design to produce the easy, medium, and difficult booklets of
each form. This process was repeated until eight replicate forms of
the test were produced.

Within each form, links among the booklets were established by
replacing two items within each proficiency with two items from the
booklet or booklets at adjacent levels of difficulty. For example, two
items in the Procedural Skills subtest of the Easy booklet were re-
placed with two items from the same subtest in the Medium booklet
and vice-versa. The common items among booklets were selected in
such a way that they also provided links among the five content areas.

Finally, twelve items were drawn from the remaining items for the
pretest. The items were selected for uniform spacing and high validity
and spanned a wide range of difficulty.

This version of the instrument was field-tested in Ilinois. Al-
though the pretest functioned largely as anticipated, assigning stu-
dents to the second-stage booklets in the desired equal proportions,
the presence of one item that was too difficult for the students and
two with relatively poor discriminating ability, indicated that it could
be improved. These poorly performing items were replaced and the
test was lengthened to 15 items to enhance the assignment of pupils
to the second-stage booklets. The cutting points for this assignment
were adjusted to reflect the altered content and length of the pretest.
The Illinois study also revealed that the provision for teachers scor-
ing the pretest could be improved. Several teachers reported that the
opaque template used to score the pretests was difficult to align with
the answer sheets. To minimize this problem, we prepared transparent
templates for the California study (Appendix C).

The Illinois study also revealed that the difficulties of some of
the items in the second-stage forms were not in accord with their
classification as Easy, Medium, or Difficult items. To improve the
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assignment of items to booklets, the items in the second-stage forms
were rearranged for the California study on the basis of the item-
parameter estimates obtained in [llinois. The wording and appearance
of some of the items were also improved and additional link items were
added to the forms.

The item structure of the revised version of the instrument is
shown in Table 4.1. The numbers in the table refer to the place-
ment of the items in the booklets of each form. The nineteenth item
in each booklet of Form 1, for example, belongs to the Procedural
Skills by Algebra-functions cell of the process-by-content design. The
link items are labeled EM and MD. EM indicates that the item is
the same in the Easy and Medium booklets of the form, MD that the
item is the same in the Medium and Difficult booklets. The table
also shows that the items in the forms are grouped by content area
and rotate through the process categories of each topic. The forms all
begin with Numbers, but differ in their ordering of the other content
areas.

In preparation for the California study, NORC printed copies of
the revised versions of the pretest (Appendix A) and the second-stage
booklets (Appendix B) from camera-ready boards. The answer sheet
(Appendix D) for the two-stage booklets was redesigned to accom-
modate the lengthened pretest and copies were printed by National
Computer Systems. A guide for the test administrators (Appendix E),
a teacher feedback form (Appendix F'), and school and class transmit-
tal forms (Appendix G) were also prepared and reproduced at NORC
in Chicago. The guide explained the purpose of the study and the
procedures for administering the test. The feedback form asked the
teachers to comment on the test and the testing procedures. The class
transmittal forms asked the teachers to identify special students—
honors/advanced placement, special education, learning disabled, and
English as a second language (ESL)—who were members of their class.

4.3 Field procedures in California

In the California study, NORC field personnel made their initial con-
tact with the schools in early September of 1987 and arranged for
testing dates and in-person visits to brief the school personnel on the
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TABLE 4.1

Item Structure of the eight forms

Form
Curricular Objective 1 i 3 4 - [ T 3
Procedural Skills
Numbers
Integers 1MD 1MD 1 1 1MD 1EM 1MD 1MD
Fractions 1D 4 +MD 4MD 4 + 4EM 4
Percents TEM TEM 7 TEM TEM ™D T T
Decimals 1GEM 10MD 10MD 10MD 19 10 10 10
Algebra
Expressions 13 I13MD ITEM ATMD 28 28 19 1I9EM
Equations 18MD 14 40 40EM JIMD 31MD 22 22EM
Functions 19 19EM LIEM 43 34MD J4EM I5EM 25
Geomaetry
Figures 12 1IMD 13EM 13 37TMD AITMD 28 28
Raelations & Traunsformasions L3 15 18 18 10MD 40EM AIMD 31MD
Ceordinales 28 28 19 19 43EM 43EM 34EM 34MD
Measurement
English & Metric Units J1EM J1EM 2 22 13 13MD ITEM 37
Length, Area & Volume A4EM J4EM 23EM 25 18 18 40 4OMD
Angular Messare ITMD ar 28MD MEM 19 19EM 43 41
Probability & Statistics
Probability 40 40 J1EM JIEM EM 22MD 13MD 13MD
Descriptive Statistics 43 43MD 34MD MEM WBEM 25 19MD 18EM
Concaptual Understanding
Numbers
Integers 2MD IMD IMD 2 2EM 2 2 2
Fractions L3 SEM 5MD S5EM SMD 5 5 5
Percents 8MD 8 8 8 L} BEM 8EM BEM
Decimals 11EM 11EM 11EM 11EM 11 11MD 11 11
Algebra
Expressions 14MD 14MD 8 38MD 20EM 0 20 WMD
Equations 1TEM 17 4] 41 32 J2EM 23MD 2IEM
Functions CEM W0MD 44 44 ht.} s BEM 8EM
Geometry
Figures I3EM 33 it MDD ISMD JBEM 29 29
Railations & Transformations 26 8 17TMD 17 +IEM 41MD 32 32MD
Coordinates i 20EM WEM 20EM 44 [} ASEM 35MD
Maeasurament
English & Metric Unite a1 32EM 23 23 HMD  4EM JBEM ia
Length, Area & Volome k11 I5MD 28EM 26EM 17EM 17 41 41MD
Angular Measure 38 38 EM  29MD 30 20MD A4MD 44
Probability & Statistica
Probability 41 41EM 32 32MD BMD 13D 14MD 14
Descriptive Siasiatics 4+4MD 44 3sMD 33 28 8MD 1TMD 17EM
Problem Selving
Numbuers
Integecs 3 JEM JEM IMD a 3 IEM a
Fractions sMD sMD 4 L} ] 8 sMD SEM
Percenss 9EM 9EM 9 ] SMD 9MD 9 9EM
Decimals 13EM 12EM 12EM 12 12MD 12 12 12MD
Algebra
Expresesions 15 15 39 I9EM iy ICEM 21MD 21EM
Eqoations 18 18MD +2MD 42 I3EM 33MD 24 24
Punctions 21EM 21MD 45 +5MD 36 3sMD 27 27
Geometry
Figures 24 24 15EM 15MD JPEM 39 J0EM J0MD
Relations & Transformations 2TMD 27 LBEM 18MD 42 42 IMD 33
Coordinstas 30 a0 n 21EM 4SMD 45EM kL J8EM
Measuremens
English & Metric Unita IIEM a3 MD 24 15MD 15 IsMD 39MD
Length, Area & Volume 3sMD asMD 27 ITEM 18 18EM 42 42EM
Angular Measure 39 39 0MD 30 EM 21 45EM 45MD
Probability & Statistics
Probability 42EM 42EM a3 33 4 UMD 15EM 1s
Descriprive Statistics 45MD 45 36MD ISEM 2TEM TEM 18 18
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testing procedures. The administrators and teachers of most schools
were highly cooperative and facilitated the process. One school, how-
ever, had to be dropped from the sample because efforts to implement
participation were resisted. Two other schools were passed over be-
cause recent reorganizations at the district level brought their eighth-
grade enrollments below 25 pupils, the minimum number required to
obtain reasonably accurate estimates of school-level performance. In
all cases, schools from the appropriate cells of the sample design were
substituted.

On the basis of enrollment figures supplied by a school, a packet
of testing materials was assembled for each class in the school. Each
packet contained a sufficient number of pretests, answer sheets, and
second-stage booklets for the pupils in the class. In each packet, the
booklets from the eight second-stage forms were compiled in rotation
within each level of difficulty. The packet also contained a copy of the
test administration guide, the feedback form, the classroom transmit-
tal form, and the transparent template.

NORC shipped the preassembled materials from Chicago to the
participating schools in California. Unfortunately, the materials for
one school failed to arrive on time. Because the principal of this
school was reluctant to reschedule the testing sessions, we drew a
replacement school from the appropriate cell of the sample design.

Once the materials arrived at a school, NORC field personnel met
with the teachers at that school to distribute and explain the testing
materials. They briefed the teachers on the purpose of the study and
the procedures for administering the test and asked them to complete
the feedback form after administering the test. NORC personnel re-
turned to eight of the schools to observe the testing sessions.

4.4 Administration of the two-stage booklets in
California

In October and November of 1987, the teachers administered the
two-stage forms to eighth-grade students in their classrooms in split-
session format, completing the pretest and second-stage test on differ-
ent days in separate sessions. The teachers scored the pretest between
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the sessions and assigned each student to a second-stage booklet. At
each level of difficulty, the assignments rotated within each classroom
over the booklets from the eight forms. Approximately 700 pupils
completed each of the eight forms, or about 230 per booklet.

The teachers reported very few difficulties with the testing proce-
dure, but many felt that the main test was too long to be administered
in one class period, especially at schools where the periods were less
than 45 minutes long. Nonetheless, in the testing sessions monitored
by NORC personnel, only a few students were unable to complete
the test in the allotted time. In these classrooms the teachers quickly
brought their classrooms to order and efficiently distributed the test-
ing materials, leaving students with most of the period to work on the
test,

In 28 of the 32 schools, the teachers scored the pretest with the
transparent template and assigned each student a second-stage book-
let. At two schools, teachers used a Scantron for scoring. At two other
schools, the administrators asked NORC personnel to score the pretest
and assign the booklets because they thought the activity would con-
sume too much of their teachers’ time. In this connection, six teachers,
or about six percent of those who participated in the study, reported
that scoring the pretest was too time-consuming. Nonetheless, nearly
70 percent of the teachers who completed the feedback form, reported
that the pretest provided a helpful introduction to the main test.

4.5 Processing of the California data

After the testing sessions, the coordinators and teachers at each school
prepared the testing materials for shipment to NORC, and NORC per-
sonnel arranged for the pickup of the materials at the schools and for
their return to Chicago where the data-processing and analysis would
be performed. The teachers and coordinators were instructed to bun-
dle the materials by classroom and place the classroom transmittal
form on top of each bundle (see Appendix G). This form identified
the class and asked the teacher to identify special students (hon-
ors/advanced placement, special education, learning disabled, and
ESL) who were members of their class. While most of the teachers
carefully followed the procedure, some of the materials were returned
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without this identifying information. When this problem occurred,
NORC personnel requested the school coordinators to supply class
rosters identifying the special students.

Inspection of the testing materials also revealed that the booklet
codes had not been entered on a small percentage of the answer sheets.
In most cases, the problem was readily solved because the pupils and
teachers had carefully followed directions and returned the materials
with the answer sheets inside the corresponding bocklets. In the rela-
tively few cases where the booklets and answer sheets were separated,
each answer sheet was assigned the booklet number that yielded the
highest number-right score when keyed against all booklets. In this
preliminary cleaning of the data, the clerical assistants also checked
and corrected the school identification codes and inserted codes for
special education, learning disabled, and ESL students on the answer
sheets.

After this preliminary cleaning, the answer sheets were separated
from the booklets, grouped by class, and collated with header sheets
that uniquely identified the set of answer sheets from each class-
room. The answer sheets were then machine-read and the student
name-fields were cleaned. Of the 5,625 students who completed the
second-stage forms, 514 were identified as special education, learning
disabled, or ESL students. These students were eliminated from the
item calibrations.

4.6 Scoring the Duplex instrument

As we mentioned in earlier chapters, the item-structure of the Duplex
instrument is designed to provide two separate sets of scores at the
pupil level, one set for the three mathematics proficiencies (Proce-
dural Skills, Conceptual Understanding, and Problem Solving), the
other for the five content areas (Number, Algebra, Geometry, Mea-
surement, and Probability and Statistics). The process-proficiency
scores aggregate over items in each column of the content-by-process
design; the content scores aggregate over items in each row of the de-
sign. In these scores, the item responses of each pupil appear twice,
once in the process scores, and once in the content scores.

Scores for the second-stage test were computed with the BILOG
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program of Mislevy and Bock (1983). For reporting purposes, the
scores for each scale were rescaled to a mean of 250 and a standard
deviation of 50 in the state. We discuss the results from these analyses
in detail in Chapter 5.

The scales for the school-level scores were obtained through ag-
gregation of items across booklets within each element or curricular
objective of the content-by-process design. Each scale is thus repre-
sented by 24 items, one from each of the three booklets of the eight
forms, including some common items that provide links among the
booklets. The data for these calculations are simply the number of
students who attempt each item within a school, and the number
among these who respond correctly. We analyzed these data using a
group-level model described by Mislevy (1983). As in the analyses of
the pupil data, we assumed a three-parameter logistic model for the
probability of a correct response as a function of the scale value for
the school. The scores were then transformed to the metric of the
individual-level scores on the basis of the results from an analyses of
variance in which the background variables served to model between-
school variation. We discuss the results from the group-level analysis
in detail in Chapter 6.

4.7 Reports to the Schools

On the basis of Bock and Mislevy’s (1988) evaluation of the poten-
tial uses and users of the information from the Duplex Design, we
designed prototype reporting forms to address the special needs of
pupils, teachers, principals, and superintendents. We describe these
forms in Chapter 7. Copies of the forms were prepared with the TEX
typesetting system and the results from the California study were
overprinted with a laser printer. In March of 1988, NORC returned
the student-level reports and classroom summaries to the California
schools for distribution to the students and teachers. In April of 1988,
it sent copies of the school-level report and the state-level distribution
of pupil scores to the participating principals; copies of both of the
state-level reports were returned to the district superintendents.



4.8 Summary

The field procedures of this study were carried out so as to resemble as
closely as possible an operational assessment. They were developed
first for the Illinois study, then perfected further for the California
study. The main points of the protocol were:

1. The schools should be chosen in a stratified random sample
based on five factors of the community background.

2. The request for cooperation of the school should come in a letter
to the district superintendent from the chief state school officer,
accompanied by a similar letter to the school principal from the
director of the state education assessment program.

3. The Duplex instrument should be administrated as a two-stage
test by classroom mathematics teachers, as instructed by NORC
interviewers who visited the schools.

4. Materials for the testing should be delivered to and returned
from the schools directly to NORC via United Parcel Service.

5. Computerized reports of the assessment results should be sent
to the schools, teachers, and students who participated in the
study, as well as to the respective district superintendents and
to the state assessment program (see Chapter 7).

These procedures resulted in a high degree of cooperation from the
schools and teachers involved, and they produced data of good quality
and completeness for subsequent analysis. The Duplex instrument
and its method of administration met quite adequately the conditions
that might obtain in an operational state assessment program.
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Chapter 5

Measurement at the student level

The distinctive feature of the Duplex Design is the provision for scor-
ing the students on main content and proficiency dimensions of the
subject matter. We have argued in Chapter 1 that scoring at this level
is essential to insure a serious involvement of students in the outcome
of the assessment, and to provide attainment data in a form that
is most suitable for public discussion and secondary analysis. The
more detailed school-level scoring, discussed in Chapter 6, is equally
essential in a comprehensive assessment, but it is designed for mea-
suring the highly specific objectives of learning that are the focus of
curricular planning and management of instruction.

As we noted in Chapter 3, the main problem in obtaining student-
level scores from assessment data is how to extract a sufficient amount
of dependable information about the student from the relatively short
forms that make up a matrix-sampled instrument. We proposed a
solution to this problem based on two technical innovations—the con-
joint scoring of content and proficiencies, in which each item response
does “double duty” by contributing to two scales—the use of two-
stage testing to obtain more information per item response from stu-
dents at different levels of proficiency. Neither of these procedures is
a necessary part of the Duplex Design—student-level scores could be
computed independently for content or process dimensions, and the
students’ responses could be obtained with a conventional one-stage
test. But their successful incorporation into the testing and scoring
procedures will appreciably improve the cost-benefit of the Duplex
methodology.
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The Illinois field trial enabled us to work out efficient implemen-
tation of these procedures, and the California trial, which we report
here, provided an evaluation of them in revised and improved form.
The object of the latter trial was to answer the following questions:

1. Is the two-stage testing procedure practical for an assessment
program that depends on local school personnel to administer
the instrument?

2. Are the student-level content and proficiency scores of the Du-
plex Design sufficiently reliable for use in guidance and certifi-
cation?

3. Do the student-level scores have good technical properties for
use in secondary research?

4. Does the information gain from two-stage testing justify the
additional complexity of test administration and analysis?

We attempt to answer these questions in the remaining sections
of this chapter.

5.1 Feasibility of two-stage testing

As mentioned earlier, two-stage testing has seen little practical use,
probably because it is considered too cumbersome to administer. This
has not been our experience in either the Illinois or the California field
trial: in our implementation of the procedure, neither the students
who took the test nor the teachers who administered it reported any
special difficulties due to the method of test administration. To obtain
information on the teachers’ reactions we included with the school
materials a questionnaire about the test administration; we also had
NORC field personnel observe the testing in 8 of the 32 schools. In
addition, we judged the extent to which teachers followed instructions
by examining their scoring of the pretest and their assignment of
students to the second-stage forms.

The two-stage testing implementation described in Chapter 4 was
used in the California field trial. The classroom teachers adminis-
tered the 15-item pretest on a day preceding the second-stage test.
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The instrument made use of separate answer-sheets on which stu-
dents recorded their responses, first to the pretest, and later to the
second-stage test items. Between the two stages, the teacher or an
assistant scored the pretest using the supplied transparent template
and, following the guide on the template, assigned each student to
a Diffcult, Medium, or Easy second-stage booklet. In preparation
for returning the booklets to the students for the second testing, the
teacher marked the assignment on the student’s answer sheet and in-
serted the sheet beneath the cover of the second-stage booklet, which
was trimmed so that the student’s name would show.

5.1.1 Student motivation

As in all types of cognitive testing, the two-stage procedure is most
effective when the students are motivated to perform to the best of
their ability. Each student is then accurately classified by the first-
stage test and receives a second-stage booklet matched to his or her
level of proficiency. There is a gain in reliability because at the second
stage the examinee is presented with items that are informative at his
or her level of attainment.

This gain may be compromised if for any reason the first-stage
score does not reflect the student’s general ability to answer the
second-stage items. The loss is tolerable if the misassignment of
the student is limited to one difficulty step (e.g., assignment to the
Medium test booklet instead of the Easy booklet, or Difficult instead
of Medium). The effect on the second-stage score is reduced by the
considerable overlap in item difficulty between adjacent booklets (due
in part to the linking items).

