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Abstract 

 
Attending to school mean rates of change and to differences in rates of change for 
various demographic groups is of central importance in monitoring school performance.  
In this paper, we argue for the need to expand this focus by also considering the 
relationship between where students in a school start (i.e., their initial status) and how 
rapidly they progress.  In particular, we explore several ways in which attending to 
initial status in analyses of student progress can help draw attention to possible concerns 
regarding the distribution of achievement within schools, and, it is hoped, help stimulate 
discussion among teachers and administrators at given school sites regarding these 
concerns.  To illustrate key points, we fit a series of growth models to the time series data 
for students in several schools in the Longitudinal Study of American Youth (LSAY) 
sample.   
 
 

Introduction 
 

A key approach to monitoring school or district performance 
involves using longitudinal data to study patterns of change in student 
achievement over a series of grades (see, for example, Willms, 1992, and 
Seltzer, Frank & Bryk, 1994).  Thus, for example, interest might center on 
how rapidly students are progressing on average in particular curricular 
areas, or on the extent to which rates of progress differ across various 
demographic groups of students.  As such, an important emphasis in the 
area of educational indicators entails computing and examining school 
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mean and district mean rates of change for cohorts of students across a 
series of grades.   

Clearly much can be learned by moving beyond snapshots of 
student achievement at single points in time to analyses and summaries of 
student growth.  To be sure, the notion of growth in knowledge and skills 
lies at the heart of definitions of learning and education (Bryk & 
Raudenbush, 1988;  Willett, 1988, p. 346).  

However, rather than focus exclusively on changes in student 
achievement over time (e.g., estimates of growth rates), we feel that it is 
also often important to consider levels of student achievement at the start 
of the time span one is studying (e.g., estimates of initial status).  In this 
paper, we wish to explore several ways in which attending to the 
relationship between where students start and how rapidly they progress 
can help bring to light potentially important findings that might be 
masked if we limit our focus to computing school mean rates of change, or 
mean rates of change for various demographic groups.  In particular, we 
will focus on how longitudinal analyses based on such an approach can 
help draw attention to possible concerns regarding the distribution of 
achievement within schools, and, it is hoped, help stimulate discussion 
among teachers and administrators at given school sites regarding these 
concerns.  

To help illustrate various key points and ideas, we will fit a series 
of growth models to the time series data for students in several schools in 
the Longitudinal Study of American Youth (LSAY) sample (see Miller, 
Kimmel, Hoffer & Nelson, 1999).  In these analyses we consider the value 
of examining correlation coefficients and regression slopes that capture 
how differences in initial status relate to subsequent differences in rates of 
change for the students in a school.  Furthermore, in connection with 
comparing rates of change for various demographic groups, we 
emphasize the fact that comparisons that ignore differences in initial 
status can be highly misleading.  For example, the size and direction of the 
difference in growth rates between girls and boys in a particular school 
may differ markedly, depending on whether we are focusing on girls and 
boys with relatively low initial status values, or on girls and boys with 
relatively high initial status values.  As such, it becomes important to 
explore interactions between initial status and various demographic 
characteristics on rates of change.  Throughout the analysis portions of our 
paper, we emphasize the use of graphical displays in helping to discern 
important patterns in the data, and to summarize and convey key results.             
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Moving Beyond Mean Rates of Change 
 

Before turning to analyses of the LSAY data, we first wish to 
introduce certain key concepts.  To help illustrate these concepts, suppose 
that we have measures of reading achievement across grades 2 through 5 
for students in three different elementary schools.  Suppose further that in 
the first school there is a positive relationship between where students 
start and how rapidly they progress.  To help convey this pattern, Figure 1 
displays the fitted reading achievement trajectories for 4 students.  As can 
be seen, for the student with relatively low initial status, the slope of his 
trajectory is fairly flat (i.e., his rate of progress is very low).  When we 
examine the set of 4 trajectories, we see that as initial status increases, the 
slopes of the trajectories increase (i.e., rates of change increase).  
Furthermore, we see that initial differences in student achievement (i.e., 
grade 2 levels of achievement) become magnified over time. 
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Figure 1.  Positive Relationship between Initial Reading Achievement Levels and  
                Rates of Change. 
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In school 2, initial status and rates of change are unrelated.  

Specifically, the four fitted trajectories displayed in Figure 2 reveal that 
students tend to progress at the same rate regardless of their initial status.  
Thus initial differences in achievement essentially hold steady over time.   
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       Figure 2.  No Relationship between Initial Reading Achievement Levels and Rates of 
                       Change. 

 
 
              100   
 
                90    
 
Reading 
Ach.        80   
 
                70    
                 
 
                60 
                        
 
                50 
 
 
 
             2      3                4                5   
 
    Grade 
 
 
Figure 3.  Negative Relationship between Initial Reading Achievement Levels and  
                Rates of Change. 
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In some schools initial status and rates of change may be unrelated, 
but the underlying pattern of change may differ from that in school 2.  For 
example, growth may be slow or rapid for students with low initial status, 
and slow or rapid for students with high initial status.  Thus as initial 
status increases, the relationship between initial status and rates of change 
is non-systematic.  This pattern will be illustrated in a later section of this 
article. 

In school 3, the relationship between initial status and rates of 
change is negative.  The four fitted trajectories in Figure 3 help convey 
that rates of change in this school are most rapid for those students with 
low initial status.  As initial status increases, rates of progress decrease.  
Thus, in this particular school, initial differences in achievement tend to 
diminish over time. 

An important implication is that while the average rates of change 
may be highly similar for two schools, the underlying relationship 
between initial status and rates of change within these schools may differ 
markedly.  Thus, for example, in one school, initial differences in 
achievement may increase over time (Figure 1), while in the other, initial 
differences may decrease over time, i.e., those students who start low tend 
to catch up to those with relatively high initial levels of achievement 
(Figure 3). 
 

An Illustrative Example Using Data from LSAY 
 

To illustrate the above ideas, we now turn to analyses of the LSAY 
data.  Note that the LSAY data set consists of over 50 cohorts of students 
in school districts throughout the U.S.  Students in a given cohort attended 
the same middle school and then entered the same high school.  In our 
paper, we focus on math achievement scores collected at the start of 
grades 7, 8, 9 and 10 for students in several different cohorts.  Note that 
users of LSAY typically refer to a cohort of students in the sample as being 
nested within a particular school (e.g., school 308).  We will use this 
terminology as well.  But bear in mind that in general a given cohort was 
first nested within a particular middle school and then, subsequently, 
within a particular high school.   