But if by mistake a student is assigned an Easy booklet instead of 2
Difficult booklet, or vice-versa, some error would result if the student
answered all of the iterns correctly or incorrectly in the inappropriate
second-stage booklet. When the scoring procedure combines the in-
formation from the first-stage classification and the responses to items
in the second stage, it would assign a lower score than if the student
had been mistakenly assigned to the Medium bocklet and answered
all the items correctly. A converse error would result if a student who
belonged in the Easy group were assigned to the Difficult group and

80




answered all items at that level.

The effect would not be much different, however, from that of a
one-stage test to which the examinee responded to a subset of items
in a manner inconsistent with his or her ability. There is no reason to
think that a two-stage procedure employing a small number of over-
lapping second-stage forms would be less robust than a comparable
one-stage test; in either case the validity of the test scores will be
influenced by the quality of the student’s test-taking efforts. The ac-
curacy of both types of testing will benefit from the student’s personal
stake in the outcome; but two-stage testing will also save testing time.

5.1.2 Administration: cooperation of the teachers

The implementation of the two-stage testing procedure in the field
trials relies on the cooperation of teachers. They are expected to score
the pretests and assign the second-stage booklets correctly. By and
large, the Mllinois and California teachers responded well to these tasks
and, with a few exceptions, assigned the second-stage test booklets
accurately.

To check the teachers’ assignments, we rescored the pretest for
each pupil from the optically scanned answer sheets and compared it
with the group assigned by the teacher.! Three schools were omitted
from this verification. In two of these schools, NORC personnel scored
the pretests and assigned the second-stage booklets; at the other, the
scoring templates were misplaced and teachers assigned the booklets
on the basis of the student’s previous classroom performance. The
results for the 29 remaining schools are presented in Table 5.1.

The diagonal elements of Table 5.1 show the number and percent of
teacher assignments that agree with our computer-calculated scores.
They reveal that the teachers assigned the booklets with about equal
accuracy at the three levels of difficulty. They also show that more
than 95 percent, or 3,907, of the 4,108 pupils received test booklets
that were in accord with their pretest performance.

The off-diagonal elements of the assignment table show the num-
ber and percent of teacher errors. Most of the errors, 79 percent, are

1Students with 0~6 items correct on the pretest were assigned to the Easy book-
let, 7-10 to the Medium booklet, and 11-15 to the Difficult booklet.
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TABLE 5.1
Number and percent of second-stage booklets
correctly and incorrectly assigned

Correct Booklet
Booklet
Assigned 1 2 3 Total
1 1552 35 11 1604
94.5% 24% 1.7%
2 66 2367 14 1447
4.0% 94.5% 1.4%
3 25 44 988 | 1057
1.5% 3.1% 96.9%
Total 1643 1446 1019 | 4108

at adjacent levels of difficulty; e.g., a pupil who should have received
an Easy booklet, was assigned a Medium booklet instead. The fact
that the teachers were told to substitute booklets from adjacent levels
of difficulty if they ran out of booklets at the appropriate level could
account for most of these errors. The misassignments that are off by
two levels of difficulty are harder to explain. Three of the 107 teachers
in the California study are responsible for all but two of these errors,
displayed in the upper right- and lower left-hand corners of the assign-
ment table. These same three teachers are also responsible for more
than 46 percent of the total errors made by the teachers. Whether
these teachers misplaced or misaligned the templates, misunderstood
the directions, or simply refused to follow the procedure is not entirely
clear. Their errors are about equally divided among the off-diagonal
elements of the assignment table. _
In addition to the correct assignment of the second-stage forms,
the teachers were also expected to use the forms in the order they had
been packaged by NORC. An assumption of matrix-sampling method-
ology is that any student has equal probability of receiving any one
of the assessment forms. It is standard procedure in assessment to
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pack the forms in rotation beginning successive packets at a different
point in the series, and to require the teachers to distribute them in
rotation to students in the classroom. This insures that the unused
portions of the packets within a school are not biased toward the later
forms in the series and that all forms will be used about equally often
in the total sample. To check on this condition, we looked at the
distribution of booklet assignments across the eight forms of the sec-
ond stage. We found all of the distributions to be consistent with the
conclusion that the teachers assigned the booklets in rotation, except
for small differences that can be attributed to random variation in the
procedure used to package and assign the second-stage booklets.

The remaining source of information about the teachers’ role in
the test administration was their responses to the brief questionnaire
shown in Appendix F of this report. On the whole, the teachers re-
sponded favorably concerning the testing procedure. They reported
that the written instructions for administering the test were easy to
follow and the transparent scoring templates, easy to use. Although a
small percentage {(6%) complained that the procedure was too time-
consuming, more than 69 percent of the 72 teachers who completed
the feedback form (71% of the teachers in the study) reported that
the pretest provided a helpful introduction to the main test. It fa-
miliarized their pupils with the testing procedure and expedited the
administration of the second-stage test. Others felt that the proce-
dure reduced the frustration level of low-ability pupils who ordinarily
perform poorly on standardized tests. More than 65 percent of the
teachers who completed the form believed that the pretest properly
identified the ability level of all or most of their students; about 21
percent reported that it failed to do so, but our analysis of the pretest
scores in Section 5.2.2 shows this is not the case.

Most of the latter teachers complained that the pretest, as well
as the main test, was too “wordy” for their limited-English-speaking
students—that it measured these students’ ability to understand En-
glish rather than mathematics. Apparently these teachers did not
know that the Duplex instrument was not intended to assess the
mathematics ability of limited-English-speaking students. To avoid
singling them out as special students, ESL students were given the
opportunity to participate in the study if they were enrolled in reg-
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ular mathematics classes. They were identified from class rosters,
however, and their responses were not used in the item calibrations,
nor were their scores used in the computation of class, school, and
state statistics.

5.2 Item analysis in the California data

We now turn to the item analysis required in scoring California test
results at the student level. After describing the item response model
and the method of calibrating the items of the instrument, we ex-
amine the item-parameter estimates from the scaling of the content
and process categories, We then apply the item-parameter estimates
in computing the scale scores that are used to report the mathemat-
ics attainments of the individual students. Finally, we carry out an
information analysis of these scales, including estimation of their re-
liabilities in the California 8th-grade population, and evaluate the
information gains due to the two-stage testing procedure.

5.2.1 The IRT model

A fundamental premise of item response theory is that an individual’s
cognitive proficiency is not directly observable in test performance,
but must be inferred from his or her pattern of responses to the test
items. The item responses, in turn, are assumed to be stochastically
related to the proficiency variable; that is, they contain unrelated
random variation, as well as variation determined by the underiying
variable. To infer the proficiency level of the individual from the ob-
served response pattern in the presence of this random error requires
a correct representation of the probability of the pattern as a function
of the underlying variable. Typically, this representation is expressed
mathematically in terms of an item response function. These func-
tions are statistical descriptions of what happens when an examinee
encounters given items on the test. They express the probakility of
the response to the item as a function of the examinee’s position on
the proficiency continuum and certain parameters that describe the
operating characteristics of the item in the test context.

There are now a number of response functions available for use
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with binary (right-wrong) scored items (see Lord, 1980). The most
widely used are the so-called logistic models, and the most general of
these is the three-parameter logistic, or 3PL, model. The 3PL model
defines the probability of a correct response, P;(8), to item j as a
function of three item parameters, a;,5; and ¢;, and the proficiency
level, 8, as follows:?

1—c¢;
Tremmas (3D

Pi8)=Pz;=18)=c; +

where

1 if the response to item j is correct.
r; = .
0 otherwise.

The probability of an incorrect response is the complement, P(z; =
018) =1 — P;(8).

When (5.1) is plotted as a function of 8, the result is a curve
such as one of those shown in Figure 3.2 or Figure 5.3. These plots
are called stem trace lines, or item characteristic curves. At any given
value of theta, the probability of a correct response is indicated by the
height of the item characteristic curve at that value. The dotted line
in Figure 3.2 illustrates this relationship. They show that a person
at scale point —0.6 has probabilities 0.99, 0.81, 0.42, 0.20, 0.08, and
0.01 of answering the successive items correctly. The shapes of the
curves, and thus the response probabilities, reflect the values of their
item parameters.

The ¢; parameter in (5.1) corresponds to the lower asymptote of
the curve. It indicates the probability of chance success on an item
when an individual is totally lacking in ability and resorts to random
guessing. For multiple-choice tests, it is common practice to estimate
an unique ¢; for each item in the instrument because its value is
influenced by the number and content of the response alternatives,
both of which may vary from one item to another. The tendency of
examinees to make “blind” and “educated” guesses also affects the
estimate of c¢;. A value of ¢; equal to the reciprocal of the number
of response alternatives will result if an examinee who does not know

>The constant e in this expression is the base of natural logarithms; e = 2.718...
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the answer elects to mark at random rather than leave the answer
sheet blank. Educated guesses in which the examinee narrows down
the number of plausible alternatives contribute to higher values of ¢;.
For example, the item shown in (a) of Figure 5.3 has a value of ¢;
equal to 0.21. For the curve shown in (b), ¢; equals 0.106.

The b; parameter of (5.1) indicates the location of the response
function along the proficiency continuum. It reflects the difficulty of
the item and is often referred to as the threshold parameter, although
the term location parameter is more apposite and will be used here.
The curve for Item 2 shows that when ¢; = 0 the inflection point
will be at the value of 8 where the probability of a correct response
to the item is 0.5. Item 1 shows that when ¢; # 0, b; will be at
the point along the proficiency continuum where the probability of a
correct response is equal to (1 + ¢;}/2. The dotted lines in the figure
illustrate these relationships. They also show that [tem 2 is generally
more difficult than Item 1; +.e., the value of its b; parameter is located
further to the right on the proficiency continuum.

The third item parameter, a;, is called the item slope. It is pro-
portional to the rate of change of the item response function at the
inflection point and is a measure of the discriminating power of the
item. Its value is related to the correlation between the responses
to the item and the underlying trait. Items with steeper slopes have
higher item-trait correlations and are more discriminating than items
with shallower slopes. When the scale scores of the examinees are
computed, responses to items with higher discriminating power have
more weight in determining the score than those with lower discrimi-
nating power.

In applications where guessing is discouraged or the test is com-
posed of free-response items, the IRT model can sometimes be simpli-
fied by setting the ¢; parameter to zero. In the logistic case, the re-
sulting function is referred to as the “two-parameter” logistic, or 2PL,
model. If there are no guessing effects and the items have been se-
lected to have uniform discriminating power, the model can be simpli-
fied still further by assuming the a; parameter of all the items in each
subtest of the instrument to be equal. This most specialized of the
logistic IRT models is referred to as the “Rasch”, “one-parameter”,
or 1PL model.
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The question of which model is appropriate in a particular appli-
cation can be answered empirically by examining, in a large sample of
data, the “goodness-of-fit” of the corresponding response functions.
But in matrix-sampling designs adequate fit of the 1PL model is un-
likely because there are too many items to permit the imposition
of uniform discriminating power in all forms and scales, The 2PL
model is a more credible possibility, for although the items are in the
multiple-choice format and subject to guessing effects, the instruc-
tions to the students (see Chapter 4) clearly discouraged guessing.
Nevertheless, rather than prejudge the matter, we will examine the
fit of all three of the binary logistic models.

Given the fitted response functions for each item of a particular
scale, the probability of the pattern of correct and incorrect responses
can be computed on the assumption of conditional independence—
namely, that the item responses are stochastically independent con-
ditional on 6. Since the joint probability of independent events is the
product of their separate probabilities, the probability of an answer
pattern, & = (z,22,...,Z,), of n items may be expressed as

P(=18) = T[P(O)™[1 - P;(8))~™ (5.2)
=1
where [] represents the continued product of these terms. This for-
mula, which may rightly be called a fundamental law of item response
theory, was introduced by Lawley in 1943.

5.2.2 Choosing the item response model: analysis of the
first-stage test (pretest)

Because responses to the separate second-stage test booklets do not
represent the full range of variation in the population, they are not
very useful in evaluating the fit of the assumed item response model.
In the present study, these data are even less suitable for this purpose
because the number of students who have responded to the items of
each of the twenty-four test booklets is relatively small (in the neigh-
borhood of 200, as opposed to 500 or more desirable for an adequate
evaluation of fit). We can, however, analyze in detail the pretest
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items, where the number of cases is large (N = 5,023) and the re-
sponses represent the complete range of 8th-grade students.

To estimate parameters of the models, we used the marginal max-
imum likelihood (MML) method of Boeck & Aitkin (1981), as imple-
mented in the BILOG program of Mislevy & Bock {1983). It is the
only statistically rigorous method available for fitting all three of the
binary logistic models—indeed, it is valid for all functional item re-
sponse models, whether the response is scored dichotomously or in
multiple categories. A fundamental assumption of the MML method
is that the respondents are drawn from some population, unequivo-
cally the case in large-scale assessment applications. On this assump-
tion, the MML method integrates the right member of (5.2) over the
population distribution of § to obtain the unconditional, or marginal,
probability of each of the patterns of correct and incorrect responses
that occur in the sample. It then invokes the maximum likelihood
principle and assigns values to the item parameters that maximize
the product of these sample probabilities.

The form of the population distribution can be either assumed or,
if the sample size is large enough, estimated along with the item pa-
rameters (see Mislevy, 1984). When applied to assessment data for
public schools where the children are not specially selected, it is rea-
sonable to assume a normal distribution for the measure in question.
Small discrepancies between the actual and assumed distribution have
little effect on the estimation of the item parameters and can be safely
ignored. For the probability sample of the present study, for example,
it is quite satisfactory to assume a normal population distribution of
overall mathematics ability as measured by the pretest, which was
administered to all the testable students in the participating schools.
Because the sample size for the pretest is in excess of 3,000 students,
we were able to check the assumption of normality by estimating the
latent distribution. We see in Figure 5.1 that the empirical distribu-
tion conforms closely enough to the normal to justify this assumption
of MML estimation of the pretest item parameters.

Given a specified population distribution, the MML method pro-
vides statistical tests of the fit of 1PL model relative to that of the

2PL model, and of the 2PL model relative to the 3PL model. These
tests are based on the difference in the logarithms of the maximum
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Figure 5.1. Estimated latent distributions based on the pretest data.
The total for groups 1, 2, and 3 conforms well to
the normal distribution (bottom).
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TABLE 5.2
Likelihood-ratio tests of the fit
of the 2PL model relative to the 3PL,
and of the 1PL model relative to the 2PL

Model -—_2—Tog likelihood Difference d.f. Pr;ba.bility
1PL 15389.45

314.39 153 <.00001
2PL 15275.06

35.15 3% <.005
3PL 15235.91

marginal likelihoods obtained in fitting the respective model. In large
samples, twice the positive differences are distributed as chi-square
variables on degrees of freedom equal to the number of items. For the
pretest, calculated from a random 1,000 cases from the full sample,
the maxima of the log likelihoods and the corresponding differences
for the models are shown in Table 5.2. As expected, the 1PL model is
grossly inappropriate for these data. The 2PL model does much bet-
ter, but technically is a significantly poorer fit than the 3PL model.

The difference chi-squares in Table 5.2 bear only on the relative fit
of the 2PL model versus the 1PL, and the 3PL versus the 2PL. They
do not speak to the question of the ebsolute fit of the 3IPL model.
Indeed, for tests with relatively smalil numbers of items, such as the
15-item pretest, no entirely satisfactory method of evaluating absolute
fit is available. But a graphic impression of the fit is conveyed by a plot
of the posterior probability of a correct response, based on the data,
compared to the probability predicted by the fitted model at selected
points on the latent continuum. Plots of this type are provided by
the BILOG 3.0 program. For the 1,000 case sample, plots showing an
average-fitting item and the worst-fit{ing item are presented in Figure
5.2. Each plot includes plus-or-minus two standard deviation credible
intervals for the probability at selected points. With each plot is
given the root-mean-square sum of the standardized residual weighted
by the expected number of respondents at each point (points with
expected numbers of respondents less than five are not included.) In
tests with indefinitely large numbers of items, this quantity becomes
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equal to a chi-square statistic divided by its degrees of freedom. As
such it might be considered to raise a question about the fit when it
becomes greater than 2.0. That only one item [shown in Figure 5.2(b}]
among the 15 exceeded this value reinforces the impression from the
plots that the absolute fit of the pretest items to the 3PL model is
reasonably good. .

From the plot of the poor-fitting Item No. 8 in Figure 5.2, it is
apparent that the students in the —0.30 to —0.90 range are performing
better than expected relative to those in the 0.30 to 0.90 range. To
fit these data well, the response function would need two inflection
points—a shape that the 3PL model cannot accommodate. Inspection
of the item content reveals the likely source of this effect:

Mary has three feet of candy cane that she wants to divide
equally among six friends. How long will each piece be?

A. 1 inch
B. 6 inches
C. 1 foot
D. 18 inches
E. 12 feet

Undoubtedly, the students in the medium-low range are picking up
on the “six” in the item stem and choosing alternative B without
attempting to understand the problem. As a result, the item responses
are a mixture of two strategies, one of which is wrong but fortuitously
gives the correct answer, while the other is fully correct. This is a
common fault in item writing; it leads to items such as No. 8, with
lower discriminating power (slope = 0.790) and poor fit.

The practical effect of the marginally poor fit of Item 8 on the
scoring of the pretest is small, however. Considering the excellent fit
of the remaining items, we have ample justification for choosing the
3PL model for our analysis of the California data.

Having verified the form of the latent distribution and chosen the
IRT model, we are now in a position to estimate the parameters of the
pretest items by the general MML method. The resulting estimates
as obtained by the BILOG program from the sample of 1,000 cases
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Figure 5.2. Fitted 3PL response functions for pretest item:
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Figure 5.3: The standard error (a) and information (b) curves for
the 15-item pretest.
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sample of pretest data. We justify this assumption on the grounds that
all of the scales are rather strongly correlated with the overall math-
ematics proficiency as estimated by the pretest. Moreover, we know
from experience with MML estimation of item parameters that it is
only the provisional location of the prior distributions of the three
groups that is important, and the pretest data locates them with suf-
ficient accuracy.® The link items then provide the adjustments to
the provisional locators as required to position correctly the latent
distribution for each scale of the second-stage test.

To estimate the latent distributions for the three pretest groups,
we make use of the provision in the BILOG program for obtaining
discrete point distributions along with the calculation of expected
a posteriori (EAP) scale scores for the students in the respective
groups. These are the estimated distributions for the second-stage
groups shown in Figure 5.4. Using this partition of the latent distri-
bution, we fitted the 3PL models for the content and process scales
of each form and booklet of the Duplex instrument.

5.2.4 Linking the scales

In fitting the link items common to the Easy and Medium, and to
Medium and Difficult test booklets, we make additional special pro-
visions so that the curve for each item will have the same shape in
each group. In so doing, we bring the parameter estimates from the
three test booklets on to a common scale. For this purpose, we first
assume that only the location of the corresponding response functions
will vary between the two booklets in which each link item appears.
Both the discriminating power and the lower asymptote parameter
are constrained to have the same value in the two analyses containing
the same link items. This procedure 1s justified on the grounds that
the selection of the students by level of achievement on the pretest
should affect only the absolute positions of the items on the latent con-

3 Alternatively, we would have enough data in the sample to estimate a common
latent distribution for all eight of the second-stage forms simuitaneously. Then we
would not have to use the pretest information for this purpose. Unfortunately, at
the time of this writing we did not have a computer program suitable for this type
of multiple-group estimation. '
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tinuum; it should not affect their discriminating powers or the lower
asymptote. For convenience, and also because the slopes are bet-
ter estimated toward the center of the distribution, we have imposed
these constraints by setting the slope and asymptote values for the
link items of the Easy and Difficult booklets equal to the correspond-
ing unconstrained estimates obtained from the Medjum booklet. The
BILOG program has provisions for setting item parameters to speci-
fied values by manipulating the item prior distributions. The non-link
items are, of course, estimated separately, without constraints, in the
data for the respective booklets and forms.

We illustrate the results of these analyses in the California data
for one of the process categories, Procedural Skills, and one of the
content categories, Algebra. Under the assumed restrictions on the
slope and asymptote parameters, only the location parameters for
items in the Easy and Difficult booklets need to be adjusted to bring
all the estimates to the same scale. The required adjustments are the
arithmetic means of the differences between the location estimates of
the link items for the Easy and Medium booklets, and for the Medium
and Difficult booklets, as shown in Table 5.4. The location of the
latent distribution for each of the three groups, as determined from
that of the pretest, is sufficiently accurate for the Procedural Skills
and Algebra scales that these differences are in the neighborhood of
zero; some are positive and some, negative. That they are somewhat
variable is the fault of the rather small size of the second-stage form
and booklet samples. In full state-wide implementation of a Duplex
Design, these sample sizes would be much larger and the difference
for the individual link items would be more consistent.

Effects of sampling variation notwithstanding, the link estimates
for Algebra Item 21 in Form 1 and Procedural Skills Item 31 in Form
3 seem out of line. The latter item is excessively difficult and should
not have been used for linking. The former has two possible solution
strategies, one of which may have facilitated the Group 1 students. If
similar anomalies occur among link items generally, a robust estimate
of the mean value for the adjustment should be employed. Even in
these data, however, their values are about the same for the two forms,
as they should be for randomly parallel forms. We have therefore
averaged the differences from both Form 1 and Form 3 to obtain the
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TABLE 5.4
Location adjustments between test booklets,
based on separately estimated link-item location

Booklets
Easy and Medium (EM) Difficult and Medium {DM)
Form Item Difference (E-M) Form Item Difference (D=M)
1 7 ~0.032 1 1 0.318
1 10 0.054 1 4 0.132
1 31 —0.145 1 16 0.122
1 34 —0.168 1 37 0.433
Procedural 3 13 -0.147 3 41 0.292
Skills 3 25 —0.106 3 10 —0.207
3 31 0.903 3 28 0.280
3 37 0.003 3 34 0.603
3 43 —~{.385
Adjustment —0.002 0.247
{mean)
1 17 —0.466 1 14 0.418
1 20 —0.449 1 16 0.139
Algebra 1 21 —1.256 3 42 0.333
3 37 -0.342
3 43 -0.411
Adjustment —(.585 0.296
(mean)
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linking adjustments for the two forms as shown in Table 5.4.

At this stage in the calculations, the values for the Medium booklet
define the origin and unit of measurement. (Later the origin and unit
for each scale will be adjusted so that the student-level scores have
mean 0.0 and standard deviation 1.0 in the California sample; still
later, for reporting purpases, the mean will be moved to 250 and the
standard deviation to 50.) Finally, we apply these adjustments to the
provisionally estimated location parameters and, rescaling to mean 0
and standard deviation 1 in the latent distributions, obtain the item-
parameter estimates shown in Table 5.5. When scaled in this way, we
say that the item-parameters estimates are in the “0,1” metric. Itis a
convenient choice of scale for purposes of comparing item parameters
estimated for different populations.

The estimated item parameters shown in Tables 5.5(a) and 5.5(b)
are in the order in which the items appear in each booklet with link
items indicated by ME or MD, as the case may be. The values in this
table are in the form required for computing student-level scores on a
common scale, regardless which second-stage booklet any particular
student was assigned. That is, the parameters correspond to the
items as they appear in the order of the Procedural Skills scale and
the Algebra scale of the three test booklets in Forms 1 and 3. The
values for each link item are represented twice, once for each booklet
in which they appear; the values of their locations are the averages of
the estimates from the two booklets. Similar tables apply to the other
content and process scales and the other six second-stage forms.

We see from the estimated locations of the items that the diffi-
culty levels of the three tests booklets are positioned more or less as
intended, except that the items as a whole are more difficult than
they should be for this population. This is evident in Tables 5.5
(a) and (b) from the relatively few items with locations below zero.
Since the mean score for the population has been set at zero, the test
would be more informative if the distribution of item locations were
more centered on zero. But the lower than expected proficiency lev-
els in the California students relative to the Illinois students, which
we mentioned above, misled us in our choice of items for the revised
instrument. Even with well-positioned items, the appearance of the
link items in two booklets results in the overlap of item difficulties
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TABLE 5.5
[tem-parameter estimates for two scales
of the second-stage test (a) Form 1

100

Procedural Skiils Algebra
Ttem  Slope Location Asymptote Item Slope Location  Asymptote

1E 0.685 —1.420 0.183 13k 1.259 0.560 0.130
.4E 1.056 0.368 0.112 14E Q.707 0.128 0.189
TEM 1.113 0.542 0.195 15E 1.106 0.656 0.236
10EM 1.671 0.094 0.141 18E 1.063 -—1.213 0.160
13E 1.000 0.630 0.176 17ZEM 0972 -0.433 0.164
16E 0.933 -1.626 0.168 13E o™ 0.650 0.218
19E 0.750 0.080 0.201 19E 0.819 0.310 0.178
22E 0.811 -0.739 0.202 20EM 0.964 1.626 0.095
25E 1.007 =0.8669 0.188 21EM 1.077 0.011 0.145
28E 0.748 ~0.437 0.151 13M 1.808 0.069 0.136
J31EM 1.219 0.465 0.142 14MD 1.739 0.474 0.088
4EM 1.068 1.027 0.229 15M 0.958 2.154 0.146
37E 0433 -0.113 0.159 16MD 14317 0.478 0.115
40E 0.897 2.492 0.133 ITME 0.972 -0433 0.164
43E 1.602 -0358 0.138 18M 1.249 0.753 0.123
iMD  1.021 0857 0.169 19M 1.162 0.418 0.159
4MD 1.600 0.605 0.132 20ME 0.964 1.626 0.085
T™E 1.113 0.542 0.155 21ME 1.077 0.011 0.145
10ME 1.671 0.094 0.141 13D 1.758 0.902 0.128
13M 1.277 0.231 0.155 14DM 1.739 0.474 0.098
16MD 1.867 0.800 0.112 15D 1.877 1.396 0.189
19M 0.843 0.709 0.182 16DM 1.417 0.478 0.115
22M 3.849 0.238 0.169 17D 1.592 2.101 0.088
25M 0.6T1 0.660 0.180 18D 0.930 1.186 0.144
28M 0.793 0.814 0.192 18D 1.758 1.848 0.106
31ME 1.219 0.465 0.142 20D 0.523 3.025 0.221
MME 1.068 1.027 0.229 21D 1.766 1.032 0.119
37T™MD 0.937 0.725 0.167

40M 0.915 1.812 0.144

43M 0.850 0.198 0.180

1DM 1.021 0.857 0.169

4DM 1.600 0.605 0.132

7D 1.378 1.175 0.115

10D 0.693 2.807 0.176

13D 1.492 1.017 0.150

16DM 1.6687 0.600 0.112

18D 1.7117 1.97¢ 0.116

22D 1.131 1.084 0.140

25D 1.179 2.140 0.076

28D 0.972 1.103 0.134

np 1.213 1.310 0.190

34D 0.963 2.195 0.139

3TDM  0.937 0.725 0.167

40D 1.278 1.499, 0.147

43D 0.949 2.263 3.102



TABLE 5.5 (continued)
Item-parameter estimates for two scales

of the second-stage test (b} Form 3

Procedural Skills Algebra
item Slope Location Asymptote ltem Slope Location Asymptote
1k 0,482 -0.826 0.214 37EM 1.047 0.115 0.157
4E 1.554 -0.398 3,213 38E 1.374 0.080 0.128
TE 0.702 =0.472 0.216 39E 0.684 =0.564 0.181
10E 0785 -~-1.133 0.180 40BE 0.697 -0.737 0.180
13EM 0.938 120 0.152 41E 1.158 =0.658 0.151
16E 1.083 -0.505 0.181 42E 0.826 0.019 0.204
19E 0.927 0. 0,181 43EM 1.190 0.232 0.149
22E 0.782 0.048 0.183 44E 0.842 2.841 0.210
5EM 0.802 -0.217 0.161 45E 0.970 -0.308 0.157
28E 1.233  =0.437 0.167 37EM 1.047 0115 0.157
31EM 0.780 1.749 0.226 asM 0.609 0.464 0.208
ME 0.994 0.185 0.177 39M 0.962 0.654 0.170
3TEM 0.699 0.044 0173 40M 1.507 0.317 0.124
40E 0.766 -—1.097 0.173 41M 0.987 0.517 0.151
43EM 1.334 0.083 0.157 42MD 0.7T49 1.070 0.198
1M 0.574 -0.198 0.172 43EM  1.190 0.233 0.148
4MD 1.868 0.559 0.108 d4M 0.854 1.542 0.148
™ 1.584 0.557 0.107 45M 1.475 0.246 0.122
10MD  0.840 0.331 0.174 Ko 0.515 4.331 0.104
13ME 0.938 0.120 0.152 38D 1.046 0.185 0.156
16M 1.490 0.673 0.152 39D 1.320 0.441 0.145
15M 1.337 0.738 0.1584 40D 1.040 1.681 0.111
M 0.988 1.681 0.144 41D 1.142 2,128 0.125
25ME 0802 -0.217 0.161 42DM  0.749 1.070 0.198
28MD  1.259 1.446 0.137 43D 0.559 3.880 0.122
31ME 0.780 1.749 0.226 44D 1.070 2.030 0.137
34MD 1.054 0.918 0.168 45D 0.841 1.308 0.129
IT™ME 0.699 0.044 0.173
40M 1.138 0.483 0.151
43ME 1.334 0.063 0.157
1D 1.508 1.451 0.214
4DM 1.868 0.559 0.106
) 1.013 0.898 a.119
10DM  0.640 0.331 0.174
13D 0.413 3.498 0,182
16D 0.626 2.010 0.147
19D 1.205 2.125 0.108
22D 1.526 1.125 0.190
25D 1.340 1.567 0.108
28DM 1.259 1.448 1.137
3D 1.428 1.038 0.142
34DM  1.054 0.916 0.1668
37D 0.515 4.544 0.113
40D 1.286 1.970 0.111
430 0.7186 3.437 0.120
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that is apparent in the estimated location parameters for the three
booklets.

As indicated schematically in Figure 2.1, this overlap in the item
difficulties is necessary in the scoring of second-stage tests. But we
now realize that we were too conservative in requiring four link items
per scale, per pair of booklets, per form. Because the forms are ran-
domly parallel, the same adjustment constants apply in all forms and
need to be estimated only once. Thus, one link item per scale per
booklet per form would have supplied eight items on which to base
the common linking adjustment, more than enough for an accurate
linking. With only a one item overlap, the item difficulties in the
second-stage booklets could have been more accurately placed and
the student-level scores made more reliable. The effects of the assign-
ment of items to second-stage booklets are discussed in Section 5.4.1
on test information.

Despite these problems with the revised form of the instrument,
the relatively high discriminating ability of the items, which is ap-
parent in the tables from the large proportion of items with slopes
greater than 1.0, gives every prospect that the scores for the student-
level content and process profiles, as well as the overall mathematics
attainment score, will have good reliability for the California popula-
tion. We present estimates of these reliabilities when we examine the
information properties of the scales in Section 5.5.

5.3 Scoring the Duplex instrument

Once the estimates for the item parameters are known, the computa-
tion of the student-level scale scores is straightforward. Of the three
methods of scoring that the BILOG program offers—Maximum like-
lihood, Bayes (Expected A Posterior, EAP), and Bayes modal—we
chose EAP because it has the smallest squared error integrated over
the population distribution. Because we are now dealing with the
probability sample represented by the total data, and not the groups
assigned to the separate booklets, we may at this point reasonably
assume the standard normal distribution for purposes of scoring all
students. :

Given the assumed population distribution and the estimates of
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the item parameters for the 3PL model, the EAP scores for the sev-
eral content and process scales can be computed from subsets of the
answer pattern of each student. Technically, the subset then deter-
mines the posterior (after-the-data) distribution for each student’s
proficiency on each scale. The mean of this distribution is the EAP
estimate of proficiency for that subset, and its posterior standard de-
viation (PSD) is a measure of the estimator’s precision, similar to a
classical Standard Error of Measurement (SEM). The PSD or SEM
i1s an indicator of the generalizability of the score in the sense that
it conveys the range of variation that could be expected if another
sample of items were used to estimate the same proficiency. The PSD
or SEM varies, according to the level of the score, from one response
pattern to another. This is one of the distinguishing properties of
IRT scale scores compared with the number-right scores of classical
test theory; the latter are assumed to have a constant SEM depending
only on test length and the average item-trait correlation.

Once we compute the EAP scores for all students in the sample,
we rescale them to have mean 0.0 and standard deviation 1.0 in the
estimated distribution for the state. The rescaling makes use of the
weights to make the sample “representative”. In the present study,
where all in-scope 8th-grade students were tested in each of the partic-
ipating schools, these weights vary relatively little, and the weighted
and unweighted statistics are very similar. The scale adjustments in
the sample absorb the reduction in variance that occurs when EAP
estimation is used, and they give scale score values that are almost
identical to maximum likelihood scores, similarly scaled. Scores scaled
to a specified mean and standard deviation in a representative (prob-
ability) sample are referred to as “standardized” or “normed”.

Table 5.6 shows scale scores, standardized at mean zero and stan-
dard deviation one, for some students selected from Groups 1, 2 and
3. This scaling convention, which we refer to as the “0,1" standardiza-
tion, is convenient for technical purposes. For public reporting pur-
poses, this standardization is undesirable, because it includes negative
values. In the reporting forms shown in Chapter 7, we therefore use
the conventions of the California Assessment Program and NAEP—
namely, to set the mean to 250 and the standard deviation to 30. We
refer to this as the “250,50” standardization.
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TABLE 5.6
Some typical scores and standard errors for students taking the
Easy, Medium, and Difficult second-stage test (standard scores)

Procedural Skill (n =15) Algebra (n =9)
Student Number Score S.E. Number Score S.E.
Right Right
Easy SA 5 -1.28 0.55 1 —1.64 0.67
Booklet | NJM 8 -0.28 0.46 5 0.10 0.54
TMO 13 0.932 0.50 7 0.75 0.55
Medium | PMC 3 -0.83 0.57 1 -0.94 0.60
Booklet | TID 9 0.68 0.35 4 -0.23 0.59
SRK 13 1.60 0.43 6 0.76 0.50
Difficult | RG 1 -0.83 0.65 3 -0.17 0.74
Booklet | RWK 9 1.59 0.36 4 0.94 0.60
ASC 15 2.76  0.48 9 2.44 0.50

The standard errors of the scores in Table 5.6 can be used to
estimate confidence intervals on the true proficiencies of the respective
students. The interval bounded by plus or minus one standard error
about a student’s scale score has an approximately 2/3 chance of
including the true value of the proficiency; the interval bounded by
plus or minus two standard errors has an approximately 95 percent
chance of including the true value. In displaying score profiles for the
students, we represent one-SEM intervals by bars on each side of the
estimated score (see Chapter 7). Notice in Table 5.6 that the standard
errors are generally smaller for the students in Group 3; this reflects
the location of the maximum of the test information above the mean
for the California 8th-grade population.

Figure 5.4 shows the distribution of the 0,1-standardized scores for
the total sample. Both distributions are unimodal and not excessively
heavy in either tail. They tend, however, to be skewed toward the up-
per end of the scale. The skew is not so great as to vitiate standard
statistical analyses of means based on normal distribution assump-
tions, given the robustness of these analyses to minor departures from
normality. For most forms of secondary analysis, the distributional
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Figure 5.4. State-level distributions of the: (a) Procedural Skills
scores, (b) Algebra scores.
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properties of these two-stage student-level scores would be entirely
satisfactory. But the skew would have to be taken into account in any
models that attempt to predict percentiles of the state distribution.
In Chapter 7 we offer a possible explanation for the tendency of scale-
score distributions of mathematics attainment measures to be skewed
toward the high values.

5.4 Information analysis of the second-stage test
results

In IRT, the relationship between proficiency level and precision of
measurement is expressed by the test information function. The con-
cept of the information provided by a statistic derives from R. A.
Fisher’s theory of maximum likelihood estimation. But in the IRT
context it corresponds to the reciprocal of the squared SEM at each
point of the score continuum. Information is additive; so that if two
subtests measuring the same trait are combined, the information for
the total score will be the sum of both subtests’ information functions.
Similarly, the test information function is the sum of analogously de-
fined information functions for the items that comprise the test.

Technically, test information applies to maximum likelihood esti-
mates of scale scores. It is a function of the number of items, their
slopes, and the value of the item response function at the scale point
in question. For most tests, the information depends strongly on how
the item locations are distributed along the continuum. If the items
are spaced more or less equally from very low to very high values on
the scale, the information function will be broad at the top, indicat-
ing that the test is accurate over a wide range of scores. But, more
typically, the item will tend to cluster in the middle of the scale, and
the information will be strongly peaked. In fact, it is rather difficult
to assemble a truly broad-scale test with a flat information function.
Even the pretest, which we attempted to make as broad as possible,
has relatively concentrated information, as Figure 5.2 shows.