Growth modeling has become an increasingly popular tool for 
studying patterns of student change (see, e.g., Bryk & Raudenbush, 1987;  
Muthen & Khoo, 1998;  Seltzer, Frank & Bryk, 1994).  As will be seen, each 
of the growth models that we employ in this paper consists of two models:  
A level-1 or within-student model, and a level-2 or between-student 
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model.  Within-student models enable us to capture key features of 
growth (e.g., initial status, rate of change) for each of the students in a 
sample.  Between-student models enable us to estimate, for example, the 
mean rate of change for a group of students, assess the extent to which 
students vary in their rates of change, and identify important correlates of 
change.  
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Figure 4.  Observed math achievement trajectories for students in school 308.  
The dashed lines represent students whose grade 7 achievement scores lie below 
the mean initial status estimate for school 308 (44.72 points).  The solid lines 
represent students whose grade 7 achievement scores lie above a value of 44.72. 

 
 
  We will first focus on estimating the mean rate of change and the 
correlation between initial status and rates of change for the sample of 
students in school 308.  Figure 4 displays the series of math achievement 
scores for each of these students.  As can be seen, the observed trajectories 
are roughly linear.  In addition, we see that the trajectories for some 
students are fairly flat, while the trajectories for a number of other 
students are quite steep, indicating rapid rates of progress.  
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We now pose the following within-student (level-1) model for the 
time-series data for each of N=54 students in school 308:   
 

Yti = π0i  +   π1i (GRADEti − 7)  +  εti    εti ~ N (0, σ2),  (1) 
 
where Yti represents the math achievement score for student i at time t, 
and GRADEti represents the grade that student i has entered at time t (i.e., 
GRADE takes on values ranging from 7-10). (Note that we are using a 
recent release of the LSAY data set, which contains achievement scale 
scores based on the application of IRT models discussed in Bock and 
Zimowski (1997).)  The key parameters in this model are π0i and π1i.  π1i  
represents the growth rate (rate of change) for student i, and π0i is an 
intercept.  By virtue of centering GRADE around a value of 7, π0i 
represents the expected math achievement score for student i at the start 
of grade 7 (i.e., initial status).  (Note that centering provides a means of 
giving intercepts meaningful interpretations; see Endnote 1 and Bryk & 
Raudenbush, 1992, chpt. 6 for further details.)  Finally, the εti are residuals 
assumed normally distributed with mean 0 and variance σ2.    

What is the mean rate of change for students in school 308?  Do 
rates of change for students in this school tend to vary systematically with 
initial status?  To help address such questions, we specify the following 
between-student (level-2) model:  

 
π0i = β00  +  U0i        U0i ~ N (0, τ00)  
π1i = β10  +  U1i   U1i ~ N (0, τ11)     (Cov (U0i , U1i ) = τ01) , (2) 
   
     

where β00 and β11 represent, respectively, the means for initial status and 
rate of change for students in school 308.  The U0i and U1i are level-2 
residuals commonly termed random effects.  U0i captures the deviation of 
initial status for student i from the mean for initial status, and U1i 
represents the deviation of the growth rate for person i from the mean 
growth rate.  Note that the U0i and U1i are assumed normally distributed 
with variance τ00 and τ11, respectively.  Thus τ00 captures the amount of 
variation in initial status among students in school 308, and τ11 captures 
the amount of variation in growth rates.  Furthermore, the covariance 
between initial status and rates of change for students in this school is 
captured by τ01 (i.e., Cov(U0i , U1i ) = τ01).  A large positive value for τ01 would 
imply that increases in initial status are accompanied by increases in rates 



8 8 
 

of change.  A large negative value would indicate that as initial status 
increases, rates of change decrease.   

All of the growth modeling results that we present in this paper 
were obtained using the software package WinBUGS (see Spiegelhalter, 
Thomas & Best, 2000).  (Note that BUGS is a near acronym for ‘Bayesian 
analysis using the Gibbs sampler’.)  WinBUGS, which was developed by 
members of the MRC Biostatistics Unit in Cambridge, England, is a 
Windows-based program that enables one to fit a wide array of models, 
some of which may be difficult to estimate using conventional statistical 
tools.  As discussed below, a variety of other software options are 
available for fitting the models presented in our paper.  (A discussion of 
various implementation details regarding our use of WinBUGS, and of the 
estimation approach upon which WinBUGS is based, can be found in 
Appendix A.) 
 With respect to the mean initial status for students in school 308, 
we obtain an estimate of approximately 45 points (see Table 1).   We also 
see that the resulting estimate for the mean rate of change is 3.52, which 
implies that student math achievement scores are, on average, increasing 
approximately 3.5 points per grade. 

Next, note that the estimated covariance between initial status and 
rates of change is positive (i.e., 9.43), and that the 95% interval for this 
estimate contains only positive values.  This provides strong evidence of a 
positive relationship between initial status and rates of change. 

As Hays notes (1988, p. 555), a correlation coefficient is the 
standardized covariance between two variables.  It can be computed by 
dividing the covariance between two variables (e.g., Cov(A, B)) by the 
square root of the product of their variances (e.g., (Var(A) × Var(B))1/2).  
Thus, the correlation between initial status and rates of change can be 
expressed as a function of the covariance between initial status and rates 
of change (τ10), the variance in initial status (τ00), and the variance in rates 
of change (τ11): ρ = τ10 / (τ00 × τ11)1/2.  As can be seen in Table 1, we obtain an 
estimate for ρ of .50.  Furthermore, we see that the 95% interval for ρ 
contains only positive values.   

A positive relationship between where students start and how 
rapidly they progress can be discerned in Figure 4.  Clearly the 
relationship is far from a perfect one.  For example, some students with 
relatively high grade 7 achievement scores progress fairly slowly over 
time.  In addition, several students with low grade 7 achievement scores 
progress quite rapidly.  However, in general, we see that among students 
with relatively low grade 7 scores, many have trajectories that are fairly 
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flat, while among students who start out relatively high, many have 
trajectories that are substantially steeper.  In connection with this, we see a 
fanning out of achievement scores over time.  

Table 1: Comparing patterns of change for students in schools 308 and 143. 2  

School 308 (N=54) School 143 (N=54)

Estimate 95% Interval Estimate 95% Interval

Fixed Effects

Mean Initial Status(β00) 44.72 (42.28, 47.14) 44.60 (42.26, 46.92)

Mean Rate of Change(β10) 3.52 (2.69, 4.35) 3.33 (2.27, 4.40)

Variance Components

Within-Person Error(σ2) 13.07 (9.99, 17.38) 17.24 (12.58, 24.16)

Random Effects Variance
for Initial Status(τ00) 70.04 (46.57, 108.30) 60.78 (38.87, 96.78)

Random Effects Variance
for Rates of Change(τ11) 5.36 (3.02, 9.33) 7.23 (3.54, 14.26)

Random Effects
Covariance (τ01) 9.43 (2.96, 17.68) 0.70 (-9.09, 9.07)

Corr. between Initial
Status and Rates of Change

(ρ = τ01 / 1100 ττ × ) 0.50 (0.15, 0.74) 0.03 (-0.35, 0.44)

 
We now fit the model defined by Equations 1 and 2 to the data for 

students in school 143.  In Table 1, we see that the estimate of the mean 
growth rate for students in this school is quite similar to the estimated 
mean rate for students in school 308.  The mean initial status estimates for 
these schools are nearly identical. 

An important difference in results is that while the estimate of the 
covariance between initial status and rates of change for school 143 is 
positive, it is substantially smaller than the covariance estimate for school 
308, and the corresponding 95% interval comfortably includes a value of 0.  
Similarly, the estimated correlation between initial status and rates of 
change is extremely small (0.03), and the corresponding 95% interval 
contains a value of 0.   
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These results are consistent with an examination of the set of 
observed trajectories for the sample of students in school 143 (see Figure 
5).  As can be seen, there is extensive crisscrossing of trajectories.  When 
we consider students with relatively low grade 7 scores and students with 
relatively high grade 7 scores, we see that for both groups, rates of change 
are rapid for some students but slow for others.  Student progress is, in 
some sense, more ``fluid'' in school 143 than in school 308.  By this, we 
mean that over time, an appreciable number of students with lower than 
average grade 7 scores catch up to or surpass students with higher than 
average grade 7 scores.   
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Figure 5.  Observed math achievement trajectories for students in school 143.  
The dashed lines represent students whose grade 7 achievement scores lie below 
the mean initial status estimate for school 143 (44.60 points).  The solid lines 
represent students whose grade 7 achievement scores lie above a value of 44.60. 
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Regressing Rates of Change on Initial Status 
 

Correlation coefficients provide us with measures of the strength of 
linear association between two variables (e.g., variables A and B).  In 
addition to information of this kind, we are also often interested in 
information concerning the expected amount of change in one variable 
(e.g., variable A) when the other increases 1 unit.  This information would 
be captured by the slope relating changes in variable B to variable A, and 
estimating this slope would entail regressing variable A on B.   

Analogously, we might ask:  For students in school 308, how much 
of a change in rate of growth (π1i) do we expect when initial status (π0i) 
increases 1 unit?  Addressing this question implies employing initial 
status as a predictor of rate of change.  Thus we expand our between-
student model as follows: 

 
π0i = β00  +  U0i         U0i ~ N (0, τ00)  
π1i = β10  +  b(π0i −β00 )   +  U1i  U1i ~ N (0, τ11).  (3) 
 

A key parameter in this model is b, which captures the amount of change 
that we expect in π1i when π0i increases 1 unit.  Note that regressing one 
parameter (π1i) on another (π0i) is termed a latent variable regression, and 
that coefficients such as b are termed latent variable regression 
coefficients.  In addition to WinBUGS, a variety of other software 
packages can be used to fit such models, including HLM5 (Raudenbush, 
Bryk, Cheong & Congdon, 2000) and Mplus (Muthen & Muthen, 1998).  
We discuss various software possibilities in the final section of our paper.  

Before moving on, we wish to comment briefly on several other 
features of the above between-student model.  First, as in the case of the 
previous between-student model (Equation 2), β00 represents school mean 
initial status.  Secondly, note that in the model for rates of change, we 
have centered π0i around β00.  This helps give β10 a more useful 
interpretation.  As we will see below, β10 represents the expected growth 
rate for a student whose initial status value is equal to the mean initial 
status value for school 308.  Finally, in contrast to the between-student 
model defined in Equation 2, τ11 now represents the amount of variation in 
rates of change that remains after we take into account differences in 
initial status (see Endnote 3).   
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Table 2: Comparing initial status/rate of change slopes for schools 308 and 143. 

School 308 (N=54) School 143 (N=54)

Estimate 95% Interval Estimate 95% Interval

Fixed Effects

Mean Initial Status(β00) 44.73 (42.34, 47.15) 44.62 (42.28, 46.94)

Mean Rate of Change(β10) 3.49 (2.66, 4.32) 3.32 (2.23, 4.44)

Initial status / Rate of

Change Slope (b) .174 (0.067, 0.290) 0.010 (-0.147, 0.179)

Variance Components

Within-Person Error(σ2) 13.44 (10.23, 17.87) 17.07 (12.42, 24.04)

Random Effects Variance
for Initial Status(τ00) 67.27 (44.61, 104.40) 60.54 (38.95, 95.91)

Random Effects Variance
for Rates of Change(τ11) 3.06 (1.22, 6.65) 7.69 (3.77, 14.90)

 
When we fit the growth model defined by Equations 1 and 3 to the 

data for school 308, we obtain an estimate of 0.174 for b (see Table 2).  As 
can be seen, the corresponding 95% interval contains only positive values.  
The estimates for b, β01 and β00 in Table 2 can be used to compute expected 
rates of change for students with various initial status values.  Thus we 
have the following equation:  
 

E(π1i)  =  3.49 + .174 (π0i − 44.73),      (4) 
 
where E(π1i) denotes an expected rate of change. Note that for students 
with initial status values equal to the mean initial status value  
(i.e., (π0i − 44.73) = 0), the expected rate of change is: 3.49 + .174(0) = 3.49.  
However, for students with initial status values 10 points above the mean 
initial status value (i.e., (π0i − 44.73) = 10), the expected rate of change is 
appreciably faster:  3.49 + .174(10) = 5.23.  Conversely, for students with 
initial status values 10 points below the mean initial status value  
(i.e., (π0i − 44.73) = -10), the expected rate of change is substantially slower:  
3.49 + .174(-10) = 1.75 (see Figure 6).   
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Figure 6. Expected growth trajectories for students in school 306 based on 
the results in Table 2.  
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In contrast, for school 143, we obtain an estimate for b of 0.010, and 
it can be seen that the resulting 95% interval comfortably includes a value 
of 0 (see Table 2).  For students with initial status values equal to the mean 
initial status value for school 143 (i.e., (π0i − 44.62) = 0), the expected 
growth rate is:  3.32 + .010(0) = 3.32.  For students with initial status values 
10 points above the mean initial status value (i.e., (π0i − 44.62) = 10), note 
that the expected growth rate is only slightly faster than the mean rate:  
3.32 + .010(10) = 3.42.  Likewise, the expected growth rate for students with 
initial status values 10 points below the mean initial status value is 
extremely similar to the mean rate:  3.32 + .010(-10) = 3.22.    

As can be seen, analyses of this kind help draw our attention to 
possible concerns regarding the distribution of achievement within a 
school.  For example, in a school such as 308, though students are, on 
average, progressing at a rate of approximately 3.5 points per year, we see 
that rates of rates of progress among students with relatively low initial 
levels of achievement are rather minimal.  In such settings, the gap in 
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achievement between students who start low and those who start high can 
widen substantially over time.  In bringing to light patterns of this kind, 
such analyses can help stimulate discussion among a school's teachers and 
administrators regarding important areas of concern and possible courses 
of action (e.g., programmatic changes that could help promote more rapid 
rates of change among students with low initial levels of achievement).  
We discuss the use of various summaries and analyses involving the 
relationship between initial status and rates of change in more detail in the 
final section of our paper. 
   