The mathematical expression for the test information function of
maximum likelihood estimator of proficiency based on a logistic re-
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sponse model is as follows:

1) = 3. a*Py(6)(1 - P,(9)]

j=1

For EAP estimation, which we use in this report, the expression
for posterior information is simply the above function plus a term ac-
counting for the information contributed by prior knowledge of the
population distribution of §. For a normal population with stan-
dard deviation ¢, the added term is 1/¢?, which in the case of an
assumed unit normal distribution is just 1. If the number of items,
n, is large, the contribution of prior knowledge is small relative to
that contributed by the respondents’ answers to the items and can be
neglected. But with the short scales of the Duplex Design, the con-
tribution is valuable and should be accounted for in the information
function.

The properties of information functions are illustrated by the in-
formation plot for the pretest, shown in Figure 5.3. The figure in-
cludes the standard error curve, which is simply the square root of
the reciprocal of the information function. Both curves show that
the precision of the proficiency estimates varies as a function of pro-
ficiency level. The pretest provides considerably more information in
the middle range of the ability continuum than at its extremes. This
pattern is typical of most conventional tests. Because both relatively
easy and difficult items contribute information in the middle range
of proficiency, whereas difficult items provide very little information
in the lower range and, easy items, very little in the upper range,
information almost always peaks in the middle.

Calculation of the information for a two-stage test is more compli-
cated than for a one-stage test because it varies not only as a function
of the scale value, but also with the second-stage booklet the student
1s presented. Moreover, each booklet has its particular population
distribution of proficiency, and the relative proportions of pupils com-
pleting each booklet is unequal. Before the information curves for the
booklets can be combined to yield a curve for the form as a whole,
each must be weighted by the population distribution of the relative
proportion of pupils who completed the booklet at all points along
the score continuum.
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We performed these calculations for the Duplex instrument in four
steps. First, we computed a posterior information curve and a nor-
malized posterior distribution for each booklet of the form using the
item-parameter estimates for the respective scale. Second, we derived
weights for each booklet by multiplying the weights of the posterior
distribution of ability for the subtest in that booklet by the popula-
tion estimate of the proportion of pupils who completed that booklet.
Third, we multiplied the posterior information curve of each booklet,
as calculated at 81 points along the proficiency continuum, by the
respective weights for that booklet. Finally, we summed the values
obtained at each point to yield a posterior information curve for the
form as a whole for that particular scale.

The information curves obtained in this way are shown for Pro-
cedural Skills and for Algebra in Figure 5.5. Because of our efforts
to spread the difficulty levels of the second-stage booklets as widely
as we could, the information curves are reasonably broad and have
a gratifyingly flat region near the center. This means we are getting
good measurement over a wider range than found in typical peaked
achievement tests. But the problem of the difficulty levels of the forms
is apparent in the location of the information peak in the 0 to 2 region
of the population distribution rather than —1 to +1. This particu-
lar version of the instrument will perform better in estimating scale
scores for better-performing students than for the poorly performing
students. It would function well for all groups in [llinois, but for use
in California, it should be revised to improve the information yield in
the 0 to —2 region.

5.4.1 Reliability of the student-level scale scores

Figure 5.6 shows the corresponding SEM functions, computed as the
square root of the reciprocal of the information functions. It is the
squares of these error functions that are integrated over a (0,1) normal
population distribution to obtain an estimate of the mean square error
for the scales. This value and the estimate of the variance of the
latent distribution of ability for the subtest in the form as a whole (as
computed by BILOG using Sheppard’s correction for grouped data)
were used to obtain an estimate of the average reliability of the subtest
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Figure 5.5. Information functions for the second-stage test scales:
Form 1 (a) Procedural Skills, (b) Algebra.
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Figure 5.5 (continued). Information functions for the second-stage
test scales: Form 3 (a) Procedural Skills, (b) Algebra.
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TABLE 5.7
Reliabilities for two scales
in two forms of the second-stage test

_Sca.le T Form 1=Form 2
Procedural Skalls 0.871 0.841
Algebra 0.832 0.776

SCOres.

The overall reliabilities of the Procedural Skills and the Algebra
scales of Forms 1 and 3 are shown in Table 5.7. The benefits of two-
stage testing are evident in these values, which are gratifyingly high for
these short scales. Although its scales are shorter, Algebra performs
almost as well as Procedural Skills. This would be expected if the
item composition of the content categories is more homogeneous than
that of the process categories. Content is perhaps a more important
source of variation in mathematics proficiency than is the type of
cognitive process, as defined here. In addition, there is some variation
in reliability due merely to the random assignment of items to forms.

All of these reliabilities are, however, high enough to justify the
use of the scores for counseling individual students on relative attain-
ments in main areas of content and skill. Moreover, when the five
content scores are combined into an overall mathematics attainment
score for each 'student, the reliability would be expected to increase
to around 0.95, which is high enough to be used in decisions about
the programs of individual students. Its slightly displaced difficulty
level notwithstanding, the Duplex instrument of the California field
trial meets or exceeds the reliability levels that would be needed in an
operational assessment reporting at the student level as well as the
school level.

But it is not just classical reliability that bears on the utility of the
instrument: the broad information curve for the two-stage test also
indicates better precision among students scoring toward the top and
bottom of the distribution. These students, rather than the average
students scoring near the center of the distributions, are the ones for
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whom critical placement decisions must most often be made. If the
number of items is small, adaptive testing such as implemented in
this study is the only way to assure accurate measurement at these
extremes as well as in the middle of the attainment distribution.

5.4.2 Correlation between the scales, and the use of pretest
information

The correlations between the Procedural Skills and the Algebra scales
in the California sample in Forms 1 and 3 are .775 and .669. These
fairly high values reflect in part the effect of the three items that these
scales have in common. The separate content scales, or the separate
process scales, share no items and should be less highly correlated.
Even these correlations are well below the estimated reliabilities of
the scales, however, so it is clear that these two scales are measuring
more than one source of variation in mathematics attainment.

One consequence of the correlation between the scales is that the
use of the pretest responses of the student to strengthen estimation
of the scores in the content and process profiles would be ill-advised.
Whatever it would add to the reliability of the separate scales would
be lost in the resulting increased correlation between the scales. The
score profiles would then contain very little information in addition
to that contained in the student overall mathematics score.

But the pretest information would be useful in strengthening the
overall mathematics score itself (which we obtain here by averaging
the five content scores). Assuming the pretest items are a stratified
random sample of the instrument, this can be done very simply, and
optimally, by averaging the pretest scale score and the overall score
from the second-stage, weighted inversely as their squared SEM’s. In
the present study, the reliability of the overall score would be high
even without the pretest information. But in a design devoted, for
example, to two-subject matter areas simultaneously, the number of
items for each would be fewer and the area scores would benefit from
the pretest information. In that situation, the pretest would pre-
sumably have half of its items drawn from each area, and each half
would be scored separately before averaging with the corresponding
second-stage score.
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5.5 Gains due to two-stage testing

The test information functions of the previous section serve to evalu-
ate the performance of two-stage tests as well as to guide their con-
struction. When these curves are compared with a curve from a con-
ventional test of equal length, each second-stage test booklet should
exhibit gains in efficiency with respect to a one-stage test containing
the same number of items drawn from all the booklets. For example,
the Procedural Skills scale, based on 15 items in each of the three
test booklets, could be compared with the performance of a 13-item,
one-stage test composed of every third items from the three book-
lets. But, because the item information functions sum to form the
test information, this would be same as dividing by three the overall
information for the 45 items from the three booklets.

According to Lord & Novick (1968) (see also Lord, 1980), the rel-
ative efficiency function of, say, Test A to Test B is the value of the
information function for A divided by that of B, at each point on the
proficiency continuum. For purposes of illustrating the relative effi-
ciency analyses for the Procedural Skills and Algebra scales in Forms
1 and 3, we carried out the calculation of the relative efficiencies in the
following way. We began by computing a test information curve for
the Easy, Medium, and Difficult booklets of each form and each scale.
Then, we computed the full-test information curve for each scale by
summing the curves for the three booklets over the score continuum.
This curve shows the amount of information the test would provide
if an examinee responded to the items in all three booklets of the
form. Finally, we obtained the relative efficiency function of a given
second-stage booklet as the ratio of the information function of that
booklet to the full-test information function reduced by one-third.

The efficiency curves that result from these calculations are pre-
sented in Figure 5.7. They show the relative efficiency of each second-
stage booklet compared with a one-stage test of the same length drawn
from the same item nool. When both tests give equal amounts of in-
formation at a given level of proficiency, the height of the relative
efficiency curve will equal one. When the second-stage booklet pro-
vides more information, the height of the curve will be greater than
one. It shows how many times longer the one-stage test must be to
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Figure 5.7. Relative efficiency of the second-stage test booklets:
Form 1 (a) Procedural Skills, (b) Algebra.
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Figure 5.7 (continued). Relative efficiency of the second-stage test
booklets: Form 3 (a) Procedural Skills, (b) Algebra.
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provide the same amount of information as the two-stage test at that
level. When the booklet exhibits a loss in efficiency, the height of the
curve will be less than one; i.e., the one-stage test is more informa-
tive than the second-stage test. It is apparent in Figure 5.8 that, in
the range of scores to which they apply, the Easy and Difficult book-
lets are two to three times more informative than a one-stage test.
Thus, to obtain the same measurement precision in these ranges, a
one-stage test would have to be two to three times longer than the
two-stage test. In the middle range, the gain is smaller because, as
for most tests, the item locations for this test peak toward the middie
of the scale. Even here, however, the two-stage test is comparable to
a somewhat longer one-stage test.

These relationships can perhaps be seen more clearly in the rel-
ative efficiency curve for the second-stage test as a whole, shown in
-Figure 5.8. To obtain this type of efficiency curve, we weighted the
relative efficiency curve from each booklet by the posterior distribu-
tion of ability found with that booklet in the California sample. After
each of these curves was weighted by the proportion of pupils who
responded to the respective booklet, they were summed to yield a
relative efficiency curve for the form as a whole in each area of the
content-by-process design. These curves show the average gains in ef-
ficiency found with the instrument, given the proportions of students
assigned to the second-stage booklets.*

The efficiency curves again show that the largest gains of two-stage
over one-stage testing occur toward the extremes of the distribution,
where conventional tests often have limited accuracy. Toward the
center, the one-stage test is difficult to improve upon, although some
gain is evident. The curves for the two forms are similar, as expected,
and could be combined with information curves averaged across forms
for purposes of displaying the overall efficiency of the instrument.

“The irregularities at the extremes of these curves are due to instability of the
calculations with extremely small probability values.
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Figure 5.8. Relative efficiencies of the second-stage forms as a whole:
Form 1 (a) Procedural Skills, (b) Algebra.
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Figure 5.8 (continued). Relative effciencies of the second-stage forms
as a whole: Form 3 (&) Procedural Skills, (b) Algebra.
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5.6 Summary

The questions we raised at the beginning of this chapter on student-
level scoring can now be answered, largely in the affirmative.

1. The procedure we adopted for administration of the two-stage
assessment instrument appeared to have good teacher accep-
tance, and it posed no problems for the students. Administra-
tion of the first-stage test one or two days before the second-
stage test had a number of advantages. It gave the classroom
teacher time to explain the nature and purpose of the testing
more adequately; it allowed more time for the students to be-
come familiar with the answer sheet by entering their names and
background information. Most importantly, the 15-item pretest
gave the students practice on the type of item that would appear
in the main test. As for the teachers, they or their assistants
found the transparent scoring-template for the pretest easy to
use, and in general they followed accurately the instructions for
assigning students to the second-stage test booklet according to
pretest scores. The field trials revealed no insurmountable diffi-
culties in implementing teacher-administered two-stage testing
by this method in large-scale assessment prograrms.

2. We were gratified to find that our 8th-grade mathematics items—
drawn from the Illinois and California assessment programs, the
Second International Mathematics Study, and other sources—
had generally high discriminating powers. Because of the quality
of the items and by use of highly efficient methods for scoring
the item responses (two-stage testing, differential weighting of
responses according to item discriminating power, Bayes esti-
mation combining prior and posterior information about stu- .
dent proficiency), we attained reliabilities for the content and
process categories generally in the 0.80’s and, for the overall
mathematics score, a predicted reliability of 0.95. We consider '
the reliabilities for the student-performance profiles quite ade-
quate for student and parent counseling, and those for overall
mathematics attainment adequate for student placement and
certification.
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3. The posterior standard deviations (essentially, standard errors
of measurement) of the student profile scores, even from the
rather short content scale, were less than 0.5 sigma units (S.D.’s)
over a range of three standard deviations of the population dis-
tribution. The distribution of scores in the full 5,023-case sam-
ple was unimodal with well-behaved tails, and skewed some-
what toward the high end, as we expect for a state-wide dis-
tribution of mathematics attainment at this grade level. The
scores would perform well in any form of statistical analysis
that assumes a normal distribution for group means, as well as
in multilevel analyses that compute within- and between-school
variance components (see Chapter 6). Inasmuch as the scor-
ing procedure yields the posterior mean and standard deviation
for each student, they supply the first-level sufficient statistics
for marginal maximum likelihood or empirical Bayes estima-
tion in multilevel analysis (see Bock, 1989). These properties
of the student-level scores from the two-stage Duplex Design
are well-suited to secondary studies of assessment data aimed
at separating and elucidating student effects and school effects.

4. Our analyses of the relative efficiency of the two-stage scales,
compared to a one-stage scale with the same number of items,
showed the former to be more than two times as efficient as the
latter in the upper and lower thirds of the score distribution
where critical placement and certification decisions are most of-
ten made. [n the less critical middle third, the two-stage scales
still showed some gain in efficiency. We obtain these gains even
though our second-stage booklets, which we assembled from
item statistics from the Illinois study, were somewhat too dif-
ficult for the California population. Moreover, we used more
link items between booklets than ultimately proved necessary,
thus reducing somewhat the effectiveness of the two-stage in-
strument. That the two-stage procedure worked well even in
these adverse conditions leads us believe that substantial gains
in the quality of educational measurement by these methods
can be obtained rather easily. It suggests that any large-scale
testing program, whether assessment or traditional achievement



testing, that is now using one-stage testing is missing an oppor-
tunity to reduce testing time by at least one-half.

Considering the competing demands of external testing programs
for classroom time, we believe that the power of two-stage procedures
to reduce time for student-level testing by one-half or more abundantly
justifies the additional effort involved. Once the test administrators
become familiar with the method, and if they have some help in scor-
ing the pretest, two-stage testing could become a standard feature of
large-scale assessment programs. In our trials of the procedure, both
in [llinois and California, nearly all aspects of instrument construc-
tion, administration, analysis, and scoring of the two-stage Duplex
Design proceeded as expected and, in its operating characteristics,
performed even better than expected.

The analysis and scoring of the data from the two-stage Duplex
Design reported in this chapter are meant only to demonstrate how
the procedures can be carried out and what results can be expected.
All of these steps described can be performed on any marginal max-
imum likelihood item analysis and Bayes scoring program. {We used
the BILOG program of Mislevy and Bock in the 1983 mainframe
version and also the 1987 PC version.) In an operational state or
national assessment using these methods, a larger system capable of
constrained estimation over the randomly replicated forms would be
needed to obtain optimal results while minimizing the need for inter-
vention by the data analyst. The present study provides empirically
tested guidelines for the development of such a system.
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Chapter 6

Measurement at the school level

The original conception of matrix-sampling designs in educational
measurement, as introduced by Lord in 1962, was to establish test
norms with minimum intrusion on classroom time by drawing a ran-
dom sample of students from some population and administering to
each a small random sample of items from some domain of content.
The overall percent of correct responses in the total data would then
provide a highly generalizable index of average domain mastery of stu-
dents in the population. Moreover, the cost of data collection would be
reduced because the economies of statistical sampling would apply to
both the students and the test items. This was the the new approach
to measurement for large-scale assessment that NAEP pioneered in
the 1960’s and 70’s. Using a low rate of sampling students, NAEP
was able to report average percents correct in several subject matters
at three grade levels in four regions of the United States. In this way,
it could monitor general progress in education at the national level
and compare performance in the regions.

As the states developed their own assessment programs, however,
many chose to test all students at selected grade levels and to confine
the sampling to the item domains. These so-called census assessments
made possible the reporting of average percent correct, not only for
the state as a whole, but for units as small as individual schools.
Using multiple matrix-sampled test forms, a census assessment could
gather a wealth of statistics on progress of individual schools toward
detailed objectives of the curriculum without requiring more than one
class period of testing time per student. In this type of analysis, the
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school is the primary unit of analysis and reporting. Technically,
groups as small as classrooms could be primary units. Because of
the possible confounding of instructional effects with those of ability-
grouping by classrooms, census assessment results have seldom been
reported below the school level.

The adoption of schools as the unit of analysis has the advantage
of facilitating the use of IRT scaling, rather than averaging of item
percents correct, as a method of scoring the assessment instrument.
Scaling provides a way of maintaining comparability of the reported
scores as the item content is updated from time to time. Bock, Mislevy
& Woodson (1981) and Mislevy (1983) have shown how an IRT model
can be formulated that allows a score measuring average performance
in the school to be computed directly from the item responses of
the students. With a suitably designed instrument, this group-level
IRT model makes the analysis and scoring of the matrix-sampling
data straightforward and corputationally efficient. For each school,
it produces scale-scores in each of the specified curricular objectives,
and these scores can be summarized for skills, topics, and subject
matter, as well as aggregated at the district, county, and state level.
In California, these methods have been employed successfully since
1980 for reporting the assessment results for grades 3, 6, 8, and 12.

In view of the trend toward census assessments in most states,
we have assumed school-level measurement of curricular objectives in
the present studies of the Duplex Design. Except for the complica-
tions introduced by two-stage testing, we employ the same methods in
estimating scale scores for the schools as those developed for the Cal-
ifornia Assessment Program (see Bock & Mislevy, 1981). The schools
are assumed to be random units of observation, playing the same role
in the group-level IRT analysis as the students play in the individ-
ual analysis. The scale values for the schools, which represent the
average attainment of the respective students, are assumed to have
a distribution on an underlying dimension for each of the objectives
assessed. The item parameters of the school-level response models
are estimated by the marginal maximum likelihood method just as
in the student-level estimation in Chapter 5. In these analyses, the
original item response records, which already have been used twice in
computing the within-booklet content and process scores for individ-
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ual students, are now combined across booklets and forms to estimate
the curricular-objective scores for the schools.

Although these group-level methods treat the schools as the pri-
mary unit of analysis, the summary scores for the distinct, county,
and state are obtained by weighting school scores by the number of
students at the respective grade levels. This applies to the standard
deviation of school scores as well as the mean. Because the standard
errors of the school scores tend to be proportional to the numbers of
students in the schools, these weighted statistics are essentially mini-
mum variance estimators of the state mean and standard deviation.