Comparing Mean Rates of Change for Different Demographic Groups 
 

We now turn to the issue of comparing rates of progress for 
different demographic groups of students.  For illustrative purposes, we 
focus on differences in rates of change between girls and boys in school 
142 in the LSAY sample.  For these analyses, we will work with the same 
level-1 model as in the above sections (see Equation 1).  At level 2, we pose 
the following model: 
 

π0i = β00  +  β01 GENDERi +  U0i       U0i ~ N (0, τ00)  
π1i = β10  +  β11 GENDERi  +  U1i        U1i ~ N (0, τ11) (Cov(U0i, U1i) = τ01), (5) 

 
where GENDERi takes on a value of 0 if student i is a boy and a value of 1 
if student i is a girl.  By virtue of this coding scheme, β00 represents the 
expected initial status for boys in school 142, and β01 captures the expected 
difference in initial status between girls and boys.  Similarly, β10 represents 
the expected rate of change in math achievement for boys, and β11 
captures the expected difference in rates of change between girls and boys.  
In this model, τ00 and τ11 represent, respectively, the variance in initial 
status and the variance in growth rates within each demographic group 
(i.e., male students and female students).  Furthermore, Cov(U0i, U1i) = τ01 
now represents the covariance between initial status and rates of change 
within each group. 

The resulting estimate for β01 indicates that initial status is, on 
average, approximately 2.8 points higher for the girls in our sample, 
though the lower boundary of the 95% interval for β01 includes a value of 0 
(see Table 3).  In contrast, the estimate for β11 (-1.63) suggests that rates of 
change for girls are, on average, appreciably lower than rates of change 
for boys.  As can be seen, the 95% interval for β11 excludes a value of 0, 
though just barely so.  Thus, while the expected rate of change for boys is 
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5.22 points per year, the expected rate for girls is 5.22 − 1.63 = 3.59 points 
per year.    

Table 3: Comparing rates of change for girls and boys in school 142 (24 girls, 36 
boys). 

Estimates 95% Interval

Fixed Effects

Model for Initial Status(π0i):

Boys(β00) 50.78 (47.33, 54.21)

Girls/Boys Contrast(β01) 2.82 (-2.71, 8.27)

Model for Rates of Change(π1i):

Boys(β10) 5.22 (4.18, 6.27)

Girls/Boys Contrast(β11) -1.63 (-3.27, -0.01)

Variance Components

Within-Person Error(σ2) 18.69 (14.55, 24.27)

Random Effects Variance
for Initial Status(τ00) 94.58 (64.00, 144.10)

Random Effects Variance
for Rates of Change(τ11) 5.10 (2.72, 9.18)

Covariance between Initial
Status and Rates of Change(τ01) 11.06 (3.86, 20.22)

Correlation between Initial
Status and Rates of Change

(ρ = τ01 / 1100 ττ × ) 0.52 (0.18, 0.76)

 
It is important to note that our comparison of growth rates for girls 

and boys does not take into account the fact that math achievement at the 
start of grade 7 is somewhat higher for the girls in our sample.  If 
differences in initial status were inconsequential in terms of how rapidly 
students progress, this would not be a concern.  However, the results that 
we obtain for τ01 and the correlation coefficient (ρ) point to a fairly strong 
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positive relationship between initial status and rates of change for boys 
and for girls.  Note, in particular, that the resulting estimate for ρ is 0.52. 

Analogous to using ANCOVA models to compare groups of 
interest adjusting for initial pretest differences, we now attempt to obtain 
an estimate of the difference in growth rates between girls and boys 
adjusting for differences in initial status.  To accomplish this, we pose the 
following between-student model:   
 

π0i = β00  +  β01 (GENDERi − GENDER. ) +  U0i       U0i ~ N (0, τ00)  
π1i = β10  +  β11 GENDERi  +  b(π0i − β00 )  +  U1i        U1i ~ N (0, τ11).  (6) 

 
In contrast to Equation 5, π0i appears as a covariate in our model for 
growth rates.  The parameter of primary interest in this model is β11, 
which represents an expected difference in growth rates between girls and 
boys that is adjusted for differences in initial status.  Put differently, β11 
represents an expected difference in growth rates holding constant initial 
status.  The parameter b is a regression coefficient that relates differences 
in initial status to rates of change.  Note that this model essentially 
assumes that the slope relating initial status to rates of change is 
equivalent for girls and boys.  As will be seen in a later section of our 
paper, this assumption appears to be extremely reasonable in the case of 
this school.  (Note that the centerings employed in the above between-
student model are intended to give the parameters β00 and β10 more useful 
interpretations.  See Endnote 4 for details.  Also see Endnote 4 for a 
discussion of certain statistical advantages connected with employing 
initial status as a covariate.)   

In Table 4, we see that the resulting estimate for b is 0.153 and that 
the corresponding 95% interval contains only positive values.  This 
suggests a strong, positive relationship between initial status and 
subsequent rates of progress for boys and for girls.  When we take into 
account the fact that boys, on average, have lower initial status values 
than girls, we see that the resulting expected difference in growth rates 
between girls and boys is appreciably larger than the unadjusted 
difference (i.e., -2.06 versus -1.63), and that the upper boundary of the 
resulting 95% interval lies well below a value of 0.  This result implies that 
for girls and boys with similar levels of achievement at the start of grade 7 
(i.e., holding constant initial status), the expected rate of growth in 
achievement for boys is approximately 2 points per year faster than the 
expected rate for girls.  This difference in rates translates into a difference 
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in expected achievement scores after 3 years of schooling (i.e., at the start 
of grade 10) of approximately 6 points.   

 
Table 4: Comparing rates of change for girls and boys in school 142 adjusting for 
differences in initial status (24 girls, 36 boys). 