Such aggregate statistics are quite suitable for monitoring general
progress of the state educational system and for examining school ef-
fects, but they contain no information about student or classroom
variation within-schools, and thus cannot be used in multilevel data
analysis. The student level scores described in Chapter 5 serve that
purpose, though necessarily with less detail than is required for the
evaluation of school-level curricular objectives. It is for this reason
that both student-level and school-level scoring is required in a com-
prehensive assessment program.

6.1 Assumptions of school-level measurement

In order to meet the assumption of conditional independence of item
responses in IRT scaling at the school level, each item assigned to a
- given objective must appear in a separate test booklet, and thus rep-
resent the response of a different student. Assuming that the students
do not collaborate, the responses for any given scale will be statisti-
cally independent within each school. In the present study, where the
Duplex Design consists of 24 test booklets each with 45 items, scales
can be constructed measuring the 45 distinct curricular objectives de-
fined in Table 4.1. For reasonable accuracy of the school-level scores,
it is preferable for the school to have at least 24 students at a grade
level, so that each distinct booklet is used at least once. If there are
very small schools in the system, as is true in rural California, special
Bayesian methods must be employed to obtain stable scores at the
school level. We will not discuss these details here; they are available
in technical reports of the California Assessment Program.
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The sufficient statistics for estimating school-level scores take the
compact form shown in Table 6.1. For each school, the data consist of
the number of students presented each item of each test booklet, and,
among those, the number who responded correctly. Except for the
link items, students in Groups 1, 2, and 3 are responding to different
items. We refer to this table as the “number-tried, number-right”
school summary. For small schools, such as number 1 in Table 6.1,
the incidence of item presentations will be rather low and will be
reflected in larger standard errors for the school score. For very large
schools, such as number 3, the school score for each objective will be
much more -recise.

Under .: assumed sampling conditions, the number of right re-
sponses, given the number of items presented, is an independent
binomial variable for which statistical modeling is entirely straight-
forward. To extend the IRT models to the group level it is only nec-
essary to substitute for the product-Poisson probability of an answer
pattern given by equation (5.2) in Section 5.2, the product-binomial
probability. The result is as follows:

id N;!
P =11 f‘:'!(N:‘J— rj)!

i=1

[Py(m)I" {1 = Py(7)) i (6.1)

In (6.1), ™ is the proficiency level of the school for the objective
being scored, P;(r) is the item response function, n is the number of
items, and NV; and r; are, respectively, the number tried and number
right for item j. The BILOG program (Mislevy & Bock, 1983) has
provisions for estimating the parameters of the item response function
and for scoring the group with this model when the data consist of
number-tried, number-right summaries.

The use of a group-level model can be justified as a parsimonious
way of accounting for data in the form of Table 6.1. If the data
conform to the 3PL model, for example, the entries in a table such
as 6.1 can be accurately predicted from a scale score for each school
and three parameter values for each item. Experience with California
assessment data has consistently shown that the group-level logistic
models reproduce this type of data very well. Mislevy (1983) has
proposed a threshold process that accounts for the highly satisfactory
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performance of these models. In the Duplex Design, their goodness-
of-fit benefits from the highly homogeneous item content in the narrow
curricular objectives for which scales are constructed. The assumption
of unidimensionality is easier to satisfy in this context than in the
more heterogeneous content and process categories of student-level
measurement.

Unlike the right-wrong data at the individual level, the number-
tried, number-right data are amenable to a straightforward test of the
goodness-of-fit. The fact that different students respond to each of the
items of any given scale justifies a conventional chi-square test of inde-
pendent binomial variables: the data supply the observed frequencies,
and the number-tried times the value of the 3PL model supplies the
expected frequencies for the particular school. There is one such chi-
square value for each school, and the values may be summed over the
schools to obtain an overall test of the goodness of fit. The num-
ber of degrees of freedom is the number of independent entries in the

data table minus the number of school scores and item parameters
estimated.

6.2 Estimating item parameters of the school-level
model

Except for the substitution of product-binomial probabilities for pro-
duct-Poisson probabilities, the fitting of the school-level model is sim-
ilar to that of conventional individual-level IRT models. In place of
a proficiency value for each student, there is an average proficiency
value for each school. The schools are assumed to be a sample, or
a total census, of a population of schools, and the corresponding av-
erage proficiency values are assumed to have a distribution in that
population. As in the individual-level analysis, this distribution is in-
tegrated over § to obtain the marginal probabilities of the patterns of
number-tried, number-right data in the sample. The MML method is
then applied to assign estimates to the items parameters so as to max-
imize the marginal probability. Because the amount of information is
greater in group-level data than in individual level data, relative to
the number of parameters fitted, estimation for the group-level model
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is highly stable and the standard errors are very small. In addition,
the assumption of a normal population distribution is easier to jus-
tify for schools because the scores for average performance of students
benefit from the tendency of means of independent observations to be
normally distributed.

When the school-level data derive from two-stage testing, number-
tried, number-right frequencies for students are assigned to each type
of second-stage booklet in each school. Table 6.1 is an example of
such data for one of the objectives. Note that, typical of matrix-
sampling designs, the data extend across forms. As is also the case
within forms, different items appear in the Easy, Medium and Difficult
booklets of the eight replicate forms, apart from the link items. When
the data are scored, scale scores must be computed separately for the
three second-stage groups. Then the average of these three scores,
weighted by the numbers of students in the groups, are computed to
obtain the scale score for the school.

Similarly, the item parameters are estimated separately in the
three groups, and the link items are then used to express the esti-
mates on the same scale. As in the individual-level item analysis
in Chapter 5, there is again the problem in MML estimation of the
provisionally assumed population distribution for each of the second-
stage groups; the sample size in the present study is not large enough
to estimate the separate population distributions concurrent with the
item parameter estimates. Qur solution to this problem is the same
as in Chapter 5; we will initially infer the latent distributions for each
of the groups from the pretest data; then, while restricting the slope
and guessing parameters of the link items in the three groups to be
equal, we will adjust all of the location-parameter estimates so that
the differences of the link-item locations sum to zero.

It may seem strange to use the pretest latent distribution for in-
dividual students as the provisional population distribution for the
schools, but in fact the latent distributions of the group means will
have the same weighted mean as the student-level distributions. The
standard deéviation will differ, but that is absorbed in the slope param-
eters of the group-level model. The units of the resulting scale will, of
course, be entirely arbitrary, but we will adjust them so that the scale
of the school-level scores will be consistent with that of the student-

130



level scores. Our method of making this adjustment is described in
the next section.

To illustrate group-level item analysis, we show the results for the
Fractions Concepts objective of the Numbers content area. This ob-
jective is represented by 20 distinct items, four of which are link items.
Provisionally, we express the item-parameter estimates on a scale set
to mean zero and standard deviation one in the latent distribution of
schools. The estimates appear in this form in Table 6.2. Compared
to the student-leve] estimates in Table 5.5, the values of which are ex-
pressed in the 0,1 metric for individuals, those in Table 6.2 vary more
in their locations and have generally smaller slopes. Otherwise, there
1s nothing to distinguish them from the results of an item analysis
based on an individual-level model.

6.3 Expressing the student-level and school-level
scores on the same scale

In an exclusively school-level assessment, there is no plausible alterna-
tive to expressing the scores on a scale standardized in the sample of
schools in the state. The scales of the California Assessment Program,
for example, are standardized in the base year so that the weighted
mean and standard deviation are 250 and 50, respectively. With the
Duplex Design, where scale scores are available both for students and
for schools, we have the possibility of standardizing at either level. For
consistency with the conventions of traditional educational measure-
ment, the natural choice is to standardize in the student-level data
and then express the school scores in those units. Mislevy & Bock
(1989) have proposed a type of IRT analysis that obtains the student
and school scores jointly on the same scale, but their method has not
been adapted to two-stage testing. We have chosen instead to set the
scale of the school scores so that they have the same variability as the
school means computed from the student level scores. Although this
can be done in a number of different ways, we have elected to set the
unit of the school-level scores so that the residuals from the model
used in predicting the school scores from their background character-
istics have the same variance as similar residuals computed from the
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TABLE 6.2 _
School-level item-parameter estimates
for Fractions—Conceptual Understanding

“Form Item Slope Location Asymptote

1 5E  1.243 —0.979 0.173
2 5EM 0.525 —0.892 0.182
3 B5E 0401 -1.761 0.211
4 BSEM 0.798  0.101 0.197
5 5E  0.534 -2.753 0.186
6 B5E 0616 —0.535 0.211
7 5E  0.697 -0.817 0.203
8§ BE 1311 0.171 0.156
1 5M  0.698 1.139 0.231
2  S5ME 0.525 -—0.892 0.182
3 5MD 1.048 0.796 0.170
4 BSME 0.798 0.101 0.197
5 5MD 0.570 -0.141 0.192
6 5M  0.886  0.833 0.215
7 5M  (0.538  0.448 0.203
8 5M 0938 0.421 0.199
1 5D 1.262 1.241 0.162
2 5D 0.884  1.898 0.182
3 5DM 1.047 0.796 0.170
4 5D 0.702 -0.091 0.169
5 5DM 0.570 —0.141 0.192
6 5D 0.600 1.827 0.185
7 5D 0576 1.614 0.187
8 3D 1478  1.607 0.168




TABLE 6.2 (continued)
School-level item-parameter estimates
for Equations—Procedural Skills

“Form ltem Slope Location Asymptote

1 16E  0.485 —2.329 0.195
2 16E  0.486 -—1.608 0.208
3 40E 2830 -0.192 0.500
4 40EM 0.794 0.834 0.185
5 31E  0.656 —0.403 0.223
6 31E  0.612 -1.100 0.200
7 22E  0.655 -0.413 0.213
8 22EM 0.499 —1.408 0.177
1 16MD 0.812 0.715 0.168
2  16M 0940  0.932 0.157
3 40MD 0.636  0.595 0.193
4 40ME 0.793 0.834 0.185
5 31MD 0.883  0.939 0.156
6 3IMD 0.828  3.321 0.103
7 22M  0.544 -0.312 0.185
8 22ME 0.499 -1.408 0.177
1 16DM 0812 0.715 0.168
2 16D 0.785  0.476 0.167
3 40D 0.505 3.872 0.168
4 40D  0.393  3.645 0.143
5 31DM 0.884¢  0.939 0.156
6 31DM 0828 3.321 0.102 '
7 22D 0771 1.881 0.157
8 22D 0.679 2491 0.185




TABLE 6.2 (continued)

School-level item-parameter estimates
for Figures—Problem Solving

Form Item Slope Location Asymptote

1 24E 0.420 -0.506 0.208
2 24E 0.641 —0.069 0.196
3 15E 0.508 -0.297 0.179
4 153EM  0.285 -1.337 0.215
5 39E 0.837 1.298 0.144
6 J9EM 0.678 0.123 0.216
7 30E 0.639 0.097 0.181
8 30E 0.740 0.082 0.182
1 24M  0.615 1.394 0.216
2 24M  0.300 0.461 0.197
3 ISME 0.508 -0.297 0.179
4 15MD 0.509 0.186 0.196
5 JOME 0.836 1.298 0.144
6 39M  0.590 0.358 0.186
7  30ME 0.639 0.097 0.181
8 30MD 0.461 1.571 0.235
1 24D 0.526 1.430 0.184
2 24D 0.827 2.157 0.128
3 15D 0.482 1.538 0.193
4 15DM  0.509 0.186 0.196
5 39D 0.532 1.915 0.168
6 39D 0.549 2,239 0.157
7 30D 0.399 1.099 0.169
8 30DM 0.461 1.571 0.235
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TABLE 6.3
Mean squares from the analysis of
variance of school-lével scores and
school means of student-level scores for
the Algebra Equations, Procedural Skills objective

Mean Squares

Effects df School Scores School Means
Main class 5 102.222 58,026
2-factor

interactions 10 31.015 18,491
Higher-order

interactions! 12 25.051 23,652

'Four degrees of freedom are lost because of empty cells.

school means of the student scores. Because that model is the basis
of certain forms of displaying assessment data described in Chapter
7 (especially Figure 7.2), this method of scaling makes these displays
consistent whether the school-level scores or the means of student-
level scores are depicted.

This method of setting the unit of the school-level scores depends
upon analyses of variance of the 2° sampling-allocation design de-
scribed in Chapter 4. One such analysis is performed on the school
means of the student-level scores as expressed in the 250,50 stan-
dardization of Chapter 5. The other is performed on the school-level
scores estimated from the item parameters of Table 6.2, which are in
the arbitrary 0,1 metric in the latent distribution of schools. In both
analyses, we assume that all main effects and two-factor interactions
of the five-way design are fixed, and that the remaining three-, four-,
and five-factor interactions are random. For the Algebra Equations,
Procedural Skills objective, for example, the mean squares for effects
in the two analyses are shown in Table 6.3.

For the multiplicative scaling constant that converts the school-
level scores from the 0,1 metric to the student-level 250,50 standard-
ization we use the ratio of the root mean squares of the respective
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higher-order interactions:

r = 153.7921/5.0051
= 30.7271

After the school-level scores are multiplied by this constant, their
weighted mean is set to 250 to agree with that of the student-level
scores. It is on this scale that the school profiles for curricular objec-
tives appear in the reporting forms iliustrated in Chapter 7.

6.4 The estimated state distribution of school-
level scores

In the standardization derived in the previous section, the estimated
distribution for the Equations-Procedural Skills objective of the schools
in California that include grade 8 is represented in Figure 6.1. Com-
pared to the distribution of student-level scores for the Algebra con-
tent area, the standard deviation is much smaller and, because this is
in effect a distribution of means, the skew seen in the student score
distribution (Figure 5.4) is no longer evident; the distribution appears
essentially normal.

6.5 Standard errors of combined scores

To obtain overall mathematics scores at higher levels of aggrega-
tions, such as the district and state, one has the option of averaging
the student-level scores over the content categories, or averaging the
school-level scores over objectives. We prefer the latter, on grounds
that the scaling of the school-level models meets its assumption with
somewhat more plausibility than the student-level model. The overall
mean for all objectives, or main area of attainment, is averaged over
schools, weighting by the numbers of students in the schools.
Estimating the standard errors of these mean subject-matter, skill,
or content area scores would seem to present a problem, however,
for they are based on the responses of the same students, and the
measurement errors are necessarily correlated. We have estimated
the error correlations by a method we call the split-school technique.
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Figure 6.1: Estimated state-level distribution of school-level scores
for the Equations-Procedural Skills objective.

Excluding very small schools in the sample, we randomly split the
data of each school into two groups. Then we compute the scale
scores for the split schools in the usual way. From these paired scores,
we compute the pairwise product-moment correlations among all the
objectives. For those objectives for which an overall or area mean
score is required, the conventional formula for the standard error of
the mean of correlated variables applies (see Lord & Novick, 1968,
Chapter 4). The split-school technique assumes, of course, that the
correlation structure of the errors is homogeneous among schools.

6.6 Summary

The extension of IRT models to permit the scaling of average perfor-
mance of groups of respondents directly from item responses, without
calculation of scores for individual respondents, is a productive de-
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velopment in assessment methodology. In addition to simplifying the
maintenance of consistent scales of measurement as items are retired
and replaced in the assessment instrument, it makes the efficiencies
of two-stage testing available to matrix-sampling designs. Many more
items in the instrument can be selected for an approximately 0.5
difficulty level in the second-stage groups, thus increasing substan-
tially the information in the item responses. These gains in efficiency
translate into more accurate estimation of curricular objectives, or of
greater detail in the objectives assessed.

This chapter demonstrates how item-parameter estimation and
scoring of two-stage, group-level data parallels that of the analysis
of individual-level data described in Chapter 5. It is only necessary
to assume a population of groups, which in the context of large-scale
educational assessment corresponds to the schools in the state or na-
tion, and proceed with group-level item response models fitting by
the marginal maximum likelihood method. The fitted models serve
to predict, as a function of a scale value for the school, the proportion
of students in each school who will respond correctly to each of the
items in the matrix sample.

The scale values, or scores, for the schools then bear the same
relationship to the student-level scores as group means bear to the
observations within-groups. By methods described in this chapter,
the IRT scale scores for schools can be expressed in the same units as
the student-level scores of the previous chapter. The result for assess-
ment is a unified system of measurement suitable both for reporting
purposes and for secondary studies of student and school effects in
instruction and learning.
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Chapter 7

Reporting!

The Duplex Design provides for reporting assessment results on a
number of levels—for the state as a whole, for counties and dis-
tricts, for schools, classrooms within schools, and for the individual
students.? The reporting forms will vary according to the amount of
detail needed at each of these levels, and they will be more effective
if they display the results graphically as well as numerically. In this
chapter we illustrate how the reporting rubrics suggested in Bock &
Mislevy (1988) can present assessment results to these audiences in
these modes. We also show how the student-level scores facilitate
secondary data analysis.

7.1 State summaries

For media reports, policy debate, and public discussion at the state
level, the standard practice is to report achievement in each main
subject-matter area on a single scale. The difficulty with a more
detailed report is that it may confuse the message that it attempts
to convey. Although a multidimensional description of instructional
outcomes may be valuable in research, it presents the possibility of

IThis chapter is based on material prepared for a presentation at a meeting of
the American Educational Research Association in New Orleans, April 1988. It is
based on preliminary results available at that time. These analyses will be reworked
for presentation in the publication version of this report. Figures 7.1 through 7.5
are adapted from Bock & Mislevy (1988).

?In addition, item responses and other detailed measures may be reported for
.research purposes.

139




conflicting conclusions about the condition of education in the state.
In eighth-grade mathematics, for example, changes in the state mean-
scores for the categories of numbers, algebra, geometry, measurement,
and statistics will not necessarily be consistent-—some may increase
while others decline. For purposes of discussion, public officials and
the media will want the separate results to be combined into some sort
of index that measures the status of overall subject matter. They
can then view it with approval or disapproval, as appropriate, and
speak univocally about policy initiatives to be taken if difficulties
need correction.

Ideally, these indices should be formed from the topic scores in a
way that predicts actual social consequences (for further education,
employment, advances in science, etc.) of current educational prac-
tices. Unfortunately, the validity studies necessary to construct such
indices on empirical grounds do not exist at present. Without such
studies, we have no alternative but to combine the scales for the sep-
arate content areas arbitrarily, often by simple arithmetic averaging
of the topic scores to obtain an overall score. This is the approach in
reporting the results of the present study. In effect, it implies weight-
ing the areas by the number of items they comprise, since the number
of items per area is proportional to the number of topics.