Estimate 95% Interval

Fixed Effects

Model for Initial Status(π0i):

Mean Initial Status(β00) 51.91 (49.28, 54.54)

Girls/Boys Contrast(β01) 2.80 (-2.57, 8.12)

Model for Rates of Change(π1i):

Boys(β10) 5.37 (4.37, 6.41)

Girls/Boys Contrast(β11) -2.06 (-3.67, -0.45)

Initial Status / Rate of

Change Slope (b) 0.153 (0.066, 0.249)

Variance Components

Within-Person Error(σ2) 19.39 (15.07, 25.15)

Random Effects Variance
for Initial Status(τ00) 90.27 (60.84, 137.80)

Random Effects Variance
for Rates of Change(τ11) 2.37 (0.83, 6.07)

 
Thus, as in the case of the analyses in the previous section, our 

attention is again drawn to issues concerning the distribution of 
achievement within schools.  What processes or factors likely underlie this 
pattern of results for girls and boys?  What might be done to try to 
promote more rapid rates of progress among girls in this school?  These 
are some of the questions that the analyses in this section encourage us to 
consider.  Before moving on to the next section, we wish to point out that 
the samples of girls and boys in school 142 are extremely similar in terms 
of such potentially important intake characteristics as home resources and 
educational aspirations.  Thus the differences in rates of change that we 
see cannot be accounted for by these factors.   
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Overall Comparisons Can Be Misleading:  Examining Interactions 

Between Initial Status and Demographic Characteristics 
 

While comparing rates of change for various demographic groups 
of interest can be extremely useful, such comparisons can potentially be 
misleading, even when we have taken into account differences in initial 
status.  To help illustrate this point, we will focus on patterns of growth 
for students in school 302 in the LSAY sample.   

Table 5: Comparing rates of change for girls and boys in school 302 adjusting for 
differences in initial status (38 girls, 41 boys). 

Estimate 95% Interval

Fixed Effects

Model for Initial Status(π0i):

Mean Initial Status(β00) 52.54 (50.42, 54.67)

Girls/Boys Contrast(β01) -0.62 (-4.88, 3.66)

Model for Rates of Change(π1i):

Boys(β10) 4.28 (3.65, 4.91)

Girls/Boys Contrast(β11) 0.20 (-0.73, 1.12)

Initial Status / Rate of

Change Slope (b) 0.100 (0.048, 0.157)

Variance Components

Within-Person Error(σ2) 13.20 (10.88, 16.07)

Random Effects Variance
for Initial Status(τ00) 82.34 (59.05, 117.50)

Random Effects Variance
for Rates of Change(τ11) 0.72 (0.24, 1.98)

 
Initial status values and rates of change differ very little for girls 

and boys in this school.  As can be seen in Table 5, initial status values for 
girls are, on average, approximately .60 points lower for girls than boys, 
and rates of change, holding constant initial status, are slightly faster for 
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girls (0.20).  (Note that the unadjusted difference in rates slightly favors 
girls as well.) 

In the case of the analysis presented in Table 5, a key assumption is 
that the slope relating initial status to rates of change (b) is equivalent for 
girls and boys.  This is analogous to the assumption of parallel within-
group slopes in classic ANCOVA analyses.  An implication of this 
assumption is that the expected difference in rates of change between girls 
and boys is 0.20 regardless of whether we are considering boys and girls 
with relatively low initial achievement values, or whether we are 
considering boys and girls with high initial values.  As will become clear, 
this assumption is extremely reasonable in the case of school 142, but 
highly questionable in the case of school 302. 

We now pose a model that allows for the possibility that the slope 
relating initial status to rates of change may differ for girls and boys.  That 
is, we include an interaction term (i.e., GENDERi × (π0i − β00 )) in our model 
for rates of change: 
 

π0i = β00  +  β01 (GENDERi − GENDER. ) +  U0i       U0i ~ N (0, τ00)  
π1i = β10  +  β11 GENDERi  +  b1(π0i − β00 )  +   b2 (GENDERi  × (π0i − β00 )) 
      + U1i        For Boys : U1i ~ N (0, τ11B) ; For Girls : U1i ~ N (0, τ11G)  (7) 

 
where β11 and b1 represent, respectively, the main effects of gender and 
initial status on rates of change, and where b2 captures the interaction 
between initial status and gender.  Note also that τ11G represents the 
variance in growth rates for girls that remains after taking into account 
initial status, and τ11B represents the remaining variance in growth rates 
for boys.  

Let's now unpack the above between-student model.  Based on the 
equation for growth rates in this model, the expected rate of change for 
boys (GENDERi = 0) is:  
 

E(π1i | GENDERi = 0)  = β10  +  b1(π0i − β00)     (8)  
 
and the expected rate of change for girls (GENDERI = 1) is: 
 

E(π1i | GENDERi = 1)  = (β10  + β11) +  (b1 + b2) (π0i − β00)   (9) 
 
As can be seen in Equation 8, b1 is the slope capturing the relationship 
between initial status and rates of change for boys.  In Equation 9, we see 
that the initial status / rate of change slope for girls is equal to b1 + b2.  
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Thus b2 captures the difference between the initial status / rate of change 
slopes for girls and boys. 

Table 6: Examining the interaction between initial status and gender on rates of 
change in school 302 (38 girls, 41 boys). 

Estimate 95% Interval

Fixed Effects

Model for Initial Status(π0i):

Mean Initial Stuatus(β00) 52.54 (50.41, 54.66)

Girls/Boys Contrast(β01) -0.61 (-4.89, 3.70)

Model for Rates of Change(π1i):

Boys(β10) 4.26 (3.59, 4.93)

Girls/Boys Contrast(β11) 0.20 (-0.76, 1.15)

Initial Status / Rate of

Change Slope (b1) 0.142 (0.080, 0.214)

Interaction between Gender

and Initial Status (b2) -0.121 (-0.226, -0.018)

Variance Components

Within-Person Error(σ2) 13.12 (10.86, 15.96)

Random Effects Variance
for Initial Status(τ00) 82.38 (59.15, 117.10)

Random Effects Variance
for Rates of Change

Boys (τ11B) 0.37 (0.11, 1.72)

Girls(τ11G) 1.23 (0.49, 3.02)

 

 
In Table 6, we see that the resulting estimate of b1 is 0.142, and that 

the lower boundary of the corresponding 95% interval is well above a 
value of 0.  This suggests a strong positive relationship between initial 
status and rates of change for boys.  That is, for boys, differences in initial 
status appear to be very consequential with respect to subsequent rates of 
change.  In contrast, we obtain a negative estimate for b2 (i.e., -0.121).  It 
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can also be seen that the corresponding 95% interval for b2 contains only 
negative values.  This suggests that the initial status / rate of change slopes 
for girls and boys differ substantially.  In particular, summing the point 
estimates for b1 and b2 we obtain a value of 0.021.  Thus for girls, 
differences in initial status appear to be inconsequential with respect to 
subsequent rates of change.  (Note that in fitting the above interaction 
model to the data for students in school 142, we obtain a point estimate for 
b2 that is extremely close to 0.  This suggests that in school 142, initial 
status / rate of change slopes appear to be similar for girls and boys.) 

Analogous to ANCOVA analyses, such differences in initial status / 
rate of change slopes have important implications for drawing 
conclusions concerning expected differences in rates of change between 
girls and boys.  To help grasp the results of this analysis, we consider the 
expected rates of change for girls and boys whose initial status values are 
12 points below the mean initial status estimate for school 302  
((π0i − 52.54) = -12), whose initial status values are equal to the mean initial 
status estimate ((π0i − 52.54) = 0), and whose initial status values are 12 
points above the mean initial status estimate ((π0i − 52.54) = 12).   

We first substitute the estimates for β10, b1 and β00 into Equation 8: 
 

E(π1i | GENDERi = 0) =  4.26 + 0.142 (π0i − 52.54).        (10) 
 
We then substitute the estimates for β10, β11, b1, b2 and β00 into Equation 9: 
 

E(π1i | GENDERi = 1) = (4.26 + .20) + (0.142 − 0.121) (π0i − 52.54).   (11)  
 
Equation 11 simplifies as follows: 
 

E(π1i | GENDERi = 1) = 4.46 + 0.021 (π0i − 52.54)         (12)  
 
Based on Equation 10, the expected rate for a boy whose initial status 
value is 12 points below the mean initial status estimate is:  
4.26 + 0.142 (-12) = 4.26 − 1.70 = 2.56.  For a girl whose initial status value is 
12 points below the mean initial status estimate, the expected rate based 
on Equation 12 is: 4.46 + 0.021 (-12) = 4.46 − 0.25 = 4.21.  Thus among 
students with initial status values that are 12 points below the grand 
mean, the expected rate of growth is appreciably higher for girls than 
boys. 

Based on Equations 10 and 12, the expected rate of change for a boy 
whose initial status value is equal to the mean initial status estimate is  
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((π0i − 52.54) = 0) is 4.26, while for girls, the expected rate is 4.46.  In 
contrast to students whose initial status values are 12 points below the 
mean initial status estimate, we see that for students with initial status 
values equal to 52.54, the expected rates of change for boys and girls are 
quite similar. 

Turning to students whose initial status values are 12 points above 
the mean initial status estimate, the expected rate of change for boys is 
4.26 + 0.142 (12) = 4.26 + 1.70 = 5.96.  For girls, the expected rate is:  
4.46 + 0.021 (12) = 4.46 + 0.25 = 4.71.  Thus for students with initial status 
values that are 12 points above the mean initial status estimate, the 
expected rate of change is markedly higher for boys than girls. 
 

Figure 7. Expected grow th trajectories for girls and boys in school 302 based on the 
initial status x gender interaction analysis.  The mean initial status for school 302 is 
52.54
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Note that for the three values of initial status that we are 
considering, as initial status increases, the expected rate of change for girls 
increases somewhat from a value of 4.21 to a value of 4.71.  This slight 
increase is connected to the fact that the estimate of the initial status / rate 
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of change slope for girls takes on a small positive value (i.e., 0.021).  For 
boys, however, we see that as initial status increases, the expected rate of 
change for boys increases substantially from a value of 2.56 to a value of 
5.96.  These expected trajectories are displayed in Figure 7.   

An implication of the above analyses is that estimates of overall 
differences in rates of change for different demographic groups may be 
misleading.  In particular, they may mask the fact that the size and 
direction of the difference may vary markedly depending upon whether 
we are focusing on students with relatively low or high initial status 
values.  (Note that analyses of this kind prove to be extremely valuable in 
longitudinal studies of interventions.  In particular, one can investigate 
interactions between initial status and type of treatment on rates of 
change.  See Endnote 5.)   
 

Discussion 
 

Attending to mean rates of change, and overall differences in rates 
of change for various demographic groups is of central importance in 
monitoring the performance of schools and districts.  In this paper, we 
have argued for the need to expand this focus by also considering the 
relationship between initial status and rates of change.   In particular, we 
have focused on various summaries and analyses that can help draw our 
attention to possible concerns regarding the distribution of achievement 
within a school (e.g., why does initial status appear to be very 
consequential with respect to subsequent rates of progress?;  among 
students with high initial status values, why are rates of progress 
appreciably more rapid for boys than girls?).   

We saw that estimates of correlations between initial status and 
rates of change, and estimates of initial status / rate of change slopes, 
provide us with two key measures of within-school relationships between 
initial status and rates of change.  We also focused on the potential value 
of comparing growth rates for various demographic groups of interest 
adjusting for differences in initial status.  Note that we feel it is important 
to consider both unadjusted and adjusted differences in rates.  Each of 
these measures provides us with useful information.  Regardless of 
whether one group of students differs from another in terms of initial 
status, it is important to know whether these groups tend to be 
progressing at fairly similar rates or not.  Unadjusted differences provide 
us with information of this kind.  However, if initial status in a school of 
interest appears to be very consequential with respect to subsequent rates 
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of achievement, and if the groups that we wish to compare differ 
appreciably in terms of initial status, then it is also valuable to ask:  What 
is the expected difference in rates of change holding constant initial 
status? 

An extremely important point, however, is that comparisons of 
growth rates can be misleading regardless of whether we adjust for 
differences in initial status or not.  Specifically, as we saw above, the size 
and direction of expected differences in rates of change between 
demographic groups of interest can vary substantially across various 
initial levels of achievement.  In the case of our example, we saw that 
among students with relatively low initial status, rates of change were 
appreciably faster for girls than boys.  However, among students with 
relatively high initial status, rates of progress tended to be more rapid for 
boys than girls. 

Our hope is that the kinds of summaries and analyses illustrated 
above can, in conjunction with various measures of school performance 
(see, e.g., Bryk, Thum, Easton & Luppescu, 1998;  Sanders & Horn, 1994;  
Thum, 2001;  Willms, 1992), help stimulate fruitful discussion among 
school personnel regarding possible areas of concern.  For example, 
suppose that there is evidence of a strong positive relationship between 
initial status and rates of change in a particular school.  Drawing on their 
extensive experience and contextual knowledge, it would be extremely 
valuable for the teachers and administrators in this school to discuss the 
factors likely underlying this relationship.  For example, to what extent 
might this be due to the school's policies regarding tracking?  To what 
extent might this be due to policies regarding the number and kinds of 
mathematics courses that students are required to take?  In these 
discussions, it would be important to consider those factors that are likely 
contributing to differences in achievement among students observed at 
the start of the series of grades under consideration (e.g., the nature and 
extent of previous academic difficulties;  differences in the quality of prior 
instruction received by students).  The particular factors underlying the 
strong relationship between initial status and rates of change in this school 
may be quite clear, or it may be the case that further study and discussion 
are necessary.      

Note that with the help of research personnel, various hunches 
could be assessed more formally through additional growth modeling 
analyses if the necessary data are available.  To continue with the above 
example, suppose we wish to explore whether the strong positive 
relationship between initial status and rates of change for students in this 
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school (i.e., a large, positive estimate for b) is in large part due to 
differences in the quality of pre-algebra instruction received by students.  
If this is so, fitting a model in which rates of change are modeled as a 
function of initial status and measures of this explanatory factor would 
result in a substantially smaller estimate for b.   