But the reporting of subject-matter attainment as a single scale
does not necessarily mean the state report should consist of a single
number—the average score. The consumers of the state-level report
will certainly understand that there is a distribution of proficiencies,
that some students are performing at high levels of mastery, deserving
special opportunities, while others are progressing at a satisfactory
but not exceptional rate, and still others are at levels that require
remediation. We therefore suggest displaying the state result in the
form of a histogram, such as shown in Figure 7.1, which represents the
complete distribution of scores. Figure 7.1 shows numbers of students
in each 10-point interval of overall student-level mathematics scores.
The numbers are either estimated from a sample of schools, as they
are in this case, or enumerated from a census of all students at the
grade level.

One notices in Figure 7.1 that the distribution is not symmetric,
but is skewed toward the higher scores. Whether or not the shape of
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the score distribution can be meaningfully discussed depends upon the
manner in which the units of scale are defined. It cannot in general
be so discussed when test results are reported in traditional number-
right scores; their distributions depend arbitrarily upon the difficul-
ties of the items chosen for the assessment instrument. But Figure 7.1
is based on scale scores computed from the three-parameter logistic
models for the items, which, as we have seen, fit the data well. If we
accept the simultaneous fit of the models at locations throughout the
scale as evidence of comparable units, then the shape of the distribu-
tion 1s meaningful and the appearance of the skew merits explanation.

A possible interpretation is failure of the model to correct fully
the effects of guessing on the multiple-choice items. This would put a
“floor” on the distribution that would give the appearance of a skew
to the right. But we see in Figure 7.1 that the effect seems to involve
the whole distribution, and not just the left tail. A better explana-
tion is that the skew is the result of growth of intellectual “capital”
which, like the monetary variety, tends to proceed multiplicatively.
That is, each step in learning makes the next step easier and quicker,
especially in mathematics learning, which is highly cumulative. The
outcome of many such independent multiplicative processes is a log-
normal form of distribution in the population (see Simon, 1955). Its
practical significance is that there is a greater number of students in
the state who are especially able in mathematics, and score at very
high levels on the test, than would be expected if the distribution
were syImmetric.

Figure 7.1 is also designed for those persons whose assimilation of
information is not helped much by visual displays, or who need to dis-
cuss the results in verbal terms. For their benefit, the shape of the dis-
tribution is also conveyed by the printed numbers giving percentages
of students in three “mastery levels” labeled “Basic”, “Intermediate”,
and “Advanced”. (More mastery levels could be defined; NAEP, for
example, reports in five levels). In the present instance, these levels
were arbitrarily chosen to represent the lower 15 percent, the middle
70, and the upper 15 percent of the estimated state score-distribution.

One would prefer that such levels be related empirically to the
educational or vocational potential of students in these score ranges.
The policy maker, for example, would like to make such statements
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as “ninety percent of eighth-grade students who score at or above
280 could be expected to successfully complete a high-school honors
program i1n mathematics,” or “ten percent of those below 220 will fail
the basic 9-th grade mathematics,” etc. The mastery levels would
then set clear goals for accomplishment in middle school.

In principle, the data required to establish the necessary relation-
ships must exist in district or school records, but they would be ac-
cessible for this purpose only if the state’s educational information
system is capable of following in detail the progress of individual stu-
dents and summarizing the information in a usable form. Whether
many states are in a position to conduct such studies is not clear at
present. For those that are not, an alternative might be to equate their
assessment scales to those of the National Educational Longitudinal
Study (NELS), which has an extensive collection of grade transcripts
of students followed from middle through secondary school. A cor-
respondence between criterion points on the NELS test scales could
then be established to predict the performance of students in subse-
quent grades or course work. The NELS data would, of course, apply
only very generally to a national sample of students, but the results
should be broadly informative in many states.

Still another way to give objective meaning to specific points on
the attainment scale is to make use of the property of IRT scoring,
mentioned in Chapter 1, that locates the items and the respondents
on the same scale. In educational applications, there is some prece-
dent for interpreting points on the scale in terms of the content of
items whose 80 percent thresholds are located near a selected point.
Students who score at or above that point on the scale then have an
80 percent or better chance of responding correctly to the items near
that point. Of course, a given point on the scale is not characterized
by any particular item, but by the class of items in the neighborhood
of the point. To define a point in a general way, a number of items
from the class must be exhibited and their common features inferred.
A similar method of interpreting selected mastery levels on assess-
ment scales is used in the reporting of the present NAEP scales in
main subject-matter areas.
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7.2 Reports for accountability

In states that conduct census assessments, the state educational agen-
cies are in a position to compare the performance of all schools in the
state system. The question then arises of how to allow for the impact
on student attainment of community factors over which the local ed-
ucation authorities have no control.

Clearly, some adjustment of the school mean-scores for such fac-
tors is required if the schools are to be compared fairly. How these
adjustments should be made has been widely discussed (for exam-
ple, in Raudenbush & Bryk, 1989). Two general approaches have
been proposed: the first is to express the school means as deviations
from the level of performance predicted by measured community fac-
tors that are known to be associated with student attainment but
are not directly alterable by school officials—typically, linear least-
squares regression is used to establish the prediction function; the
second method is to perform some sort of cluster analysis on commu-
nity background characteristics in order to identify groups of “similar”
schools—the performance of schools in each cluster is then expressed
as deviations from the mean of the cluster.

Inasmuch as the two approaches lead to more or less the same re-
sult, we have opted for the somewhat more straightforward regression
method; we display the results for the schools in the study in this form
in Figure 7.2. Each school in the figure is represented by a code num-
ber that would be known to privileged parties. The vertical axis of the
graph is the observed mean score for the school; the horizontal axis 1s
the score predicted by the regression equation. In terms of student at-
tainment, schools that are within the upper and lower diagonal lines,
which represent two standard deviations vertically above and below
the 45 degree identity line, are performing about as expected. Those
above the upper line are performing better than expected; those below
the lower line, poorer than expected.

Simultaneously, the graph shows on the right-hand scale the abso-
lute performance of the schools, arbitrarily classified as high, average
or low. This type of graph overcomes the frequently expressed ob-
jections to regression adjustments, that they diminish the school’s
incentive to improve its position. In the type of graphs shown in Fig-
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ure 7.2, the poor performing schools, whether or not they are on a par
with their peers, are at the bottom of the graph where improvement
in absolute terms is obviously needed.

The schools represented in Figure 7.2 are those of the California
field trial. The regression model used in the plot is based on the five
factors of the allocation sampling design defined in Section 4.1. Each
of these variables was dichotomized at the median for the state, and
the model included all first-order effects and all two-factor interactions
of the resulting variables. All represent conditions over which the
schools have little, if any, control.

Another way to make fair comparisons among schools is to ex-
amine each school’s performance trends from year-to-year. In effect,
this is comparing each school with itself rather than competitively
comparing one school with another. As we discussed in Chapter 1,
these longitudinal interpretations of the assessment depend critically
on a high degree of generalizability of the school-level scores and on
maintaining a stable reporting scale from one year to another. If
these requirements are met, a plot of scores over a period of years
should clearly show the general trend for each school, with only mi-
nor random deviation about the trend line from such sources as co-
hort effects, turn-over of school personnel, demographic changes in
the community, et¢. Points in the plot that appear out-of-line would
indicate methodological problems—non-standard administration, un-
controlled changes in test forms, compromise of test items, scoring or
scaling errors, etc.® The state agency to which school districts are ac-
countable could maintain “wall charts” displaying these trend lines to
help detect problem cases and to monitor the progress of instruction
generally. Each chart could be devoted to one subject-matter area,
and the lines corresponding to the various schools, organized by dis-
trict and county. Changes in long-term trends in these charts would
alert the agency to potential difficulties in specific schools and dis-
tricts, and also give evidence of the effects of new programs or school
reforms.

3The 1986 anomalous NAEP reading results, for example, were found to be due
largely to changes in the arrangement of subject-matter content within the test
booklets (Beaton, 1988).
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7.3 School reports

We suggest two types of school reports, one designed to monitor the
distribution of attainment among the students, and the other to eval-
uate progress toward curricular objectives. The reports combine fea-
tures of graphical and numerical presentation. They are designed for
distribution to school principals, with copies to the district superin-
tendent.

An example of the first type of report is shown in Figure 7.3. The
data are those of a typical school in the California field trial (the
name of the school has been changed). The distribution of student-
level scores for each of the main content areas and each of the process
proficiencies is shown in intervals of 16.66 scale points, and each dot
represents about 3 students in this school. (In larger schools, each dot
would represent a larger number of students.) The heavy vertical bar
represents the school’s overall mathematics score, i.e., the score that
determines the location of the school in the state distribution shown
in Figure 7.1. The corresponding numerical value is shown below
the graph, along with the equivalent percentile point in the score
distribution of Figure 7.1. For each content area and proficiency,
the score distribution is also characterized by the school mean, the
corresponding state percentile, and the percent of students at each of
the three mastery levels.

A particularly effective use of the information in this part of the
school report would be an annually updated graph showing attain-
ment in each subject-matter area. Departments within schools could
have similar graphs detailed by content topic and proficiency in their
particular subject matter. Prominently displayed, the progress of the
school represented in these various graphs would be a source of inter-
est and motivation to students and staff alike.

If the students have a relevant classroom assignment, a report sim-
ilar to that in Figure 7.3 can be provided to the classroom teacher.
In these reports, each dot would represent the location of a particular
student in the classroom distribution. If the teacher is also provided a
roster of scores for all students in the classroom, he or she can identify
locations of students on the graph by name for purposes of student
guidance or for conferences with parents. In this role, the classroom
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Survey Test of Grade 8 Mathematics
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Figure 7.3. School-level reporting form: distribution of student scores
in main skill and content areas.
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report supplements the individual-student reports described in Sec-
tion 7.4.

The second type of school report, shown in Figure 7.4, is intended
primarily for the evaluation of instruction. Displaying a school-level
score for each cell in the content-by-process classification of the as-
sessment exercises, the report depicts progress in curricular objectives
at the topic and skill level. School-level scores based on a 45-minute
test cannot measure the objectives in greater detail than with this
acceptable degree of generalizability. Although more detail would be
available for very large schools if more than one Duplex-structured
instrument were administered simultaneously to different students,
many schools would not have enough students at a grade level to make
this feasible. Moreover, the student-level scores for students admin-
istered different instruments would not be as rigorously comparable
as scores based on the same instrument, as is the case in the present
study. For these reasons, we limited the mathematics assessment to
the forty-five objectives shown in Figure 7.4.

In Figure 7.4, the school’s overall performance at grade level is
again represented by the heavy vertical line at the same scale point
as in Figure 7.3. As explained in Chapter 6, the units of these school-
level scores are adjusted so that they can be expressed on the same
scale as the student-level scores in Figure 7.3. Because they represent
the average performance at grade level, the variability of the values
shown in this report is less than that of the distribution of student
scores in Figure 7.3. This is the reason that the range of the scale in
Figure 7.4 is smaller than that of 7.3.

The scores for the school are shown as a profile about the line
for the overall score. The value of the score for each objective is
represented by the diamond, and it is also given at the right as a
numerical value and as a state percentile in the distribution of school-
level scores (not a percentile of the student-score distribution). Each of
the diamonds is bordered by a bar indicating a one-standard-deviation
confidence interval on the true score. This interval has a probability of
about two-thirds of including the true score for the school. Its length
is a function of the number of items in the matnx sample for the
corresponding objective, the average discriminating power of those
items, the score level, and the number of students at the grade level.
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SCHOOL REPORT (page 2
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Figure 7.4. School-level reporting form: attainment of curricular
objectives.
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Figure 7.4 (continued). School-level reporting form: attainment of
curricular objectives.
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In this application, only the two latter factors vary between schools,
so the length of the intervals depends entirely on the level of the score
and school size. Scores near the center of the distribution of schools
tend to have smaller confidence intervals than those at the extremes.

The report in Figure 7.4 has another interpretive feature, borrowed
here from the school reports of the California Assessment Program.
The score for each curricular objective is accompanied by a so-called
“comparison score band” represented by an open rectangle. The com-
parison score band is the predicted score for the school {computed for
each objective from a regression equation based on the same commu-
mity background factors used to compute the expected overall mathe-
matics score in Figure 7.2) plus or minus one standard deviation of the
sum of the residual variation in prediction and the measurement error
variation of the school score. The probability that the band includes
the school score when the background factors account for it entirely
is therefore about two-thirds. Thus, when the comparison band in-
cludes the diamond, the school is performing about as expected in
this objective, but if the diamond is to the left of the band, there is
some indication that instruction for the objective is below the com-
munity norm. Conversely, if the diamond is to the right of the band,
there is evidence that the outcome of successful instruction is above
expectation.

An interesting question is whether the comparison score band
should be recomputed every year. If it is, the school will have the
impression of not making progress in conditions where instruction is
improving in all schools in the state. The same misleading impression
would be conveyed by the state percentiles. A case could therefore be
made for keeping the prediction models fixed for a number of years
so that schools could compare themselves relative to the base-year
expectations. (The same reasoning could be applied to the state sum-
mary in Figure 7.2.) Or, alternatively, equal emphasis should be given
to trends in the absolute scores for the objectives by providing, the
kind of longitudinal graphs that we have recommended for the school-
average of the student-level scores.

The particular school shown in Figure 7.4 is interesting in that
the students are performing better than expected for problem solv-
ing in algebra and geometry, which are objectives not always well-



represented in instruction at the eighth-grade level. This may mean
that the school has advanced classes in these topics taught by someone
who emphasizes work on problem solving.

7.4 Student reports

Our suggested form for the student report, shown in Figure 7.5, de-
picts the performance of a student in the California field trial (the
name of the student, the teacher and the school have been changed).
Copies of this report could be laser printed for the student and par-
ents, for a teacher or counselor, and for the student’s folder. Or it
could be part of a more elaborate report showing each student’s status
at the end of the school year.

As we pointed out in Chapter 5, the eight distinct dimensions
of mathematics achievement represented in Figure 7.5 are about the
most that can be reliably reported from a 45-item test, even with
two-stage testing. They contain enough information to assist student
guidance and placement, and parent counseling, but they should be
used for these purposes only in combination with classroom test re-
sults, productions in the student’s folder, and teachers’ or counselors’
abservations.

The heavy vertical line in Figure 7.5 indicates the overall mathe-
matics score of the student in question. Scores for the three process
proficiencies, labeled “skills” in the figure, and for the five main con-
tent areas, called “topics”, are presented on an absolute scale with
mean 250 and standard deviation 50 in the state distribution of respec-
tive student-level scores. Displayed as a profile about the vertical line
for overall performance, each score is marked by diamonds and also
presented numerically at the right. The plus or minus one-standard-
error-band on the score is the heavy horizontal bar containing the
diamond. The bar has a probability of about two-thirds of including
the student’s true score (i.e., the score that the student would obtain
if tested on indefinitely many items from the respective skill and con-
tent domains). We suggest using the bars to interpret the student'’s
relative strengths or weaknesses in particular areas relative to his or
her overall mathematics performance. If the band includes the verti-
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Survey Test of Grade 8 Mathematics
STUDENT REPORT Student: David Tayloe

Teacher: Mary Jones

Class:  Math 8G

School: Do Robies

Date of Testing: October 12, 1987

Your personal Math achievement proflle

Scale score profile and confidence intervals

Pradls  Pwomile

SKILLS | '»
Procedures | —p | 42| 84| 28| &
Concepts | wom | 204 | TT | 43 ] 81
Problem Solving : —cal : 241 | 65| 30| 43

TOPICS : :
Numbers | oy I 225 | 511 21 | 38
Algebra f-u— : 21 37 15| 28
Geometry —— | 204 | 17T% 9| 18
Measurement : -f:«— 311 | 98] 84 | 80
Statistics ! o Jx2 | 97 ¢ B8} 93

1 1 1 T 1 L A T
Scale Score 50 100 150 200 250 300 50 400

450

Mastery Levei pr— Bamic —ofu- [ntarm. s Advanced —of
Overall math score %5
Class Percontile 8
School Percentile 40
State Percentile 5

EXPLANATION:

Your scores for eight areas of mathematics are shown in the graph above.
Each bar on tha graph has 3 2/3 chance of induding your true score. The
diamond marks the bast estimace of your true score. Scores toward the
right hand side of the graph indicate relative strength in the mathemat-
ics shill or topic. Scores toward the left indicate relative weakness. The
heavy black verticle line marks your overall average score in mathemat-
ics. The overall math score, and the class, school, and state percentiles
corraaponding to it, are shown below the gragh.

NORC The University of Chicage

Figure 7.5. Student-level reporting form: achievement profile in skill
and content areas.
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cal line, no inference of either strength or weakness is made. If it is
entirely to the left of the line, the inference is that the student should
be able to improve in that area by extra study. If the bar is to the
right of the line, it may indicate that the student has particular ac-
complishments in certain parts of the subject matter. The student in
Figure 7.5, for example, may have special interests in empirical science
that give him an advantage in Measurement and Statistics relative to
the more formal content in Numbers, Algebra and Geometry. He is
unusually poor in Geometry, even relative to his classmates.

If the assessment covers several subject-matters and the students
are assigned to different classrooms for each, it would not be practi-
cal to report class percentiles as we have done here. To do so would
require information in computerized form on all the classroom assign-
ments of every student; few schools at present maintain data bases
with this capability, although it might exist at some time in the future.

School and state percentiles would always be available, however,
and these would allow the scores to be interpreted both relative to a
community standard and to a state standard. If the procedures were
implemented for equating the state assessment to a nationally-normed
assessment, such as NAEP, national percentiles could also be reported.
In the absence of empirically established predictive criteria to which
the student level could be referred, the normative percentiles are only
aids to interpretation that are available when the assessment is first
introduced. If the assessment scale is kept consistent over a period
of years, teachers and other persons who regularly see these reports
will begin to attach a more absclute meaning to the scores. Knowing
where particular students were located on the scale, they will begin
to generalize about the implications of the scale values for the ability
and potential of students moving through their school. Normative
scales that have been in use for a long period, such as those of the
Scholastic Aptitude Test (SAT), have attained this status.

As we mentioned in connection with the state percentiles for the
school scores in Figure 7.3, there is a question as to how frequently
the normative base should be updated. We argued in the case of
schools, where change is seen only over a period of years, that the
percentile norm should refer to a base year fixed for some period,
perhaps five or ten years. But in the case of the individual-student
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scores, the institutional perspective is not as relevant, and updating to
the current assessment seems reasonable. The percentiles would then
show each student’s rank in his or her cohort, and to some extent
this ranking would retain its relevance as the cohort moves onward in
education or careers.