Employing initial status as a predictor of rates of change can also 
help broaden the kinds of questions that we are able to address in studies 
of school effects based on analyses of large-scale longitudinal data sets 
(e.g., NELS, LSAY).  Specifically, through the use of three-level growth 
models, we can systematically model differences in the relationship 
between initial status and rates of change across schools.  At level 1, as 
above, we model the time-series observations for each student as a 
function of grade.  At level 2, we model rates of change as a function of 
initial status for each of the schools in a sample.  This might be termed a 
within-school model, since it enables us to capture the relationship 
between initial status and rates of change within each school in a sample.  
To study factors underlying the variability in initial status / rate of change 
slopes across schools, we then treat these slopes as outcomes in a level-3 
(between-school) model.  This enables us to examine how differences in 
various school policies, practices and intake characteristics relate to 
differences in the magnitude of initial status / rate of change slopes.  
Through applications of three-level growth models of this kind one can 
attempt to identify, for example, those school factors that appear to 
eventuate in high mean rates of progress, and in fairly weak relationships 
between initial status and rates of change (Choi & Seltzer, in prep).      

In our analyses, we employed growth models in which change in 
math achievement scores was modeled as a linear function of grade (see 
Equation 1).  For each of the cohorts whose time-series data we analyzed 
(e.g., the time-series data for students in schools 308, 143, 142 and 302), 
various exploratory analyses and formal tests that we conducted pointed 
to this being a reasonable and parsimonious representation of growth.  
Note, however, that the various kinds of analyses presented above can be 
extended to settings in which patterns of change are nonlinear.  For 
example, consider a school in which growth in student achievement tends 
to accelerate over time.  Suppose further that acceleration is more 
pronounced for those students with relatively high initial levels of 
achievement.  Patterns of this kind can be detected, summarized and 
studied more formally by using the modeling framework illustrated above 
to fit models in which student differences in acceleration are modeled as a 
function of initial status.   
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As Rogosa (1988) notes, the magnitude of the correlation between 
initial status and rate of change will typically depend upon the point in 
time (e.g., grade) chosen as the starting point of a time series.  Consider, 
for example, the pattern of change in school 308.  The correlation between 
initial status (status at the start of grade 7) and rate of change is positive.  
As such, in Figure 4 we see that students tend to be diverging in their 
achievement levels over time.  As a result, the correlation between status 
at a later point in time (e.g., status at the start of grade 9) and rate of 
change will be appreciably larger than the correlation between status at 
the start of grade 7 and rate of change.  The implication of this for design 
and analysis in longitudinal investigations is that it is extremely important 
that one choose substantively sensible starting points and end points, i.e., 
starting points and end points that will enable one to address the key 
questions motivating a study. 

A wide variety of software options are available for fitting the 
kinds of two-level models presented above.  All results reported in this 
paper were obtained using the Windows version of BUGS (i.e., 
WinBUGS).  Annotated copies of our programs are available upon 
request.  WinBUGS opens up a variety of modeling possibilities that have 
proved to be extremely valuable in our growth-modeling work (e.g., see 
Endnote 6).  One can also estimate all of the above two-level models using 
current versions of such structural equation modeling programs as Mplus, 
LISREL, EQS and AMOS.  In addition, all but the very last of the two-level 
models presented in this paper can be estimated using HLM5.  Note, 
however, that we will very likely see versions of HLM in the near future 
that enable one to estimate growth models containing interactions 
between initial status and various demographic characteristics such as 
gender (see Endnote 7). 

In short, a number of software options exist for formulating and 
fitting models that enable us to employ initial status as a predictor of 
change.  This, in turn, creates a variety of opportunities for conducting 
analyses that can help illuminate important features of the distribution of 
student progress within schools. 
 

Endnotes 
 
1.  Based on the model for student growth specified in Equation 1, the 
expected score for student i at the start of grade 7 (i.e., GRADEti = 7) is:  π0i 
+ π1i (7 − 7) = π0i.  Had we not centered GRADE, then π0i would have 
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represented the expected achievement score for student i at the start of 
grade 0, which clearly is not very useful for our purposes.    
 
2.  The parameter estimates and 95% intervals that we report in our tables 
are posterior medians and .025 and .975 quantiles obtained via WinBUGS.  
These can be viewed as Bayesian analogues of point estimates and 
confidence intervals.  See Appendix A for further details.   
 
3.  Because π0i is now included as a predictor of π1i, the residuals U0i and 
U1i are assumed to be uncorrelated, i.e., Cov(U0i , U1i) = 0. 
 
4. In the equation in which initial status is modeled as a function of 
GENDER, we see that GENDER is now centered around its grand mean.  
As a result, β01 still retains its meaning as the expected difference in initial 
status between girls and boys.  However, β00 now takes on a more useful 
interpretation for our purposes, i.e., β00 represents the grand mean initial 
status value for students in school 142 (see, e.g., Bryk & Raudenbush 
(1992) for a discussion of centering level-2 predictors).  In the case of 
classic ANCOVA models, covariates such as pretest scores (e.g., Xi) are 
typically deviated from their grand means (Xi −X.) (see, e.g., Reichardt, 
1979).  Similarly, in the model for growth rates in Equation 6, our 
covariate (π0i) is deviated from its grand mean (i.e., π0i − β00). As a result, 
β10 now represents the expected rate of change for a male student whose 
initial status value is equal to the grand mean (i.e., π0i  − β00 = 0).  We can 
also refer to β10 as an adjusted rate of change for boys.  Similarly, β10 + β11 
represents the expected rate of change for a female student whose initial 
status value is equal to the grand mean, i.e., it is an adjusted rate of change 
for girls.  These adjusted rates are analogous to adjusted posttest means in 
ANCOVA settings.  

Note, however, that our model differs from ANCOVA models in a 
crucially important way.  In ANCOVA analyses, we often employ student 
pretest scores as covariates (e.g., Xi).  Such scores contain measurement 
error.  A potential problem is that measurement error contained in Xi can 
attenuate estimates of the regression coefficient for Xi.  This, in turn, can 
result in underadjustments for initial group differences (see, e.g., 
Reichardt, 1979).  One way of overcoming such problems is to employ 
latent variables as covariates.  Thus, rather than employing observed (e.g., 
Y) grade 7 math achievement scores as a covariate, we employ the latent 
variable π0i − a parameter capturing initial status − as our covariate.  For 
discussions of the advantages of employing initial status rather than 
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observed achievement at time 1 as a covariate in studies of change, see 
Khoo (2001) and Raudenbush, Bryk, Cheong & Congdon (2000).  
 