It is important to understand, however, that the mastery lev-
els indicated by the vertical dashed lines in Figure 7.5 are content-
referenced, not norm-referenced, and would not change from year-to-
year. Neither are they predictive criterion levels based on prospective
studies of students’ careers. As we have discussed in Chapters 1 and
3, and in Section 1 of this Chapter, they refer rather to the probability
of success in the typical content of the assessment tasks and exercises
whose 80 percent thresholds fall in the vicinity of these lines. As a
further aid to interpretation, some description of the relevant item
content should accompany the student-level reports.

We are indebted to Richard Hill for pointing out that a further
type of student report may be desirable. As an aid to counseling
students and parents, a brief computerized record of the response
alternatives marked by each student should be returned to the school
counselor. The booklet number would be indicated, and each item
response would also be scored “right” or “wrong”. The counselor,
who would be provided with a complete set of the test booklets, could
then discuss, with students or parents who might be interested, the
particular items that gave the student difficulty. In this way, the
parents could be relieved of any feeling that their child was evaluated
on a test of unknown nature and content.

7.5 Dimensionality of the student-level scores

The eight scores of the student profiles in this study were chosen for
their relevance to the mathematics curriculum and to current cogni-
tive theories of mathematics learning. The choice does not necessar-
ily imply, however, that the mathematics attainments of eighth-grade
students actually vary in this many dimensions. Nearly all cogni-
tive proficiencies are fairly highly correlated across a general popu-
lation, and the partial information gained as additional dimensions
of performance are added decreases rapidly. The conventional ap-
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proach to investigating the dimensionality of individual differences
in psychological-test scores is some form of factor analysis that in-
cludes a statistical criterion of the number of significantly resolvable
dimensions. Psychologists who have attempted to define human intel-
ligence empirically—Thurstone, Guilford, Cattell, and others—have
used this method with some success. To apply it in the present study
is more difficult, however, because the Duplex instrument consists of
multiple, similarly structured forms administered to different respon-
dents. In place of a conventional maximum likelihood factor analysis,
for example, some form of multiple-group analysis, such as that pro-
vided by the LISREL program of Jéreskog & Sérbom (1989), would
be required.

But whether such a factor analysis of individual differences is ger-
mane to assessment measures is not entirely clear. The variation that
1s observed in instructionally relevant variables depends not only upon
the fundamental dimensions of human capability, but also on differ-
ences in what is being taught or how well it is taught in different
parts of the population. These latter influences are subject to change
according to policy or consensus; no one analysis at any point in
time would definitively establish the dimensionality of instructionally
sensitive measures. Such an analysis would commit the “existential
fallacy”—the inappropriate identification of what is with what can or
ought to be (see Stodolsky, 1988).

It is also well-known that the factor analysis of individual differ-
ences 1s not sensitive to the group-level effects that are of interest
to someone investigating curricular or instructional effects. To inves-
tigate the dimensionality of these effects, one wants a discriminant
analysis rather than a factor analysis. Applications of discriminant
analysis to educational data are described in Bock (1966, 1975), Finn
(1974), and other texts on multivariate statistics. The MULTIVARI-
ANCE program of Finn & Bock (1989) includes especially complete
facilities for discriminant analysis and the associated statistical tests
of between-group dimensionality.

As an illustration of this method of investigating the dimensional-
ity of instructional effects, we have performed discriminant analyses
of between-classroom and between-teacher variation in some of the
larger schools in the California field trials. These analyses estimate
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linear functions of the scores that maximally discriminate between
8th-grade mathematics classes in these schools. Results of two of the
more interesting analyses {for school No. 18 and school No. 30 in
Figure 7.2), in which separate analyses are carried out for the three
proficiency variables and the five content variables, are discussed here.
The summary statistics for these analyses are shown in Tables 7.1 and
7.2. The mean scores are shown for classrooms identified by teacher
and Honors or Advanced Placement status.

In school No. 18, the discriminant analysis of the process profi-
ctency measures revealed two statistically significant dimensions among
the means of the fourteen classrooms. The corresponding standard-
ized discriminant functions were:

i = 03077 + 0.644Y; — 0.094Y;
V, = -1.263Y, + 0.350Y; + 1.189Y;

where ¥;, Y5, and Y; are the Procedural Skills, Conceptual Under-
standing, and Problem Solving scores, respectively. The first function
can be characterized as a Procedures + Concepts variable, and the sec-
ond as a contrast between Problem Solving and Procedures (Problem
Solving — Procedures). Labeled in this way, the mean discriminant
values (group centroids) of the classrooms are plotted as shown in
Figure 7.6.

An interesting result in this plot is that, except for the honors
classrooms and the apparent remedial classroom taught by teacher
A, there is clear clustering of classrooms taught by the same teacher.
This means that the teachers had a consistent “style” relative to their
emphasis on procedures and concepts as opposed to problem solving.
The classes of teacher C, for example, were at about the same level
as their counterparts on the Procedures and Concepts dimension, but
were considerably lower in the Problem Solving minus Procedures di-
mension (i.e., they are relatively poorer in problem solving.) Indeed,
the honors class of teacher C was at the same level on the latter di-
mension as the regular classes—a situation that should be of some
concern for mathematics instruction in this school, given thot rea-
soning and problem solving should have a special place in the honors
curriculum. The classtroom means of the other teachers were much
more homogeneous, but their tendency to cluster by teacher is still
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TABLE 7.1
Summary Statistics: Classrooms in School No. 18

Class Means Proficiency Meﬁxres
Class Teacher Honors N Procedures Concepts Problem Solving

1 A 22 199.7 205.1 214.1
2 A 22 266.4 257.9 249.1
3 A 26 247.3 250.3 244.8
4 B * 38 317.8 318.3 301.0
5 B 23 266.4 261.8 237.0
6 B 24 262.0 257.3 2535.0
7 C 22 258.3 272.1 276.0
8 Cc 20 250.8 253.6 272.8
9 C * 28 312.2 319.4 310.6
10 D 26 260.5 259.6 258.4
11 D 23 270.5 272.4 268.6
12 E 23 254.5 244.3 244.7
13 E 19 246.4 234.8 246.3
14 E 24 255.7 258.2 254.7

Commonr within-class
standard deviations; df=36

37.9 37.7 40.7
Correlations
1.000
.710 1.000
684 661 1.000 .
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Summary Statistics: Classrooms in School No. 30

TABLE 7.2

Class Means

Proficiency Measures

(Class Teacher Honors N  Numbers Algebra Geometry Measurement Statistics
1 A 16 207.0 211.9 224.6 2115 216.8
2 A 14 187.2 209.1 217.9 2098 191.2
3 A 15 231.1 234.4 246.9 230.0 2328
4 B 24 2275 234.7 242.5 232.0 224.7
6 C 9 2317 228.7 234.0 224.6 222.1
7 C 18 217.2 226.9 226.8 224.9 210.2
8 D 25 193.0 199.6 196.6 198.6 196.2
9 D * 32 275.4 276.3 266.8 259.2 259.1
10 D * 32 285.5 287.7 280.3 289.3 269.3
11 E 15 220.5 217.5 250.5 230.4 223.3
12 E 19 204.5 223.6 227.0 2198 2285
13 F * 19 290.9 313.3 265.3 279.9 264.4
14 G 24 181.3 193.3 184.5 186.8 187.3
15 H 27 2414 2338 231.3 225.2 210.1
16 H 21 211.2 216.9 230.9 209.9 214.0
17 H * 17 275.5 279.2 265.8 260.8 264.2
18 I 24 220.8 218.5 216.3 223.3 2225
21 I 23 248 4 2494 249.1 2378 2333
22 J 25 2375 240.5 238.2 2374 2338
23 J 25 209.3 2158 205.8 216.2 207.4
24 J 13 2153.6 217.5 212.3 208.5 2115
Common within-class
standard deviations: df=416
374 385 40.4 38.9 372
Correlations
1.000
533 1.000
478 .469 1.000
510 580 488 1.000
.540 493 479 585 1.000
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Figure 7.6. Discriminant analyses of teachers and classrooms in School
No. 18: Student-level proficiency measures.

161




apparent.

A second discriminant analysis, for the very large school No. 30,
showed two significant dimensions in the classroom means for the five
content variables. The standardized discriminant functions defining
these dimensions were:

Vi = 0.563Y; + 0461Y; + 0.101¥; — 0.003Yy - 0.073Y5
V. = -0.360Y; — 0.641Y; + 0.931Y; + 0.321Y, <+ 0.369Y:

where Y7 through Y; are the Numbers, Algebra, Geometry, Measure-
ment, and Statistics content scores, respectively. Apart from the
very small negative coefficient for measurement, the first function
is a sort of overall mathematics variable, with emphasis mostly on
Numbers, Algebra, and Geometry. The second is a contrast between
content that depends primarily on symbolic presentation—Numbers
and Algebra— and content in which graphical presentation plays a
larger role—namely, geometry, measurement, and statistics.

The plot of the mean discriminant values for the classrooms, iden-
tified by teacher and honors status, is shown in Figure 7.7. Again
there was a tendency for the classroom means to cluster by teacher.
Teacher E was especially effective in the graphical content; while his
or her classes were below average in the symbolic content, they were
in the range of the honors classes in the graphical content. The hon-
ors class of teacher F' was very high on the symbolic content, but
only middling on the graphical content. Teacher G must have had
a remedial class, or was not a very effective instructor; but because
he or she was teaching only one class, the two possibilities cannot be
distinguished.

These analyses illustrate the interesting results available to sec-
ondary analysis when the assessment design provides, in addition to
group-level scores, good-quality measures at the student level. The
data from state assessment programs, especially the census assess-
ments at multiple grade levels, then contain information in such abun-
dance that a great range of educational research hypotheses can be
investigated. Regrettably, there has been relatively little effort to
exploit this potentia] of state assessment data for secondary studies.
The problem is partly that the data have not reached the right in-
vestigators, persons familiar with the analysis of multileve] data (see
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Bock, 1989), but partly also because the form or quality of the data
has not been suitable for such studies. A particular strength of the
Duplex Design is its ability to provide, simultaneously with the oper-
ational information required for policy and management purposes, a
form of data suitable and convenient for secondary research.

7.6 Summary

The impact of the assessment on the educational policy of the state,
on the shaping of the curriculum and management of instruction, and
ultimately on the performance of students, depends upon the com-
municating power of its reports. A guiding principle of the reporting
should be that, insofar as possible, the data should speak for them-
selves in easily understood displays. The consumers of the reports
should have the opportunity to examine the data summaries and judge
the condition of student learning from their own perspective. The as-
sessment agency would do well to maintain a degree of objectivity
and avoid involvement in potentially controversial interpretations of
the results. Its job should be to provide dependable information in the
clearest and most usable forms, and not to prejudge the educational,
policy or scientific implications of the findings.

In some situations, however, the reporting cannot avoid becoming
involved in interpretational questions. The prime example is the ad-
Justment of scores to account for the effects on student attainment dif-
ferences in community characteristics over which the local education
authorities have no control. Because a commitment to some theory
of community influence on student attainment is implied in these ad-
justments, their use carries the assessment beyond the realm of purely
objective reporting. But there is no obvious way of avoiding such ad-
justments, or similar treatment of the data, if results from districts
and schools in widely differing community settings are to be compared
fairly. We have tried to preserve as much objectivity as possible in
this connection by presenting the data (in Figure 7.2) in a display
from which both the adjusted and the unadjusted results can be seen
simultaneously. But ultimately the credibility of the comparisons will
depend on progress of research in clarifying the relationships between
community background factors and the performance of students in
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the schools.

For many purposes, graphical presentations of results convey more
information in a more accessible form than the myriad tables one as-
sociates with official educational statistics. We have illustrated here
some of the display formats that have been proposed for reporting
assessment results to various audiences. We attempt to convey not
only the average levels of performance, but also some indication of
the range and distribution of outcomes in the relevant population or
group. Where possible, the stability of the results is indicated by con-
fidence intervals for the mean values reported. Recognizing that for
purposes of verbal discussion, numerical values are also necessary, we
have also included the various quantities in the margins of the display,
both as scores on the defined assessment scales and as percentiles of
relevant populations.

While accepting that for policy and media uses the assessment re-
sults have to be abstracted in simple one-dimensional social indicators,
we realize that anyone directly involved in the day-to-day work of edu-
cation knows that learning is inherently muitidimensional. Changes in
numerous areas must be monitored simultaneously; otherwise, gains
in some areas may be at the expense of losses in others. For this rea-
son, we have emphasized the use of reporting profiles—some highly
detailed for the evaluation of curricular outcomes—others less detailed
for the guidance of individual students. The profiles convey the pat-
terns of relative strengths and weaknesses that can be diagnostic of
unevenness in instruction or unsteady application of students.

In the remaining important function of assessment—providing data
for research studies of educational phenomena—the method of dis-
playing the results is less important than their quality and their avail-
ability in a well-documented, machine-readable form. The mandates
of state assessment programs do not ordinarily include making data
available for secondary analysis, but weighed against their potential
contribution to educational research, the cost of their distribution for
investigative use is small. We have therefore emphasized in the im-
plementation of the Duplex Design that assessment procedures not
only deliver dependable data for policy, management, and guidance
purposes, but also produce dependable data for research. We illus-
trated this feature of the design by applying student-level scale-scores
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from the California fleld trial in discriminant analyses of classroom
and teacher effects within large schools. We found clear evidence for
teaching “styles” in more than one dimension of both the content and
process measures. These analyses demonstrate in a small way the
potentially interesting and informative studies that could be carried
out with the data base of a well-designed assessment program.
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Chapter 8

Summary and conclusions

Many features of present educational assessment programs originated
in the early development of the National Assessment of Educational
Progress. Perhaps the most important was the emphasis on creating a
continuous record of average student attainment by which long-term
changes in the effectiveness of American education could be judged.
Placing the emphasis on change made it clear whether progress was fa-
vorable (positive change) or unfavorable (negative change) even when
the absolute levels of the scores could not be interpreted. It also
encouraged the use of graphs to display a time-series of assessment
outcomes over a period of years, thus showing vividly the direction in
which American education was moving.

Another feature of the national program was the desire for a com-
prehensive assessment, not confined just to the “three-R’s”, but en-
compassing a much wider domain of subject matter and extending
even to traditional creative skills not strongly tied to subject matter.
Early assessments included such topics as vocations, and basic skills in
art and music. Only recently, with the new emphasis on performance
assessment, discussed below, have these areas again been considered
for evaluation.

There was also an expectation that the assessment would serve
many purposes, from describing the state of our educational effort to
a broad public audience, to guiding national educational policy, eval-
uating federal initiatives to improve instruction, and following trends
in attainment in major regional areas and sociocultural groups. Al-
though the national assessment only slowly began to make an impres-
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sion on the education community, the growing national awareness of
our need for an informed and capable citizenry in a time of inter-
national economic competition worked in its favor. Stimulated also
by the comparisons of student performance in other nations carried
out by the International Educational Achievement Association, con-
cern for the state of education revealed by the U.S. assessment took
on a new urgency. A movement among the chief state school offi-
cers to expand the scope and functions of the national assessment led
to Congressional support for extending the data collection to allow
comparisons between states.

Finally, the framers of the national assessment program alsc in-
tended it to provide innovative procedures and exercises to state test-
ing programs for use in locally developed instruments, as well as to
accumulate a rich store of data for independent investigators to use in
the study of educational and societal problems. In the first of these
roles, it was quite successful. Not only were items from the national
assessment widely used in other testing programs, but the new ap-
proach it introduced in data collection set the trend for many of the
state assessment programs.

8.1 Matrix-sampling designs

In the earliest planning for the National Assessment of Educational
Progress, it was recognized that conventional achievement tests would
not serve all these purposes. Because they are designed to provide
accurate scores for individual students, such tests are too long and
time-consuming to employ in a national testing effort, even one with
a low sampling rate. Nor do they include enough items to cover many
facets of the curriculum or to allow some fraction of the items to be
retired after each assessment for public disclosure or distribution to
the states. But even more important, such tests typically exist in
only a few forms and do not have a high degree of generalizability to
the content and skill domains they purport to measure. The interac-
tion of their limited item representation with the changing samples of
schools and students from one assessment year to another produces
too much temporal variation in the measures of attainment among
the subgroups of interest in the population.
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For all of these reasons, the national assessment adopted matrix-
sampling designs as their basic method for collecting information on
student performance. In these designs, any given student sampled
from some school and classroom responds to only a relatively small
number of items sampled from the content and skill domains. These
item samples appear in the multiple test forms and booklets that
make up the assessment instrument. The booklets are assigned to
students in such a way that all students have the same probability of
receiving any given form. This allows the item responses to all forms
to be aggregated when estimating average scores for various subgroups
of students. If the large total set of items contains representatives of
various curricular objectives, each objective can be accurately assessed
at the group level.

Matrix-sampling designs have been the key to efficient and eco-
nomical measurement of long-term trends in student attainment by
national and state assessment programs. They have a number of ad-
vantages that encourage their use. In particular, the large number
of items that comprise the instrument discourages any attempt to
teach the answers to particular items. The sheer number of items
also protects the assessment program from the accidental exposure or
compromise of some of the items. The affected itemns can be retired
and easily replaced without altering comparability of the measures.
Indeed, when item response theoretic (IRT) methods are used to score
the assessment results, a certain proportion of the items can be re-
newed at frequent intervals, thus keeping the content up-to-date and
guarding against excessive item exposure. The IRT methods make it
possible to perform this type of item updating using only the data
obtained in the regular, operational assessment. Only more major
changes in the composition or format of the assessment instruments
require so-called “bridge studies”, in which old and new forms are ran-
domly assigned to schools, or preferably, students within schools, in
order to equate the instruments and keep the time series of assessment
results comparable between the old and the new instrument.

Another advantage of matrix-sampling designs is their suitability
for special studies and evaluations of instructional programs. Because
of the many forms, the assessment instrument can rather freely be
given to the same students before and after instructional treatments.
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Typically, this would mean autumn and spring testing of classrooms
taught with different methods or materials. There is only a small
probability that a given student will receive the same form in both
testings, and even for those students who do, the adjustment required
to account for the pre-exposure effect is easy to estimate (provided
the assessment forms are distributed randomly to the students on each
occasion. )

While matrix-sampling instruments enjoy these many advantages
in large-scale assessment applications, they suffer from one major dis-
advantage: they do not provide student-level scores. We have pointed
out in Chapter 1 the many undesirable consequences that follow from
this limitation. Because they are capable of reporting only at group
levels, such as the program, school, or school system, these designs
can not provide the information about individual students that 1s
the main concern of classroom teachers, the parents, or the students
themselves. Moreover, in failing to provide case-by-case measures of
attainment, they do not provide data in a form that most researchers
need in order to study the relationship of student characteristics to
attainment or to perform multilevel analyses of student and school
effects.