5.  Consider, for example, a longitudinal study of the effectiveness of two 
remedial reading programs (e.g., Programs A and B).  It may be the case 
that among students with extreme reading difficulties, rates of progress 
are, on average, more rapid for students in Program A, whereas among 
students with milder difficulties, rates of progress tend to be more rapid 
for students in Program B.  We term phenomena of this kind Initial Status 
× Treatment interactions.  See Muthen & Curran (1997) and Seltzer, Choi 
& Thum (2001) for illustrative examples.     
 
6.  Some of the modeling capabilities of WinBUGS that we have found to 
be particularly useful include the following.  First, under normality 
assumptions, results for parameters of interest are potentially vulnerable 
to outliers.  While one can use WinBUGS to conduct analyses under 
normality assumptions, one can also use WinBUGS to conduct analyses 
under heavy-tailed distributional assumptions, which has the effect of 
downweighting outlying observations.  In the context of growth modeling 
applications, the term outlier refers to outlying time-series observations 
(e.g., a time-series observation for a student that is unusually low given 
the overall trend in that student's data), and to outlying individuals (e.g., a 
student whose rate of change is unusually slow in relation to other 
individuals in that student's school) (see Seltzer & Choi, in press).  
Secondly, it is possible in WinBUGS, as well as in HLM, to model 
differences in school mean rates of change as a function of differences in 
school mean initial status.  Third, in situations where rate of change or 
acceleration is related to initial status, it is often valuable to consider two 
or more initial status values of substantive interest and ask:  For students 
who start at these different levels, how much of a difference in 
achievement scores do we expect to see at various subsequent points in 
time (e.g., at the start of grade 10)?  Estimates and intervals for contrasts of 
this kind can be obtained easily via WinBUGS.  This turns out to be 
enormously useful in settings in which growth is nonlinear.  Fourth, 
WinBUGS can be used to fit three-level growth models in which we can 
explore how differences in various school policies and characteristics 
relate to differences in the magnitude of initial status / rate of change 
slopes. 
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7.  This prediction is based on the fact that the estimation strategy used by 
the HLM program to estimate latent variable regressions (see Raudenbush 
& Sampson, 1999) can in principle be extended to settings in which one 
wishes to specify interactions between initial status and various 
dichotomous predictors.  Once the necessary modifications are made to 
the HLM program, it will be possible to conduct analyses of this kind. 
 

Appendix A 
 

Recently developed estimation tools such as the Gibbs sampler 
make it possible to obtain estimates and intervals for parameters of 
interest in a wide-range of complex modeling settings (see, e.g., Carlin & 
Louis, 1996;  Gelfand, Hills, Racine-Poon & Smith, 1990;  Gelman, Carlin, 
Stern & Rubin, 1995;  Seltzer, 1993;  Tanner, 1996).  In technical parlance, 
these iterative techniques provide a means of simulating the marginal 
posterior distributions of parameters of interest.  Thus, for example, the 
Gibbs sampler could be used to simulate the marginal posterior 
distribution of the mean growth rate (i.e., β10 in Equation 2) for school 308.  
This distribution, which we will denote p(β10|y), would provide us with a 
summary of the plausibility of different possible values for β10 based on 
the data at hand, and, if available, any relevant prior information.  (Note 
that in our analyses of the LSAY data, we employ “diffuse priors”', i.e., 
priors that allow the data to dominate our inferences.)  Note further that 
the mode, median and mean of p(β10|y) would provide us with various 
point estimates for β11, and the .025 and .975 quantiles of this distribution 
would provide us with the Bayesian analogue of a confidence interval.     

WinBUGS, which is freely available via the Web, provides a 
relatively easy means of implementing the Gibbs sampler in a wide array 
of modeling settings.  (Note that versions of BUGS for a variety of other 
platforms are freely available as well.)   In essence, WinBUGS generates 
large samples of values for parameters of interest (e.g., β10), which enable 
us to approximate the marginal posterior distributions of these parameters 
with high degrees of accuracy.   Thus, for example, the mean and median 
of the sample of values generated for β10 would provide us with extremely 
accurate estimates of the mean and median of p(β10|y).  Similarly, the .025 
and .975 quantiles of this sample of values would provide us with highly 
accurate estimates of the .025 and .975 quantiles of p(β10|y).   

We ran our WinBUGS analyses on a 700mhz Pentium III computer.  
For each of our analyses, the WinBUGS program required less than 5 
seconds of CPU to generate samples of 10,000 values (i.e., to complete 
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10,000 iterations of the Gibbs sampler).  Depending on the particular 
analysis, various available diagnostics indicated that samples ranging 
from approximately 15,000 to 30,000 values were sufficient for simulating 
the marginal posterior distributions of the parameters in our models with 
very high degrees of accuracy.  Given that in our applications WinBUGS 
required very little CPU time to complete large numbers of iterations, we 
based our final results on values generated over 60,000 iterations, thus 
ensuring extremely high degrees of accuracy. 

In applications of the Gibbs sampler, values generated for a given 
parameter over successive iterations will tend to be correlated to some 
extent.  (Note that this helps explain why fairly large samples of values are 
needed to simulate marginal posteriors of interest with high degrees of 
accuracy.  In short, the effective sample size of a set m correlated values 
will be smaller than m.)  One needs to be alert, however, to situations in 
which degrees of autocorrelation are extremely high.  The technical phrase 
for this in the literature is “poor mixing”'.  To help detect any possible 
convergence or mixing problems, for each analysis we ran WinBUGS 
twice using different starting values for the variance components in our 
models, and using different seeds.  We then compared results (e.g., 
posterior medians and .025 and .975 quantiles) based on the output from 
each run, and inspected various diagnostic plots and statistics (i.e., trace 
plots, autocorrelation function (ACF) plots, and Raftery-Lewis statistics). 
These procedures gave no indication of any convergence or mixing 
problems.  On the contrary, mixing appeared to be quite good in our 
applications, and convergence was rapid.  While various diagnostics are 
available in WinBUGS (e.g., trace plots, ACF plots), the programs CODA 
(Best, Cowles & Vines, 1995) and BOA (Smith, 2000) provide users with a 
comprehensive set of diagnostic tools.  CODA can be downloaded from 
the BUGS website, and BOA can be downloaded from the Web as well.   

The resulting marginal posterior medians and .025 and .975 
quantiles that we obtained via WinBUGS constitute the parameter 
estimates and 95% intervals that we report in our Tables.   For checking 
purposes, we re-ran the analyses reported in Tables 1-5 using HLM.  The 
results that we obtained via HLM for key fixed effects (e.g., β10 in Equation 
2; β11 in Equation 6) and latent variable regression coefficients (e.g., b in 
Equations 3 and 6) are extremely similar to those that we obtained using 
WinBUGS.  Finally, we re-ran the analysis reported in Table 6 using 
Mplus (Muthen & Muthen, 1998).  The Mplus results for key latent 
variable regression parameters (i.e., b1 and b2 in Equation 7) are extremely 
close to those reported in Table 6.  
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