But perhaps most important, in the policy and public informa-
tion uses of assessment results, the group-level scores alone do not
inform discussion of educational problems in the language most read-
ily understood by general audiences—namely, in terms of numbers or
percentages of students whose achievement meets, or does not meet,
the standards required in a society that needs increasing numbers of
well-educated young people.

These shortcomings of matrix-sampling designs are at present lim-
iting the contribution that assessment makes to educational planning
and improvement. Their correction lies not in abandoning matrix
sampling, but in developing it into a more powerful type of design
that provides group-level and student-level scores simultaneously and
efficiently. Such a design now exists.

170




8.2 The Duplex Design

It was to overcome the chief disadvantage of matrix-sampling designs,
while preserving their advantages, that Bock and Mislevy (1988) pro-
posed the Duplex Design. By the special structuring of the item
content within the test booklets, the Duplex Design yvields informa-
tive and dependable scores for individual students in main content
and skill areas without interfering with scoring across the forms to
measure progress in detailed curricular objectives at the school and
higher levels.

In the present studies, supported by the Office of Educational
Research and Improvement (OERI), U. S. Department of Education,
and coordinated by the Center for Research in Evaluation, Standards,
and Student Testing (CRESST), UCLA, we undertock to test the
feasibility of this new type of assessment design. With the cooperation
and help of the state assessment programs in Illinois and California,
and the good offices of the respective chief state school officers, Ted
Sanders and Bill Honig, we were able to carry out extensive field trials
of an assessment instrument constructed according to Duplex Design
specifications. Administrative and field services for the studies were
provided by National Opinion Research Center (NORC).

8.3 The Illinois and California field trials of the
Duplex Design

The goal of these trials was to test the implementation of a Duplex
Design for 8th-grade mathematics and to evaluate the quality of the
resulting data. Items for the design were drawn from the Illinois and
California assessment programs and from the Second International
Mathematics Study. Trials of the design were carried out in stratified
samples of schools in Illinois and California. The Duplex instrument
was administered by local school personnel under the supervision of
NORC interviewers who were resident in the two states. The inter-
viewers contacted the schools by telephone to arrange the testing and
made one visit to instruct the. classroom teachers in the method of
administering the tests. All the materials for the testing were sent to

and returned from the schools via United Parcel Service. The logistics
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of carrying out the studies were not difficult on a pilot basis and could
be even more effectively implemented in a continuing program.

Our greatest concern in these studies was the student-level scoring
discussed in Chapter 5. The success of the school-level scoring, dis-
cussed in Chapter 6, was never much in doubt; this aspect of the data
analysis was not materially different from that used in the California
Assessment Program since 1980. The critical question was whether
procedures that were intended to yield student scores suitable for
guidance and certification were workable and efficient. In particu-
lar, we hoped to demonstrate that two-stage testing could reduce,
by at least a factor of two, the time required to administer the test
in comparison with a conventional one-stage test. Without effective
two-stage testing, the saving of classroom time that makes matrix-
sampling assessment attractive would be lost, and from the teacher’s
point of view, the procedure would seem more like time-consuming
achievement testing than like educational assessment.

For the present studies, we adopted the two-stage procedure de-
scribed in Chapter 4. A 15-item pretest was administered on a day
previous to the second-stage testing; the teacher or an assistant scored
the pretest and inserted an answer sheet, which also had space for
the second-stage responses, inside the front cover of a second-stage
booklet of a suitable difficulty level according to the pretest scores.
(The covers of these booklets were trimmed so that the students’
names could be seen.) There were three levels of difficulty of the
second-stage booklets—Easy, Medium, and Difficujt. On the day of
the second-stage testing, the booklets were returned to the students
and testing proceeded in the usual way.

From the internal evidence of the data, and the responses of teach-
ers to the NORC interviewers and on a debriefing questionnaire, this
new approach to two-stage testing worked smoothly in all of the total
of 64 schools participating in the [linois and California studies. We
consider our experience in these studies to have established that two-
stage testing is quite feasible for the locally administered testing on
which state assessment programs depend.

The remaining point to be established was that the desired two-
fold gain in efficiency could be obtained by means of a 15-item pretest
and a three-part second-stage test. All adaptive testing procedures,
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including two-stage testing, require some form of scaling of the item
responses, rather than number-right scores, for expressing student
attainment levels. In our case, we used IRT procedures based on
the Bock & Aitkin (1981) marginal maximum likelihood methods of
estimating item parameters. For the scoring of the students, we use
Bayes estimation methods that are superior to all other methods in
their overall precision in the population.

The present studies are the first applications of these types of
IRT methods to two-stage testing. Frederic Lord (1980) had exam-
ined the theoretical advantages of two-stage testing, but he assumed
joint maximum likelihood estimation of item parameters and maxi-
mum likelihood estimation of student scores. OQur marginal maximum
likelihood methods make better use of all information available to the
analysis, however, and are more robust. The evaluation of the proce-
dures discussed in Chapter 5 revealed that, in the overall reliability
of the second-stage scores, the information curves for the test forms,
and the relative efficiency of two-stage versus one-stage testing, our
goals for two-stage testing were met or exceeded. Reliabilities for the
student diagnostic profile scores were generally in the 0.80’s, and a
reliability of 0.95 was indicated for the students’ overall mathemat-
ics attainment scores. The information curves exhibited the broad
coverage required of tests that are to be used over the wide range of
attainment levels seen at given grade levels in a state population. The
relative efficiency of the two-stage test exceeded two in the higher and
lower ranges of the score distributions where dependable measurement
is most critical and most difficult.

We are conscious that adaptive testing in general, and two-stage
testing in particular, has seen very little use in either educational
assessment or traditional achievement testing. From the results of the
present study, the conclusion seems clear that, not only is two-stage
testing feasible, but in not taking advantages of these new testing
technologies, half of the classroom time devoted to external testing is
currently being wasted.

This judgment is not meant to imply, however, that a Duplex
Design using two-stage testing can be administered in the same time
required for a conventional group-level matrix-sampling instrument.
In the present application of two-stage testing, we required classroom
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time for the first-stage test and student-background information, on
a day prior to the main, or second-stage testing. In addition, we use
an entire class period for the second-stage test in a single subject
matter, whereas a pure matrix-sampling design would cover perhaps
four different subject matters in the same amount of time. If satisfied
with somewhat less individual diagnostic information in each subject-
matter area, however, one might adopt a Duplex instrument that
covers two subject-matter areas in one class period. But to attain
some basic individual-level scores in each of four subject-matter areas
would hardly be possible in less than two 50-minute class periods
and perhaps another 30 minutes for the earlier first-stage test and
questionnaire.

On the other hand, if one-stage testing were employed, the indi-
vidual forms of the Duplex instrument would be equivalent to con-
ventional achievement tests and would require the same amount of
administration time. In that case, a marginal benefit from the design
would still be provided by the greater generalizability and by the de-
tailed school-leve] information that arises from the matrix sampling
of the multiple Duplex forms.

8.4 The place of the Duplex Design in a compre-
hensive educational assessment program

Although the Duplex Design provides a more complete information
system than either matrix sampling or achievement testing alone, it
should not be considered a complete assessment system. Because it
requires many items, economic considerations limit it largely to the
multiple-choice items that can be mechanically scored. Many impor-
tant objectives of education simply cannot be assessed by these types
of items, however. In many cases, they will be accessible to large-scale
assessment only if the resources are available to permit human read-
ers to judge and score more informative types of assessment exercise.
A number of states, including California. are already administering
and scoring direct writing exercises. Procedures for developing the
prompts to which the students write brief passages, and for organiz-
ing reading teams that subjectively rate the productions have been
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worked out and implemented. Statistical methods for scaling the rat-
ings and maintaining their consistency form year-to-year have also
been devised and successfully applied.

Apart from economic constraints (due to the costs of having ex-
tended responses read and rated), there should be no obstacles to
extending the types of procedures used in direct writing assessments
to similar evaluations of student productivity. These include the tra-

ditional “open-ended” questions that are composed by teachers and

presented to students as part of the instructional process. From the
steps that the student follows and records while answering the ques-
tion, information about the understanding of the concepts involved
or skill in the procedures required is revealed in a way that is almost
impossible to duplicate with multiple-choice items. Although open-
ended questions are perhaps more difficult to score than essays and
written exposition, effective scoring protocols can be devised if there
is sufficient provision for pretesting. Examples of this approach ap-
plied to mathematics may be found in the publication, A question of
thinking: a first look at students’ performance on open-ended ques-
tions in mathematics, prepared for the California State Department
of Education.

A still more elaborate extension of the direct assessment of student
production is the “practical” examination. This type of testing, in
which the student manipulates equipment and material, has always
been part of the laboratory sciences, creative arts, and the manual
arts. Although testing these skills requires physical performance and
some arrangement for rating the results, there is no other way to
obtain the desired information—certainly not by means of paper-and-
pencil instruments. For the most part, schools have the space and
equipment for such testing; the impediment to their use in assessment
is logistical and procedural, rather than lack of facilities. With enough
resources and effort, however, practical testing could be brought into
a program that also included open-ended exercises, and direct-writing
tasks.

Even in such a comprehensive system, there undoubtedly will still
be a need for objective testing based on multiple-choice items and the
Duplex Design. Although such testing does not include the complete
response repertoire of the student, it remains the most efficient way
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to cover a wide range of contents and certain types of procedural
and reasoning skills. For this reason, objective testing is likely to
continue to be an important part of large-scale assessment. Its further
development through improved item content, instrument design, and
scoring procedures should therefore not be neglected. The studies
reported here are intended as a contribution to such development.

176







REFERENCES

Begle, E. G. & Wilson, J. W. (1970). Evaluation of mathematics programs.
In E. G. Begle (Ed.) Mathematics education. Sizty-ninth yearbook of
the National Society for the Study of Education. Chicago: University
of Chicago Press, pp. 367-404.

Bell, M. (1972). Mathematics uses and models in our everydey world.
Stanford, CA: School Math Study Group.

Bloom, B. S. (Ed.) (1956). Tazonomy of educational objectives. New
York: McKay.

Bock, R. D. (1966). Contributions of multivariate statistical methods to
educational psychology. In R. B. Cattell (Ed.), Handbook of multi-
veriate erperimental psychology. Chicago: Rand-McNally.

Bock, R. D. {1972). Estimating item parameters and latent ability when
responses are scored in two or more nominal categories. Psychome-
trika, 37, 29-51.

Bock, R. D. {(1975). Multivariate statistical methods in behavioral research.
New York: McGraw-Hill. (1983 reprint, Scientific Software, Inc.,,
Mooresviile, IN.)

Bock, R. D. (Ed.) (1989). Multilevel analysis of educational data. New
York: Academic Press.

Bock, R. D., & Aitkin, M. {1981). Marginal maximum likelihood esti-
mation of item parameters: An application of the EM algorithm.
Psychometrika, 46, 443-445.

Bock, R. D., Gibbons, R. D., & Muraki, E. (1988). Full information item
factor analysis. Applied Psychological Measurement, 12, (3), 261-280.

Bock, R. D., & Mislevy, R. J. (1981). An item response model for matrix-
sampling data: The California Grade Three Assessment. In D. Carl-
son (Ed.), Testing tn the states: Beyond accountability, pp. 65-90.
San Francisco: Jossey-Bass.

Bock, R. D., & Mislevy, R. J. (1988). Comprehensive educational assess-
ment for the states: the duplex design. Educational Evaluation and
Policy Analysis, 10, 89-103.

Bock, R. D., Mislevy, R. J., & Woodson, C. E. (1982). The next stage in
educational assessment. Fducational Researcher, 11, 4-11, 16.

Bock, R. D., Muraki, E., & Pfiffenberger, W. (1988). Item pool mainte-
nance in the presence of item parameter drift. Journal of Educational

177



Measurement, 25, 275-285.

Bock, R. D., & Zimowski, M. F. (1989). Sex differences in the mental
processing of words and images. (submitted for publication.)

Brophy, J. (1987). Synthesis of research on strategies for motivating stu-
dents to learn. Educational Leadership, 45, 40-48.

Cannell, J. J. (1988). Nationally normed elementary achievement testing
in America's public schools: How all fifty states are above the national
average. Educational Measurement lssues and Practice, 7, 2, 5-9.

Cohen, M. (1988). Designing state measurement systems. Phi Delta Kap-
pan, 69, 583-388.

Finn, J. D. (1974). A general model for multivariate analysis. New York:
Holt, Rinehart, and Winston.

Finn, J. D. & Bock, R. D. (1989). PC-MULTIVARIANCE: Univariate and
mulitvariate analysis of variance, covariance, regression and repeated
measures. Mooresville, IN: Scientific Software, Inc.

Gadanidis, F. J. (1988). Problem solving: the third dimension in mathe-
matics teaching. Mathematics Teacher, 81, 16-21.

Gibbons, R. D., Bock, R. D., & Hedeker, D. R. (1989). Conditional de-
pendence: Final report. Office of Naval Research report, contract
#N00014-85-K-0586.

Goldstein, H. (1983). Measuring change in educational attainment over
time. Journal of Educational Measurement, 20, 369-377.

Joreskog, K. G. & Sérbom, D. (1989). PC-LISREL 7. Mooresville, IN:
Scientific Software, Inc.

Kilpatrick, J. & Wirszup, L., (Eds.} (1969). Problem solving in arithmetic
and algebra. Soviet studses in the psychology of learning and feaching
mathematics, Vol. 3. Stanford, CA: The School Mathematics Study
Group.

Kilpatrick, J. & Wirszup, I, (Eds.) (1970). Problem solving in geometry.
Soviet studies in the psychology of learning and teaching mathematics,
Vol. 4. Stanford, CA: The School Mathematics Study Group.

Lawley, D. N. (1943). On problems connected with item selection and
test construction. Proceedings of the Royal Statistical Society of Ed-
inburgh, 61-A, 273-287.

Lester, F. K. & Garofalo, J. (Eds.) (1982). Mathematical problem solving:
lssues in research. Philadelphia: Franklin Institute Press.

178




Lord, F. M. (1962). Estimating norms by item sampling. Educational and
Psychological Measurement, 22, 259-267.

Lord, F. M. (1980). Applications of item response theory to practical test-
ing problems. Hillsdale, NJ: Erlbaum.

Lord, F. M., & Novick. (1968). Statistical theories of mental test scores.
Reading, MA: Addison-Wesley.

Mislevy, R. J. (1983). Item response models for grouped data. Journal of
Educetional Statistics. 8, 271-288.

Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika.
49, 359-381.

Mislevy, R. J., & Bock, R. D. (1983). BILOG: Mazimum likelthood item
analysis and test acoring—logi.stic models. Mooresville, IN: Scientific
Software, Inc.

Mislevy, R. J., & Bock, R. D. (1989). BILOG 5.0: Mazimum likelihood
ttem analy.szs and test .scor:ng——logut:c models. Mooresville, IN: Sci-
entific Software, Inc.

Mislevy, R. J., & Bock, R. D. (1989). A hierarchical item-response model
for educational testing. In R. D. Bock (Ed.), Multilevel analysis of
educational data, pp. 37-74. New York: Academic Press.

Muraki, E., Mislevy, R. J., & Bock, R. D. (1987). BIMAIN: a multiple-
group item anelysis and test maintenance program. Mooresville, IN:
Scientific Software, Inc.

Pandey, Tej (1989). Development of innovative questions for large-scale
assessment. In G. Kulm (Ed.), Assessing higher order thinking in
mathematics. Washington, DC: American Association for the Ad-
vancement of Science (in preparation).

Pollak, H. O. (1970). Applications of mathematics. In E. G. Begle (Ed)
Mathematics education. Sizty-ninth yearbook of the National Society
for the Study of Education. Chicago: University of Chicago Press,
pp. 311-334.

Popham, W. J. (1987). The merits of measurement-driven 1nstruct1on
Phi Delta Kappan, 68, 679 682.

Raudenbush, S. W., & Bryk, A. S. (1989). Quantitative models for esti-
mating teacher and school effectiveness. In R. D. Bock (Ed.), Mult:-
level analysis in educational research, pp. 205-234. New York: Aca-
demic Press.

Resnick, L. B., & Ford, W. W. (1981). The psychology of mathematics for

179




tnstruction. Hillsdale, (NJ): Erlbaum.

Roeber, E. J. (1988). Survey of large-scale assessment programs. Wash-
ington: Association of State Assessment Programs.

Schilling, S., & Bock, R. D. (1989). Expressing state assessment results
on nationally normed scales. Paper presented at the annual meeting
of the Education Commission of the States, Boulder, Colorado.

Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Aca-
demic Press.

Sebring, P. A., & Baruch, R. F. (1983). How is NAEP used? Results of an
exploratory study. Educational Measurement: Issues and Practices.
2, 16-20.

Serotnik, K., & Wellington, R. (1977). Incidence sampling: An integrated
theory for “matrix sampling”. Journal of Educational Measurement,
14, 343-399.

Shepard L. A., & Kreitzer, A. E. (1987). The Texas teacher test. Educa-
tional Researcher, 16, 22-31.

Simon, H. A. (1955). On a class of skew distribution functions. Biometrike,
42, 425-440.

Skemp, R. R. (1987). The psychology of learning mathematics. Hillsdale,
NJ: Erlbaum.

Stodolsky, S. (1988). The subject matters: classroom activily in math and
social atudies. Chicago: University of Chicago Press.

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models.
Psychometrike, 51, 567-577.

Thissen, D., Steinberg, L., & Mooney, J. (1987). Trace lines for testlets:
A use of multiple-category response models. Paper presented at the
annual meeting of the American Educational Research Association,
New Orleans.

Tyler, R. W. {(1956). Basic principles of curriculum and insiruction,
Chicago: University of Chicago Press.

Usiskin, Z., & Bell, M. (1983). Applying arithmetic: A handbook of appli-
cations of arithmetic. Chicago: Department of Education, University
of Chicago.

Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adap-
tive testing: A case for testlets. Journal of Educational measurement,
24, 185-201.

180

v



Wood, R. (1968). Objectives in the teaching of mathematics. Educational
Research, 10, 83-98. -

Wood, R. (1971). Computerized adaptive sequential testing. Unpublished
Dissertation, Department of Education, University of Chicago.

181






